
Dynamically Altering Agent Behaviors Using Natural
Language Instructions

Rama Bindiganavale, William Schuler, Jan M. Allbeck,
Norman I. Badler, Aravind K. Joshi, Martha Palmer

University of Pennsylvania
200 S. 33rd St.

Philadelphia, PA 19104
1-215-898-1976

{rama, schuler, allbeck, badler, joshi, mpalmer} @graphics.cis.upenn.edu

ABSTRACT

Smart avatars are virtual human representations controlled by
real people. Given instructions interactively, smart avatars can
act as autonomous or reactive agents. During a real-time
simulation, a user should be able to dynamically refine his or her
avatar’s behavior in reaction to simulated stimuli without having
to undertake a lengthy off-line programming session. In this
paper, we introduce an architecture, which allows users to input
immediate or persistent instructions using natural language and
see the agents’ resulting behavioral changes in the graphical
output of the simulation.

Keywords
Autonomous agents, natural language processing, smart avatars,
virtual environments.

1. INTRODUCTION
In this paper, we describe smart avatars [28, 34], which are
virtual representations of humans controlled by real people.
Given instructions interactively, smart avatars can act as
autonomous or reactive agents. During a real-time simulation, a
user should be able to dynamically refine his or her avatar's
behavior in reaction to simulated stimuli without having to
undertake a lengthy off-line programming session. Moreover,
we would like to be able to instruct the smart avatars in a natural
and straightforward manner.

For controlling, manipulating, and animating virtual humans, we
need an effective user interface. Interactive point-and-click tools
(such as Maya from Alias/Wavefront, 3D StudioMax from
Autodesk, and SoftImage from Avid) could be configured to
give instructions during run time, but require specialized
training and animation skills, and force the user’s instructions
for the avatar through a narrow communication channel of
hand/mouse motions. This narrow channel precludes, among

other things, any conditional instruction that references a
hypothetical object in its condition. For example, a user could
not give the instruction “if a military vehicle enters the
checkpoint, open the gate,” if there is no such vehicle to click on
when the instruction is given.

A programming or scripting language such as that used in
Improv [25] can provide a sufficiently powerful interface for
instructing virtual humans, and would be able to handle the
kinds of conditional instructions discussed above. However,
such interfaces are generally more appropriate for off-line
applications, where instructions are written in advance, than for
run-time applications, where instructions are given in response
to observed events in the simulation. Not only does a scripting
interface require a great deal of specialized programming
expertise (even for “English-like” languages), but the required
instructions can often be too complex to reliably implement in
real time. A script to simply “turn off all the lights,” for
example, would involve at least one condition for testing
whether each light was on, nested inside a loop over all the
lights in the environment, in addition to the “turn off light”
command itself.

One promising and relatively unexplored option for giving run-
time instructions to virtual humans is a natural language based
interface. After all, instructions for real humans are given in
natural language, augmented with graphical diagrams and,
occasionally, animations. Recipes, instruction manuals, and
interpersonal conversations all use natural language as a
medium for conveying information about processes and actions
[3, 33]. A natural language interface should be powerful
enough to express conditional instructions and hypothetical
situations such as those described above, and should be simple
enough to use in a real-time application without substantial
formal training on the part of the user. We are not advocating
that animators throw away their tools, only that natural language
offers a communication medium we all know and can use to
efficiently formulate run-time instructions for virtual human
characters. Some aspects of some actions are certainly difficult
to express in natural language (such as precise locations and
orientations of objects), but the availability of a language
interpreter can make the virtual human interface more closely
simulate real interpersonal communication.

We have therefore implemented an architecture, which allows
users to input instructions using natural language sentences.
These instructions can range from specific instantaneous
commands, like “Sit down,” to very general standing orders, like

“Drive abandoned vehicles to the parking lot,” affording various
degrees of autonomy to the avatar/agent.

