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ABSTRACT 

Smart avatars are virtual human representations controlled by 
real people.  Given instructions interactively, smart avatars can 
act as autonomous or reactive agents.  During a real-time 
simulation, a user should be able to dynamically refine his or her 
avatar’s behavior in reaction to simulated stimuli without having 
to undertake a lengthy off-line programming session.  In this 
paper, we introduce an architecture, which allows users to input 
immediate or persistent instructions using natural language and 
see the agents’ resulting behavioral changes in the graphical 
output of the simulation. 
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1. INTRODUCTION 
In this paper, we describe smart avatars [28, 34], which are 
virtual representations of humans controlled by real people.  
Given instructions interactively, smart avatars can act as 
autonomous or reactive agents.  During a real-time simulation, a 
user should be able to dynamically refine his or her avatar's 
behavior in reaction to simulated stimuli without having to 
undertake a lengthy off-line programming session.  Moreover, 
we would like to be able to instruct the smart avatars in a natural 
and straightforward manner.   

For controlling, manipulating, and animating virtual humans, we 
need an effective user interface. Interactive point-and-click tools 
(such as Maya from Alias/Wavefront, 3D StudioMax from 
Autodesk, and SoftImage from Avid) could be configured to 
give instructions during run time, but require specialized 
training and animation skills, and force the user’s instructions 
for the avatar through a narrow communication channel of 
hand/mouse motions. This narrow channel precludes, among

other things, any conditional instruction that references a 
hypothetical object in its condition.  For example, a user could 
not give the instruction “if a military vehicle enters the 
checkpoint, open the gate,” if there is no such vehicle to click on 
when the instruction is given. 

A programming or scripting language such as that used in 
Improv [25] can provide a sufficiently powerful interface for 
instructing virtual humans, and would be able to handle the 
kinds of conditional instructions discussed above. However, 
such interfaces are generally more appropriate for off-line 
applications, where instructions are written in advance, than for 
run-time applications, where instructions are given in response 
to observed events in the simulation.  Not only does a scripting 
interface require a great deal of specialized programming 
expertise (even for “English-like” languages), but the required 
instructions can often be too complex to reliably implement in 
real time.  A script to simply “turn off all the lights,” for 
example, would involve at least one condition for testing 
whether each light was on, nested inside a loop over all the 
lights in the environment, in addition to the “turn off light” 
command itself. 

One promising and relatively unexplored option for giving run-
time instructions to virtual humans is a natural language based 
interface.  After all, instructions for real humans are given in 
natural language, augmented with graphical diagrams and, 
occasionally, animations.  Recipes, instruction manuals, and 
interpersonal conversations all use natural language as a 
medium for conveying information about processes and actions 
[3, 33].  A natural language interface should be powerful 
enough to express conditional instructions and hypothetical 
situations such as those described above, and should be simple 
enough to use in a real-time application without substantial 
formal training on the part of the user.  We are not advocating 
that animators throw away their tools, only that natural language 
offers a communication medium we all know and can use to 
efficiently formulate run-time instructions for virtual human 
characters.  Some aspects of some actions are certainly difficult 
to express in natural language (such as precise locations and 
orientations of objects), but the availability of a language 
interpreter can make the virtual human interface more closely 
simulate real interpersonal communication.  

We have therefore implemented an architecture, which allows 
users to input instructions using natural language sentences.  
These instructions can range from specific instantaneous 
commands, like “Sit down,” to very general standing orders, like 



“Drive abandoned vehicles to the parking lot,” affording various 
degrees of autonomy to the avatar/agent.  