Existing natural language interface systems for agents either are
not concerned with mapping natural language sentences into
semantic representations for agent control [15] or rely on mostly
ad hoc linguistic representations with severely limited syntactic
processing [32] or no syntactic processing at all [9]. In contrast,
the syntactic and semantic representations described in this
paper are based as much on linguistic principles as they are on
the needs of animation. Moreover, this system integrates
detailed syntactic and semantic representations (such as those
proposed in the AnimNL project [10]), with a broad-coverage
grammar for English [35]. This grammar contains over 300,000
inflected English words with over 1,000 syntactic structures.
Statistical techniques exist that find the correct word
attachments 85% of the time, and the correct sentential analysis
35% of the time on unrestricted text using this grammar [35].

We begin by describing the levels of architectural control
necessary for animating and instructing smart avatars with a rich
set of behaviors in a dynamic environment. Then we discuss a
conceptual representation and an architecture that we have
created to facilitate instructing smart avatars with natural
language. We close with an example simulation that was
implemented under this architecture.

2. LEVELS OF ARCHITECTURAL
CONTROL
Building a virtual human model that admits control from sources
other than direct animator manipulations requires an architecture
that supports higher-level expressions of movement. Although
layered architectures for autonomous beings are not new [6, 16,
36], we have found that a particular set of architectural levels
seems to provide efficient localization of control for both
graphics and language requirements. Our multilevel architecture
is grounded in typical graphical models and articulation
structures [8, 12]. Motion generators drive these graphical
models to generate various motor skills, and endow virtual
humans with useful abilities. The higher architectural levels
organize these skills with parallel automata, use a conceptual
representation to describe the actions a virtual human can
perform, and finally create links between natural language and
action animation.

Our parallel programming model for virtual humans is called
Parallel Transition Networks, or PaT-Nets [14]. Other human
animation systems, including Motion Factory's Motivate and
New York University's Improv [25], have adopted similar
paradigms with alternative syntactic structures. In general,
network nodes represent processes. Arcs connect the nodes and
contain predicates, conditions, rules, and other functions that
trigger transitions to other process nodes. Synchronization
across processes or networks is made possible through message-
passing or global variable blackboards to let one process know
the state of another process.

PaT-Nets are effective programming tools, but do not represent
exactly the way people conceptualize a particular situation. We
therefore need a higher-level representation to capture additional
information, parameters, and aspects of human action [13]. We

create such representations by incorporating natural-language
semantics into a Parameterized Action Representation.

3. PARAMETERIZED ACTION
REPRESENTATION (PAR)
A PAR [2, 4] gives a description of an action. It specifies the
action’s agent, as well as any relevant objects and information
about the path, location, manner, and purpose. There are
linguistic constraints on how this information can be conveyed
in a language: agents and objects tend to be verb arguments,
paths are often prepositional phrases, and manners and purposes
might be in additional clauses [24]. A parser and translator map
the components of an instruction into the parameters or
variables of the PAR, which is then linked directly to PaT-Nets
executing the specified movement generators.

Natural languages often describe actions at a high level, leaving
out many of the details that have to be specified for animation
[23]. The PAR bridges the gap between natural language and
animations.

We use the example “Walk to the door and turn the handle
slowly” to illustrate the function of the PAR. There is nothing
explicit in the linguistic representation about how to grasp the
handle or which direction it will have to be turned, yet this
information is necessary for the action's actual visible
performance. The PAR has to include information about
applicability and preparatory and termination conditions in order
to fill in these gaps. It also has to be parameterized, because
other details of the action depend on the agent, objects, and
other attributes.

Next we briefly describe some of the terminology and concepts
used to define a PAR and the architecture that we have designed
to interpret it.

3.1. PAR Terminology
This is a sampling of the parameters in PAR:

• Objects: The object type is defined explicitly to represent a
physical object and is stored hierarchically in a database
(Section 3.2.3). Each object in the environment is an
instance of this type and is associated with a graphical
model in a scene graph.

An object type lists the actions that can be performed on it
and what state changes they cause [11, 20]. Among other
fields, a list of grasp sites and directions are defined with
respect to the object. These fields help orient actions that
involve objects, such as grasping, reaching, and
locomotion.