Existing natural language interface systems for agents either are 
not concerned with mapping natural language sentences into 
semantic representations for agent control [15] or rely on mostly 
ad hoc linguistic representations with severely limited syntactic 
processing [32] or no syntactic processing at all [9].  In contrast, 
the syntactic and semantic representations described in this 
paper are based as much on linguistic principles as they are on 
the needs of animation.  Moreover, this system integrates 
detailed syntactic and semantic representations (such as those 
proposed in the AnimNL project [10]), with a broad-coverage 
grammar for English [35].  This grammar contains over 300,000 
inflected English words with over 1,000 syntactic structures.  
Statistical techniques exist that find the correct word 
attachments 85% of the time, and the correct sentential analysis 
35% of the time on unrestricted text using this grammar [35].   

We begin by describing the levels of architectural control 
necessary for animating and instructing smart avatars with a rich 
set of behaviors in a dynamic environment.  Then we discuss a 
conceptual representation and an architecture that we have 
created to facilitate instructing smart avatars with natural 
language.  We close with an example simulation that was 
implemented under this architecture. 

 

2. LEVELS OF ARCHITECTURAL 
CONTROL  
Building a virtual human model that admits control from sources 
other than direct animator manipulations requires an architecture 
that supports higher-level expressions of movement. Although 
layered architectures for autonomous beings are not new [6, 16, 
36], we have found that a particular set of architectural levels 
seems to provide efficient localization of control for both 
graphics and language requirements.  Our multilevel architecture 
is grounded in typical graphical models and articulation 
structures [8, 12].  Motion generators drive these graphical 
models to generate various motor skills, and endow virtual 
humans with useful abilities.  The higher architectural levels 
organize these skills with parallel automata, use a conceptual 
representation to describe the actions a virtual human can 
perform, and finally create links between natural language and 
action animation. 

Our parallel programming model for virtual humans is called 
Parallel Transition Networks, or PaT-Nets [14].  Other human 
animation systems, including Motion Factory's Motivate and 
New York University's Improv [25], have adopted similar 
paradigms with alternative syntactic structures.  In general, 
network nodes represent processes. Arcs connect the nodes and 
contain predicates, conditions, rules, and other functions that 
trigger transitions to other process nodes.  Synchronization 
across processes or networks is made possible through message-
passing or global variable blackboards to let one process know 
the state of another process.   

PaT-Nets are effective programming tools, but do not represent 
exactly the way people conceptualize a particular situation.  We 
therefore need a higher-level representation to capture additional 
information, parameters, and aspects of human action [13].  We 

create such representations by incorporating natural-language 
semantics into a Parameterized Action Representation. 

  

3. PARAMETERIZED ACTION 
REPRESENTATION (PAR) 
A PAR [2, 4] gives a description of an action. It specifies the 
action’s agent, as well as any relevant objects and information 
about the path, location, manner, and purpose.  There are 
linguistic constraints on how this information can be conveyed 
in a language: agents and objects tend to be verb arguments, 
paths are often prepositional phrases, and manners and purposes 
might be in additional clauses [24].  A parser and translator map 
the components of an instruction into the parameters or 
variables of the PAR, which is then linked directly to PaT-Nets 
executing the specified movement generators. 

Natural languages often describe actions at a high level, leaving 
out many of the details that have to be specified for animation 
[23].  The PAR bridges the gap between natural language and 
animations.  

We use the example “Walk to the door and turn the handle 
slowly”  to illustrate the function of the PAR. There is nothing 
explicit in the linguistic representation about how to grasp the 
handle or which direction it will have to be turned, yet this 
information is necessary for the action's actual visible 
performance.  The PAR has to include information about 
applicability and preparatory and termination conditions in order 
to fill in these gaps.  It also has to be parameterized, because 
other details of the action depend on the agent, objects, and 
other attributes.  

Next we briefly describe some of the terminology and concepts 
used to define a PAR and the architecture that we have designed 
to interpret it. 

3.1. PAR Terminology 
This is a sampling of the parameters in PAR: 

• Objects: The object type is defined explicitly to represent a 
physical object and is stored hierarchically in a database 
(Section 3.2.3).  Each object in the environment is an 
instance of this type and is associated with a graphical 
model in a scene graph.   

An object type lists the actions that can be performed on it 
and what state changes they cause [11, 20].  Among other 
fields, a list of grasp sites and directions are defined with 
respect to the object.  These fields help orient actions that 
involve objects, such as grasping, reaching, and 
locomotion.  

In our example, “Walk to the door and turn the handle 
slowly,” the “walk” action has an implicit floor as an 
object, while the “turn” action refers to the handle. 

• Agent:  The agent executes the action. The agents are 
treated as special objects, and their properties are stored in 
the hierarchical object database.  Each agent is associated 
with an agent process (Section 3.2.5), which controls its 
actions based on the personality and capabilities of the 
agent.  Not only does an agent’s personality affect his or 
her response to a situation, but it also affects the way these 



actions are performed.  Two agents with different 
personalities would execute the same action in two 
different ways.  For example, two agents could be waving 
at one another.  A shy agent would wave his hand more 
slowly and with more hesitation than an extroverted agent 
would.  This increases believability by preventing agents 
from reacting in the same manner in identical contexts and 
gives the impression that each agent has distinct emotions 
and personalities. The agent-specific parameters are 
specified through the graphical user interface and are 
resolved during the execution of the primitive action.  In 
our example, the “walking” and “turning” actions share the 
same agent. 

• Applicability conditions: The applicability conditions of 
an action specify what needs to be true in the world in 
order to carry out an action.  These can refer to agent 
capabilities, object configurations, and other unchangeable 
or uncontrollable aspects of the environment. The 
conditions in this boolean expression must be true to 
perform the action. For "walk," one of the applicability 
conditions may be "Can the agent walk?" If these 
conditions are not satisfied, the action cannot be executed. 

• Preparatory Specifications: This is a list of 
<CONDITION, action> statements. The conditions are 
evaluated first and have to be satisfied before the current 
action can proceed. If the conditions are not satisfied, then 
the corresponding action is executed—it may be a single 
action or a very complex combination of actions, but it has 
the same format as the execution steps described below. In 
general, actions can involve the full power of motion 
planning to determine, perhaps, that a handle has to be 
grasped before it can be turned.  The instructions are 
essentially goal requests, and the smart avatar must then 
figure out how (if possible) it can achieve them.  We 
currently specify the conditions to test for likely (but 
generalized) situations and execute appropriate 
intermediate actions.  It would also be possible to add more 
general action planners, since the PAR represents goal 
states and supports a full graphical model of the current 
world state [31]. 

In our example, one of the preconditions to be checked for 
the “walk” action is “stand” and the corresponding action is 
“stand up”. If the agent is not standing, e.g., if he is sitting 
or prone, then the action causes him to change to the 
standing posture. 

• Execution Steps: A PAR can describe either a primitive or 
a complex action. The execution steps contain the details of 
executing the action after all the conditions have been 
satisfied. If it is a primitive action, the underlying Pat-Net 
for the action is directly invoked. A complex action can list 
a number of sub-actions that may need to be executed in 
sequence, parallel, or a combination of both. A complex 
action can be considered done if all of its sub-actions are 
done or if its explicit termination conditions are satisfied. 

• Manner: Manner specifications describe the way in which 
an agent carries out an action  [1].  In our example, slowly 
modifies how the action “turn the handle” is performed. 

• Termination Conditions: This is a list of conditions which 
when satisfied indicate the completion of the action. A 
termination condition can be determined from the main 
verb or attached clauses [5].  

• Post Assertions: This is a list of statements or assertions 
that are executed after the termination conditions of the 
action have been satisfied. These assertions update the 
database to record the changes in the environment. The 
changes may be due to direct or side effects of the action. 

A PAR takes on two different forms: uninstantiated (UPAR) and 
instantiated (IPAR).  A UPAR contains default applicability 
conditions, preparatory specifications, and execution steps, but 
not information about the actual agent or physical objects 
involved. An IPAR is a UPAR instantiated with specific 
information on agent, physical object(s), manner, termination 
conditions, and other bound parameters.  We store all instances 
of the UPARs in a hierarchical database called the Actionary™ 
(Section 3.2.3). Any new information in an IPAR overrides the 
corresponding UPAR default.  An IPAR can be created from a 
natural language instruction (one or more IPAR for each new 
instruction) or dynamically by other PARs during execution. 