In our example, “Walk to the door and turn the handle
slowly,” the “walk” action has an implicit floor as an
object, while the “turn” action refers to the handle.

• Agent: The agent executes the action. The agents are
treated as special objects, and their properties are stored in
the hierarchical object database. Each agent is associated
with an agent process (Section 3.2.5), which controls its
actions based on the personality and capabilities of the
agent. Not only does an agent’s personality affect his or
her response to a situation, but it also affects the way these

actions are performed. Two agents with different
personalities would execute the same action in two
different ways. For example, two agents could be waving
at one another. A shy agent would wave his hand more
slowly and with more hesitation than an extroverted agent
would. This increases believability by preventing agents
from reacting in the same manner in identical contexts and
gives the impression that each agent has distinct emotions
and personalities. The agent-specific parameters are
specified through the graphical user interface and are
resolved during the execution of the primitive action. In
our example, the “walking” and “turning” actions share the
same agent.

• Applicability conditions: The applicability conditions of
an action specify what needs to be true in the world in
order to carry out an action. These can refer to agent
capabilities, object configurations, and other unchangeable
or uncontrollable aspects of the environment. The
conditions in this boolean expression must be true to
perform the action. For "walk," one of the applicability
conditions may be "Can the agent walk?" If these
conditions are not satisfied, the action cannot be executed.

• Preparatory Specifications: This is a list of
<CONDITION, action> statements. The conditions are
evaluated first and have to be satisfied before the current
action can proceed. If the conditions are not satisfied, then
the corresponding action is executed—it may be a single
action or a very complex combination of actions, but it has
the same format as the execution steps described below. In
general, actions can involve the full power of motion
planning to determine, perhaps, that a handle has to be
grasped before it can be turned. The instructions are
essentially goal requests, and the smart avatar must then
figure out how (if possible) it can achieve them. We
currently specify the conditions to test for likely (but
generalized) situations and execute appropriate
intermediate actions. It would also be possible to add more
general action planners, since the PAR represents goal
states and supports a full graphical model of the current
world state [31].

In our example, one of the preconditions to be checked for
the “walk” action is “stand” and the corresponding action is
“stand up”. If the agent is not standing, e.g., if he is sitting
or prone, then the action causes him to change to the
standing posture.

• Execution Steps: A PAR can describe either a primitive or
a complex action. The execution steps contain the details of
executing the action after all the conditions have been
satisfied. If it is a primitive action, the underlying Pat-Net
for the action is directly invoked. A complex action can list
a number of sub-actions that may need to be executed in
sequence, parallel, or a combination of both. A complex
action can be considered done if all of its sub-actions are
done or if its explicit termination conditions are satisfied.

• Manner: Manner specifications describe the way in which
an agent carries out an action [1]. In our example, slowly
modifies how the action “turn the handle” is performed.

• Termination Conditions: This is a list of conditions which
when satisfied indicate the completion of the action. A
termination condition can be determined from the main
verb or attached clauses [5].

• Post Assertions: This is a list of statements or assertions
that are executed after the termination conditions of the
action have been satisfied. These assertions update the
database to record the changes in the environment. The
changes may be due to direct or side effects of the action.

A PAR takes on two different forms: uninstantiated (UPAR) and
instantiated (IPAR). A UPAR contains default applicability
conditions, preparatory specifications, and execution steps, but
not information about the actual agent or physical objects
involved. An IPAR is a UPAR instantiated with specific
information on agent, physical object(s), manner, termination
conditions, and other bound parameters. We store all instances
of the UPARs in a hierarchical database called the Actionary™
(Section 3.2.3). Any new information in an IPAR overrides the
corresponding UPAR default. An IPAR can be created from a
natural language instruction (one or more IPAR for each new
instruction) or dynamically by other PARs during execution.

3.2. PAR Architecture

Figure 1: The PAR Architecture

3.2.1 Execution Engine
The execution engine is the main controller of the system. It
maintains the global timer/controller, sends commands to the
visualizer and Jack Toolkit to update the displayed scene, and
sends user-input natural language instructions (inputted through
a speech recognition system or through a graphical user
interface (GUI)) to the NL2PAR module. The GUI also allows
users to create and modify properties of the actions, objects, and
agents.