3.2. PAR Architecture 

Figure 1: The PAR Architecture 

 

3.2.1 Execution Engine 
The execution engine is the main controller of the system. It 
maintains the global timer/controller, sends commands to the 
visualizer and Jack Toolkit to update the displayed scene, and 
sends user-input natural language instructions (inputted through 
a speech recognition system or through a graphical user 
interface (GUI)) to the NL2PAR module.  The GUI also allows 
users to create and modify properties of the actions, objects, and 
agents. 

3.2.2 NL2PAR 
This module takes natural language instructions and then uses 
the Actionary to generate one or more instantiated PARs, which 
are then passed to the Rule Manager.  The basic linguistic 
representation of an action is a predicate-argument structure 
such as ‘slide(John, box),’ which indicates a particular action 



(the predicate ‘slide’) and its participants (the arguments ‘John’ 
and ‘box’).   

We use the XTAG Synchronous Tree Adjoining Grammar 
system [27], which consists of a parser for extracting the 
predicate-argument structure of an input sentence (See also 
[24]), and a translator for generating an instruction script from 
this predicate-argument structure.  The parser extracts these 
structures by first associating each word in an input sentence 
with one or more elementary tree fragments, which are 
combined into a single syntax tree for the entire input sentence 
using the constrained operations of the Tree Adjoining Grammar 
formalism [17, 18].  These elementary tree fragments have 
argument positions for the subjects and objects of verbs, 
adjectives, and other predicates, which constrain the way the 
fragments can be combined, and which determine the predicate-
argument structure of the input sentence.  The translator then 
converts this predicate-argument structure into an instruction 
script, which when executed generates one or more IPARs.  
With this architecture, a wide variety of inflections and 
grammatical transformations can be reduced to a much smaller 
set of predicates in the parser.  This set of predicates can be 
further reduced to a still smaller set of PARs and scripting-
language keywords in the translator.  Although some parts of the 
translator may be domain-specific (some actions may depend on 
particular objects in a domain), the parser can easily be ported 
between domains, since its predicates are based on linguistic 
observations instead of on a particular programming language or 
virtual environment. 

In order to support non-specific ‘variable’ references like “a 
military vehicle” or “abandoned vehicle” in instructions like, “If 
a military vehicle enters the checkpoint, open the gate,” or 
“Drive abandoned vehicles to the parking lot,” the translated 
scripts must incorporate nested ‘for’ statements that loop over 
every object in a set (in these cases, the set of vehicles).  The 
purpose of the loops may be to find at least one object that 
satisfies a certain expression, or to ensure that every such object 
satisfies an expression, but in either case they must be bound 
successively to each object in a set.  This means that the ‘for’ 
loop that binds such a variable must wrap around and therefore 
outscope the expression which contains that variable.  Since we 
wish to generate scripts in languages that do not support lambda 
expressions, we prefer to use a transfer formalism that allows its 
compositional units to explicitly wrap around each other in the 
same way.  For this purpose, we have adapted Synchronous Tree 
Adjoining Grammars [27, 29, 30], which makes use of the 
wrapping operation of ‘adjunction’ in Tree Adjoining Grammar 
to translate natural language instructions in English into 
executable scripts in Python.  The implementation of ‘variable’ 
references described above is based on the TAG treatment of 
compositional semantics, and in particular quantifiers, 
developed in [19]. 

3.2.3 Actionary 
All instances of physical objects, agents, and UPARs are stored 
in a pair of persistent hierarchical databases. One of the 
databases contains the objects and agents, and the other contains 
the UPARs.  During the initialization phase of a simulation, a 
world model is created from the databases. This model is 
constantly updated during the simulation, recording any changes 
in the environment or in the properties of the agents and objects. 

The agent processes and motion generators can query the world 
model for the current state of the environment and for the 
current properties of agents and objects in the environment. 

3.2.4 Rule Manager 
The rule manager maintains a table of complex rules generated 
by the NL2PAR module.  Users can give the system both 
immediate and persistent instructions (standing orders). For 
immediate instructions, the command scripts generated by the 
natural language interface are executed immediately.  Depending 
on the results of test conditions and loops within a script, one or 
more instantiated PARs are generated and added to the 
appropriate agent’s queue.  In the case of standing orders, the 
scripts are stored as complex rules in a table.  At each simulation 
frame, the rule manager evaluates each rule in the table and 
sends the resulting instantiated PARs, if any, to the appropriate 
agent process for execution.  For example, the system might be 
executing the script for “If a military vehicle enters the 
checkpoint, open the gate,” at each simulation frame, but only 
when a military vehicle actually enters the checkpoint would the 
script introduce an instantiated ‘open gate’ PAR.   

A persistent interpretation of “Drive abandoned vehicles to the 
parking lot,” would work the same way, even though it does not 
contain an “if”-clause. At every frame, the script would iterate 
over all the vehicles in the checkpoint, but only when there 
actually is an abandoned vehicle would an instantiated ‘drive’ 
PAR be introduced.  It is important to note that each PAR added 
to an agent’s action queue in this way would be instantiated with 
a specific vehicle in the checkpoint, and a specific destination 
point in the parking lot, even though none was specified in the 
natural language instruction.  Each IPAR may also contain a 
number of preparatory actions, which move the agent to the 
relevant object (the vehicle to be driven).  Taken together, the 
preparatory actions of all the introduced PARs describe a path 
between the different vehicles (if more than one), which was 
also not specified in the natural language instruction.  In fact, 
although the agent is being instructed by a user, much of the 
agent’s behavior is not specified in the instructions, but left for 
it to decide on its own.  In this way, the high-level abstraction of 
a natural language interface gives the smart avatar a larger 
degree of autonomy in deciding how to carry out its instructions, 
which would be lost were its instructions completely specified 
through point-and-click or programming-language tools. 

3.2.5 Agent Process 
A separate agent process controls each instance of an agent. 
Each agent process has a queue manager that manages a 
priority-based multi-layered queue of all IPARs to be executed 
by the agent. The various tasks of an agent process are to: 

� Add a given IPAR at the top level of the queue. 

� Communicate with other agent processes through 
message passing. 

� Trigger different actions for the agent based on the 
agent’s personality, messages received from another 
agent process, and the existing environmental state. 

� Return the process status (on queue, 
aborted/preempted, being executed, completed, etc.) 
of an IPAR. 



� Ensure non-recursive addition of IPARs resulting 
from rules. 

The queue manager in the agent process is implemented using 
PaT-Nets.  Each UPAR is assigned a priority number by the user 
or by the situation. At any time, if the first action on the queue 
has a higher priority than the IPAR currently being executed, the 
queue manager preempts the current action. In general, either 
after preemption or completion of an action, a new action is 
selected to be popped from the top level of the IPAR queue of 
the agent and sent to a process manager. The selected new action 
has the highest priority in the first subset of monotonically 
increasing actions (with respect to priorities) at the beginning of 
the queue.  