3.2.2 NL2PAR
This module takes natural language instructions and then uses
the Actionary to generate one or more instantiated PARs, which
are then passed to the Rule Manager. The basic linguistic
representation of an action is a predicate-argument structure
such as ‘slide(John, box),’ which indicates a particular action

(the predicate ‘slide’) and its participants (the arguments ‘John’
and ‘box’).

We use the XTAG Synchronous Tree Adjoining Grammar
system [27], which consists of a parser for extracting the
predicate-argument structure of an input sentence (See also
[24]), and a translator for generating an instruction script from
this predicate-argument structure. The parser extracts these
structures by first associating each word in an input sentence
with one or more elementary tree fragments, which are
combined into a single syntax tree for the entire input sentence
using the constrained operations of the Tree Adjoining Grammar
formalism [17, 18]. These elementary tree fragments have
argument positions for the subjects and objects of verbs,
adjectives, and other predicates, which constrain the way the
fragments can be combined, and which determine the predicate-
argument structure of the input sentence. The translator then
converts this predicate-argument structure into an instruction
script, which when executed generates one or more IPARs.
With this architecture, a wide variety of inflections and
grammatical transformations can be reduced to a much smaller
set of predicates in the parser. This set of predicates can be
further reduced to a still smaller set of PARs and scripting-
language keywords in the translator. Although some parts of the
translator may be domain-specific (some actions may depend on
particular objects in a domain), the parser can easily be ported
between domains, since its predicates are based on linguistic
observations instead of on a particular programming language or
virtual environment.

In order to support non-specific ‘variable’ references like “a
military vehicle” or “abandoned vehicle” in instructions like, “If
a military vehicle enters the checkpoint, open the gate,” or
“Drive abandoned vehicles to the parking lot,” the translated
scripts must incorporate nested ‘for’ statements that loop over
every object in a set (in these cases, the set of vehicles). The
purpose of the loops may be to find at least one object that
satisfies a certain expression, or to ensure that every such object
satisfies an expression, but in either case they must be bound
successively to each object in a set. This means that the ‘for’
loop that binds such a variable must wrap around and therefore
outscope the expression which contains that variable. Since we
wish to generate scripts in languages that do not support lambda
expressions, we prefer to use a transfer formalism that allows its
compositional units to explicitly wrap around each other in the
same way. For this purpose, we have adapted Synchronous Tree
Adjoining Grammars [27, 29, 30], which makes use of the
wrapping operation of ‘adjunction’ in Tree Adjoining Grammar
to translate natural language instructions in English into
executable scripts in Python. The implementation of ‘variable’
references described above is based on the TAG treatment of
compositional semantics, and in particular quantifiers,
developed in [19].

3.2.3 Actionary
All instances of physical objects, agents, and UPARs are stored
in a pair of persistent hierarchical databases. One of the
databases contains the objects and agents, and the other contains
the UPARs. During the initialization phase of a simulation, a
world model is created from the databases. This model is
constantly updated during the simulation, recording any changes
in the environment or in the properties of the agents and objects.

The agent processes and motion generators can query the world
model for the current state of the environment and for the
current properties of agents and objects in the environment.

3.2.4 Rule Manager
The rule manager maintains a table of complex rules generated
by the NL2PAR module. Users can give the system both
immediate and persistent instructions (standing orders). For
immediate instructions, the command scripts generated by the
natural language interface are executed immediately. Depending
on the results of test conditions and loops within a script, one or
more instantiated PARs are generated and added to the
appropriate agent’s queue. In the case of standing orders, the
scripts are stored as complex rules in a table. At each simulation
frame, the rule manager evaluates each rule in the table and
sends the resulting instantiated PARs, if any, to the appropriate
agent process for execution. For example, the system might be
executing the script for “If a military vehicle enters the
checkpoint, open the gate,” at each simulation frame, but only
when a military vehicle actually enters the checkpoint would the
script introduce an instantiated ‘open gate’ PAR.

A persistent interpretation of “Drive abandoned vehicles to the
parking lot,” would work the same way, even though it does not
contain an “if”-clause. At every frame, the script would iterate
over all the vehicles in the checkpoint, but only when there
actually is an abandoned vehicle would an instantiated ‘drive’
PAR be introduced. It is important to note that each PAR added
to an agent’s action queue in this way would be instantiated with
a specific vehicle in the checkpoint, and a specific destination
point in the parking lot, even though none was specified in the
natural language instruction. Each IPAR may also contain a
number of preparatory actions, which move the agent to the
relevant object (the vehicle to be driven). Taken together, the
preparatory actions of all the introduced PARs describe a path
between the different vehicles (if more than one), which was
also not specified in the natural language instruction. In fact,
although the agent is being instructed by a user, much of the
agent’s behavior is not specified in the instructions, but left for
it to decide on its own. In this way, the high-level abstraction of
a natural language interface gives the smart avatar a larger
degree of autonomy in deciding how to carry out its instructions,
which would be lost were its instructions completely specified
through point-and-click or programming-language tools.

3.2.5 Agent Process
A separate agent process controls each instance of an agent.
Each agent process has a queue manager that manages a
priority-based multi-layered queue of all IPARs to be executed
by the agent. The various tasks of an agent process are to:

� Add a given IPAR at the top level of the queue.

� Communicate with other agent processes through
message passing.

� Trigger different actions for the agent based on the
agent’s personality, messages received from another
agent process, and the existing environmental state.

� Return the process status (on queue,
aborted/preempted, being executed, completed, etc.)
of an IPAR.

� Ensure non-recursive addition of IPARs resulting
from rules.

The queue manager in the agent process is implemented using
PaT-Nets. Each UPAR is assigned a priority number by the user
or by the situation. At any time, if the first action on the queue
has a higher priority than the IPAR currently being executed, the
queue manager preempts the current action. In general, either
after preemption or completion of an action, a new action is
selected to be popped from the top level of the IPAR queue of
the agent and sent to a process manager. The selected new action
has the highest priority in the first subset of monotonically
increasing actions (with respect to priorities) at the beginning of
the queue.

For each popped IPAR, a process manager first checks the
termination conditions. If the termination conditions are already
satisfied, then the action is not performed. If they are not
satisfied, the applicability conditions are checked. If they are not
satisfied, the entire process is aborted after taking care of failure
conditions and proper system updates. If the applicability
conditions are satisfied, the preparatory conditions are then
checked. If any of the corresponding preparatory actions need to
be executed, an IPAR is created (using the specified information
of the UPAR, agent, and the list of objects) and added to the
agent’s existing queue of IPARs. It should be noted that the
queue of IPARs is a multi-layered structure. Each new IPAR
created for a preparatory action is added to a layer below the
current one. The current action is continued only after the
successful termination of all the preparatory actions. If the
current action is very complex, more IPARs are generated and
the depth of the queue structure increases. During the execution
phase, a PaT-Net is dynamically created for each complex action
specified in the execution steps or in the preparatory
specifications. Each sub-action corresponds to a sub-net in the
PaT-Net. The PaT-Nets are also used to ultimately ground the
action in parameterized motor commands to the embodied
character.

3.2.6 Motion Generators
For the execution of the primitive actions, the process manager
invokes the corresponding pre-registered motion generators. It
is within these motion generators that all the parameters of the
IPAR are finally resolved.

These generators access the Actionary for information on agents,
objects and the current state of the environment. During the
execution of the action, the motion generators update the
Actionary with the status of the ongoing action. At the end of
the action, they use post assertions to update the Actionary with
the various changes in the environment.

3.2.7 Toolkit and Visualizer
We use the Jack® toolkit and OpenGL® to maintain and control
the actual geometry, scene graphs, and human behaviors and
constraints.

3.3. PAR Implementation
We have implemented PAR using C++ and Python [22].
Python is an interpreted object-oriented language and is
compatible with C++. This makes it easy for both the action and
object hierarchies to be visible from both Python and C++. It

also provides serialization and persistence that is ideal for
database implementation.