For each popped IPAR, a process manager first checks the 
termination conditions.  If the termination conditions are already 
satisfied, then the action is not performed.  If they are not 
satisfied, the applicability conditions are checked. If they are not 
satisfied, the entire process is aborted after taking care of failure 
conditions and proper system updates. If the applicability 
conditions are satisfied, the preparatory conditions are then 
checked. If any of the corresponding preparatory actions need to 
be executed, an IPAR is created (using the specified information 
of the UPAR, agent, and the list of objects) and added to the 
agent’s existing queue of IPARs. It should be noted that the 
queue of IPARs is a multi-layered structure. Each new IPAR 
created for a preparatory action is added to a layer below the 
current one. The current action is continued only after the 
successful termination of all the preparatory actions. If the 
current action is very complex, more IPARs are generated and 
the depth of the queue structure increases. During the execution 
phase, a PaT-Net is dynamically created for each complex action 
specified in the execution steps or in the preparatory 
specifications. Each sub-action corresponds to a sub-net in the 
PaT-Net. The PaT-Nets are also used to ultimately ground the 
action in parameterized motor commands to the embodied 
character. 

3.2.6 Motion Generators 
For the execution of the primitive actions, the process manager 
invokes the corresponding pre-registered motion generators.  It 
is within these motion generators that all the parameters of the 
IPAR are finally resolved. 

These generators access the Actionary for information on agents, 
objects and the current state of the environment. During the 
execution of the action, the motion generators update the 
Actionary with the status of the ongoing action. At the end of 
the action, they use post assertions to update the Actionary with 
the various changes in the environment. 

3.2.7 Toolkit and Visualizer 
We use the Jack® toolkit and OpenGL® to maintain and control 
the actual geometry, scene graphs, and human behaviors and 
constraints. 

3.3. PAR Implementation 
We have implemented PAR using C++ and Python  [22]. 
Python is an interpreted object-oriented language and is 
compatible with C++. This makes it easy for both the action and 
object hierarchies to be visible from both Python and C++. It 

also provides serialization and persistence that is ideal for 
database implementation.  

The system is built in two layers. The bottom layer contains the 
implementation of the core system and is in C++ and Python. 
The top layer has a graphical user interface (GUI) built using 
Python-Tk. The user needs to interact only with the top layer. 
This allows for the UPARs and objects to be dynamically 
created. The applicability conditions, preparatory specifications, 
and executable actions are presently written through the GUI as 
simple Python scripts which can be easily tested. As Python can 
be extended and embedded in C++, objects of different data 
types can be passed between them. The objects passed from 
Python to C++ are all perceived by C++ to be of a single Python 
object type that could later be typecast to different types. This 
allows conditions to return the various test results as either a 
Boolean type or a Python string. The agent process is capable of 
expanding this string into a new action and adding it to the 
agent’s queue.  

 

4. EXAMPLE: PAR FOR VIRTUAL 
ENVIRONMENT TRAINING 
PAR for Virtual Environment Training has been designed to 
demonstrate language-based control in the PAR system using 
the XTAG Synchronous TAG parser to generate PARs from 
complex natural language instructions. 

Figure 2: VET Environment 

The simulation allows a user to give specific immediate 
instructions or standing orders to the virtual agents within the 
environment. This test application was designed to train soldiers 
for a military peace-keeping operation.  Creating a virtual 
training environment with language-based control has many 
benefits over other possible training environments.  First, it is 
less expensive than setting up a real, physical environment.  In 
addition to this cost, there is also a cost associated with hiring 
and training actors to participate in the training secessions.  
Second, it allows for more variability than prerecorded video 
training.  With prerecorded video, there is a fixed number of 
scenarios possible, and there are limitations on the viewpoint 
from which the trainees can see the situation.   Third, our virtual 
training environment allows group training to be performed 
even when part of group is not available.  Autonomous agents 
can represent any missing members of the group.  Fourth, 
computer networks and distributed simulations provide the 



ability to train with people in separate locations, perhaps even 
on a ship.  Finally, the language-based control allows the 
soldiers to verbally interact with the system in a natural way.   

The scenario (Figure 2) is centered on a military checkpoint at 
the edge of a town. There are three soldiers in training 
(henceforth referred to as trainees) whose job is to apprehend 
suspected terrorists. A separate agent process controls each of 
the trainees. A process simulator (an autonomous agent process) 
generates new vehicles, controls their movements, and operates 
traffic lights. As each vehicle approaches the checkpoint, one of 
the trainees checks each civilian driver’s identification. If there 
is a match, the trainee is supposed to draw his weapon and take 
the driver into custody. All others are allowed to pass through 
the checkpoint. 