The system is built in two layers. The bottom layer contains the
implementation of the core system and is in C++ and Python.
The top layer has a graphical user interface (GUI) built using
Python-Tk. The user needs to interact only with the top layer.
This allows for the UPARs and objects to be dynamically
created. The applicability conditions, preparatory specifications,
and executable actions are presently written through the GUI as
simple Python scripts which can be easily tested. As Python can
be extended and embedded in C++, objects of different data
types can be passed between them. The objects passed from
Python to C++ are all perceived by C++ to be of a single Python
object type that could later be typecast to different types. This
allows conditions to return the various test results as either a
Boolean type or a Python string. The agent process is capable of
expanding this string into a new action and adding it to the
agent’s queue.

4. EXAMPLE: PAR FOR VIRTUAL
ENVIRONMENT TRAINING
PAR for Virtual Environment Training has been designed to
demonstrate language-based control in the PAR system using
the XTAG Synchronous TAG parser to generate PARs from
complex natural language instructions.

Figure 2: VET Environment

The simulation allows a user to give specific immediate
instructions or standing orders to the virtual agents within the
environment. This test application was designed to train soldiers
for a military peace-keeping operation. Creating a virtual
training environment with language-based control has many
benefits over other possible training environments. First, it is
less expensive than setting up a real, physical environment. In
addition to this cost, there is also a cost associated with hiring
and training actors to participate in the training secessions.
Second, it allows for more variability than prerecorded video
training. With prerecorded video, there is a fixed number of
scenarios possible, and there are limitations on the viewpoint
from which the trainees can see the situation. Third, our virtual
training environment allows group training to be performed
even when part of group is not available. Autonomous agents
can represent any missing members of the group. Fourth,
computer networks and distributed simulations provide the

ability to train with people in separate locations, perhaps even
on a ship. Finally, the language-based control allows the
soldiers to verbally interact with the system in a natural way.

The scenario (Figure 2) is centered on a military checkpoint at
the edge of a town. There are three soldiers in training
(henceforth referred to as trainees) whose job is to apprehend
suspected terrorists. A separate agent process controls each of
the trainees. A process simulator (an autonomous agent process)
generates new vehicles, controls their movements, and operates
traffic lights. As each vehicle approaches the checkpoint, one of
the trainees checks each civilian driver’s identification. If there
is a match, the trainee is supposed to draw his weapon and take
the driver into custody. All others are allowed to pass through
the checkpoint.

During this process, the trainees may (inadvertently) commit
different errors, which may result in one of the trainees getting
shot by a driver. In an effort to correct the situation, the user can
give different standing orders to the trainees.

4.1 Agents
The agents in this scenario are the three trainees, the drivers, and
the process simulator. The PAR system eases the creation of
autonomous virtual human agents by providing a flexible way of
representing personalities, emotions, and other agent properties,
and also by providing fast, straightforward ways to query the
environment and communicate with other agents.

In this simulation, the virtual human agents have one of two
personalities; hostile or non-hostile. Currently, the trainees are
all non-hostile. Drivers are randomly chosen to be hostile or
non-hostile as they enter the scene and their hostility can be
changed at any time during the simulation. The personality of
the driver is expressed through his actions. For example, a
hostile driver is far more likely to be uncooperative and may
even attempt to shoot one of the trainees.

Figure 3: Angry Facial Expression

In PAR, one of the properties of an agent is the emotional state
of the agent. The agents are capable of being angry, sad, fearful,
happy, or emotionally neutral. Initially, all of the trainees are
emotionally neutral, and the drivers’ emotions are set randomly
as they enter the checkpoint. During the simulation,
environmental conditions and the agent’s actions effect the
agent’s emotions. For example, a trainee becomes angry
whenever he draws his weapon. The emotions of the agents are
expressed through facial expressions (Figure 3). We are

currently using a facial animation model from MIRALab,
University of Geneva [21].

In PAR, the agents externally communicate with each other
using speech and gestures. Internally, their processes
communicate through message passing. For example, when the
driver hands his identification to the trainee, the trainee needs to
respond by taking the identification. He knows to do this
because the driver process sends the trainee process a message
informing him that the identification is being handed over. This
approach sidesteps questions of gesture recognition that may be
addressed in the future.

4.2 Standing Orders
Standing orders are persistent natural language instructions
issued to correct the trainees’ errors.

In the first scenario, the trainee draws his weapon at a suspected
terrorist, but forgets to take cover. The driver shoots him. To
correct this, the user gives the following standing order to that
trainee:

“When you draw your weapon at the driver, take cover from the
driver behind your drum.”

 The NL2PAR module immediately parses this standing order
and the generated Python script is stored as a complex rule in
the rule table. In the next trial of the simulation, as soon as the
trainee draws his weapon the standing order (now a rule) forces
him to also take cover behind his drum correcting the situation.
Also, it is noticed that when one of the trainees draws his
weapon, the other two trainees remain still, which is
situationally incorrect. So, a standing order of

“ If Trainee1 draws his weapon at the driver, draw your weapon
at the driver and take cover from the driver behind your drum”

remedies this situation.

The command “take cover” takes two oblique arguments—the
potential threat (in this case, the driver), and the desired cover
(the steel drum). When this PAR is executed, the trainee moves
to a place where the drum intersects the path between himself
and the driver. But, since the “take cover” action is
parameterized at this high level, the trainee could be instructed
to take cover from virtually any object (say, from one of his
companions), behind any other object (say, behind the suspect's
car), and the simulation would accommodate it.

During another run of the system a hostile driver draws a gun as
soon as the first trainee asks him for his identification, and
shoots the trainee before he can react. Observing that the
trainees on the passenger side of the car could have seen the
driver reach for the gun, the user gives two additional standing
orders for trainees 2 and 3:

“When there is a driver, watch the driver.”

“If the driver reaches for a gun, warn Trainee1.”

Once again the simulation is replayed and whenever there is a
driver in the car at the checkpoint, the new standing orders force
trainees 2 and 3 to watch the driver. When the driver reaches for
his gun, the rules force those trainees to warn the first trainee,
before the driver can grab his weapon and fire. This gives the
first trainee time to draw his own weapon and take cover. Since
all the previous orders are still in the system’s memory, trainees
2 and 3 also draw their weapons, and all three take cover. The

driver, outnumbered, quickly surrenders, and the trainees
successfully complete the exercise.

It is important to note that the ‘watch’ action is classified as a
preemptive action and so its UPAR has a lower priority. This
means that whenever the trainees need to execute other actions,
their agent processes will preempt ‘watch’ from their queues and
execute the other actions. But, after the other actions have been
completed, if there is still a driver at the checkpoint, the rule
resulting from the standing order “When there is a driver, watch
the driver” will again force the trainees to watch the driver. This
results in a completely natural looking scenario where the
trainees are always cautiously watching the driver. If they are
interrupted to do something else, they quickly finish that task
and resume watching.

5. DISCUSSION
The PAR architecture and its implementation is intended to
provide a test bed for real-time agents who work, communicate,
and manipulate objects in a synthetic 3-D world. Our goal is to
make interaction with these embodied characters the same as
with live individuals. We have focused on language as the
medium for communicating instructions and finite state
machines as the controllers for agent or object movements.

The structure described here is the basis for a new kind of
dictionary we call an Actionary™. A dictionary uses words to
define words. Sometimes it grounds concepts in pictures and (in
on-line sources) maybe even sounds and video clips. But these
are canned and not parameterized — flexible and adaptable to
new situations the way that words function in actual usage. In
contrast, the Actionary™ uses PAR and its consequent
animations to ground action terms. It may be viewed as a 3-D
(spatialized) environment for animating situated actions
expressed in linguistic terms. The actions are animated to show
the meaning in context, that is, relative to a given 3-D
environment and individual agents.