During this process, the trainees may (inadvertently) commit 
different errors, which may result in one of the trainees getting 
shot by a driver. In an effort to correct the situation, the user can 
give different standing orders to the trainees.   

4.1 Agents  
The agents in this scenario are the three trainees, the drivers, and 
the process simulator. The PAR system eases the creation of 
autonomous virtual human agents by providing a flexible way of 
representing personalities, emotions, and other agent properties, 
and also by providing fast, straightforward ways to query the 
environment and communicate with other agents.   

In this simulation, the virtual human agents have one of two 
personalities; hostile or non-hostile.  Currently, the trainees are 
all non-hostile.  Drivers are randomly chosen to be hostile or 
non-hostile as they enter the scene and their hostility can be 
changed at any time during the simulation. The personality of 
the driver is expressed through his actions.  For example, a 
hostile driver is far more likely to be uncooperative and may 
even attempt to shoot one of the trainees.   

Figure 3: Angry Facial Expression 

In PAR, one of the properties of an agent is the emotional state 
of the agent. The agents are capable of being angry, sad, fearful, 
happy, or emotionally neutral.  Initially, all of the trainees are 
emotionally neutral, and the drivers’ emotions are set randomly 
as they enter the checkpoint.  During the simulation, 
environmental conditions and the agent’s actions effect the 
agent’s emotions. For example, a trainee becomes angry 
whenever he draws his weapon.  The emotions of the agents are 
expressed through facial expressions (Figure 3).  We are 

currently using a facial animation model from MIRALab, 
University of Geneva [21].  

In PAR, the agents externally communicate with each other 
using speech and gestures. Internally, their processes 
communicate through message passing. For example, when the 
driver hands his identification to the trainee, the trainee needs to 
respond by taking the identification.  He knows to do this 
because the driver process sends the trainee process a message 
informing him that the identification is being handed over. This 
approach sidesteps questions of gesture recognition that may be 
addressed in the future. 

4.2 Standing Orders 
Standing orders are persistent natural language instructions 
issued to correct the trainees’ errors.  

In the first scenario, the trainee draws his weapon at a suspected 
terrorist, but forgets to take cover.  The driver shoots him.  To 
correct this, the user gives the following standing order to that 
trainee:  

“When you draw your weapon at the driver, take cover from the 
driver behind your drum.” 

 The NL2PAR module immediately parses this standing order 
and the generated Python script is stored as a complex rule in 
the rule table.  In the next trial of the simulation, as soon as the 
trainee draws his weapon the standing order (now a rule) forces 
him to also take cover behind his drum correcting the situation. 
Also, it is noticed that when one of the trainees draws his 
weapon, the other two trainees remain still, which is 
situationally incorrect. So, a standing order of  

“ If Trainee1 draws his weapon at the driver, draw your weapon 
at the driver and take cover from the driver behind your drum”  

remedies this situation.  

The command “take cover” takes two oblique arguments—the 
potential threat (in this case, the driver), and the desired cover 
(the steel drum). When this PAR is executed, the trainee moves 
to a place where the drum intersects the path between himself 
and the driver. But, since the “take cover” action is 
parameterized at this high level, the trainee could be instructed 
to take cover from virtually any object (say, from one of his 
companions), behind any other object (say, behind the suspect's 
car), and the simulation would accommodate it. 

During another run of the system a hostile driver draws a gun as 
soon as the first trainee asks him for his identification, and 
shoots the trainee before he can react. Observing that the 
trainees on the passenger side of the car could have seen the 
driver reach for the gun, the user gives two additional standing 
orders for trainees 2 and 3:  

“When there is a driver, watch the driver.” 

“If the driver reaches for a gun, warn Trainee1.” 

Once again the simulation is replayed and whenever there is a 
driver in the car at the checkpoint, the new standing orders force 
trainees 2 and 3 to watch the driver. When the driver reaches for 
his gun, the rules force those trainees to warn the first trainee, 
before the driver can grab his weapon and fire. This gives the 
first trainee time to draw his own weapon and take cover. Since 
all the previous orders are still in the system’s memory, trainees 
2 and 3 also draw their weapons, and all three take cover.  The 



driver, outnumbered, quickly surrenders, and the trainees 
successfully complete the exercise. 

It is important to note that the ‘watch’ action is classified as a 
preemptive action and so its UPAR has a lower priority. This 
means that whenever the trainees need to execute other actions, 
their agent processes will preempt ‘watch’ from their queues and 
execute the other actions. But, after the other actions have been 
completed, if there is still a driver at the checkpoint, the rule 
resulting from the standing order “When there is a driver, watch 
the driver” will again force the trainees to watch the driver. This 
results in a completely natural looking scenario where the 
trainees are always cautiously watching the driver. If they are 
interrupted to do something else, they quickly finish that task 
and resume watching. 

 

5. DISCUSSION 
The PAR architecture and its implementation is intended to 
provide a test bed for real-time agents who work, communicate, 
and manipulate objects in a synthetic 3-D world. Our goal is to 
make interaction with these embodied characters the same as 
with live individuals. We have focused on language as the 
medium for communicating instructions and finite state 
machines as the controllers for agent or object movements. 

The structure described here is the basis for a new kind of 
dictionary we call an Actionary™. A dictionary uses words to 
define words. Sometimes it grounds concepts in pictures and (in 
on-line sources) maybe even sounds and video clips. But these 
are canned and not parameterized — flexible and adaptable to 
new situations the way that words function in actual usage. In 
contrast, the Actionary™ uses PAR and its consequent 
animations to ground action terms. It may be viewed as a 3-D  
(spatialized) environment for animating situated actions 
expressed in linguistic terms. The actions are animated to show 
the meaning in context, that is, relative to a given 3-D 
environment and individual agents. 

Any simulation system must be supplied with procedures that 
implement its semantics.  PAR is no exception.  We have 
discussed how the multi-level approach lets us focus the system 
implementation in separable and re-usable motion generators, 
PaT-Nets, and PARs, but these must still be manually coded.  
People build their internal representations through experience 
and learning, but these avenues are not yet open to the 
simulation designer.  We are developing tools that may allow 
UPARs and some of their parameters to be learned from 
observation.  Additionally, we may be able to use the natural 
language interface to construct portions of a UPAR, just as a 
word dictionary provides some but not all of a term's semantics.   

Currently, we are working on adding a planner [31] to the PAR 
system.  Our hope is that the information stored in each UPAR, 
including the applicability conditions, preparatory 
specifications, termination conditions, and post assertions, will 
ease the task of planning and provide us with a robust, real-time 
simulation system. 

The actions requested may fail for any number of reasons from 
failed conditions in the PAR to unanticipated confounding 
events to inadequate implementation.  Since our agent models 
admit the possibility of adding action planners, some failures 
may be detectable and repairs initiated automatically [7,26]. 

Giving an agent the capability of observing the consequences of 
its actions (or inaction) and generating compensating rules is an 
attractive future effort. 

An instruction understanding system, based on natural language 
inputs, an Actionary™ translation, and an embodied virtual 
human agent could provide a non-programming interface 
between real and virtual people. We can describe tasks for 
others and see them carried out, whether they are real or virtual 
participants. Thus the door is opening to novel applications for 
embodied agents in games and interactive entertainment, job 
training, team coordination, manufacturing and maintenance, 
education, and emergency drills. As the Actionary™ grows, new 
applications should become ever easier to generate. And just as 
our human experience lets real people take on new tasks, so too 
should embodied characters be adaptable to new environments, 
new behaviors, and new instructions. 
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