Any simulation system must be supplied with procedures that
implement its semantics. PAR is no exception. We have
discussed how the multi-level approach lets us focus the system
implementation in separable and re-usable motion generators,
PaT-Nets, and PARs, but these must still be manually coded.
People build their internal representations through experience
and learning, but these avenues are not yet open to the
simulation designer. We are developing tools that may allow
UPARs and some of their parameters to be learned from
observation. Additionally, we may be able to use the natural
language interface to construct portions of a UPAR, just as a
word dictionary provides some but not all of a term's semantics.

Currently, we are working on adding a planner [31] to the PAR
system. Our hope is that the information stored in each UPAR,
including the applicability conditions, preparatory
specifications, termination conditions, and post assertions, will
ease the task of planning and provide us with a robust, real-time
simulation system.

The actions requested may fail for any number of reasons from
failed conditions in the PAR to unanticipated confounding
events to inadequate implementation. Since our agent models
admit the possibility of adding action planners, some failures
may be detectable and repairs initiated automatically [7,26].

Giving an agent the capability of observing the consequences of
its actions (or inaction) and generating compensating rules is an
attractive future effort.

An instruction understanding system, based on natural language
inputs, an Actionary™ translation, and an embodied virtual
human agent could provide a non-programming interface
between real and virtual people. We can describe tasks for
others and see them carried out, whether they are real or virtual
participants. Thus the door is opening to novel applications for
embodied agents in games and interactive entertainment, job
training, team coordination, manufacturing and maintenance,
education, and emergency drills. As the Actionary™ grows, new
applications should become ever easier to generate. And just as
our human experience lets real people take on new tasks, so too
should embodied characters be adaptable to new environments,
new behaviors, and new instructions.

6. ACKNOWLEDGEMENTS
We would like to acknowledge Liwei Zhao, Hogeun Shin,
Seung-Joo Lee, Sooha Park Lee, Meeran Byun, Harold Sun, and
Aaron Bloomfield for their work on this research. This research
is partially supported by U.S. Air Force F41624-97-D-5002,
Office of Naval Research K-5-55043/3916-1552793, DURIP
N0001497-1-0396, and AASERTs N00014-97-1-0603 and
N0014-97-1-0605, DARPA SB-MDA-97-2951001, NSF IRI95-
04372, SBR-8900230, and IIS-9900297, Army Research Office
ASSERT DAA 655-981-0147, NASA NRA NAG 5-3990, and
Engineering Animation Inc.

7. REFERENCES
[1] Badler, N., D. Chi, and S. Chopra. 1999. Virtual human

animation based on movement observation and cognitive
behavior models. In Proceedings of the Computer
Animation 1998, 128-137. Los Alamitos, CA: IEEE
Computer Society.

[2] Badler, N., M. Palmer, and R. Bindiganavale. 1999.
Animation control for real-time virtual humans.
Communications of the ACM 42(7): 65–73.

[3] Badler, N., B. Webber, J. Kalita, and J. Esakov. 1990.
Animation from instructions. In N. Badler, B. Barsky, and
D. Zeltzer, eds., Making Them Move: Mechanics, Control,
and Animation of Articulated Figures, 51–93. San
Francisco, CA: Morgan-Kaufmann.

[4] Badler, N., B. Webber, M. Palmer, T. Noma, M. Stone, J.
Rosenzweig, S. Chopra, K. Stanley, J. Bourne, and B. Di
Eugenio. 1997. Final report to Air Force HRGA regarding
feasibility of natural language text generation from task
networks for use in automatic generation of Technical
Orders from DEPTH simulations. Technical Report, CIS,
University of Pennsylvania.

[5] Bourne, J., 1998. Generating adequate instructions:
Knowing when to stop. In Proceedings of the AAAI/IAAI
Conference, 1169. Doctoral Consortium Section, Madison,
Wisconsin.

[6] Brooks, R., A robot that walks: Emergent behaviors from a
carefully evolved network. Neural Computation 1(2): 253–
262.

[7] Cassell, J., and H. Vilhjálmsson. 1999. Fully Embodied
Conversational Avatars: Making Communicative Behaviors
Autonomous. Autonomous Agents and Multi-Agent
Systems, 2(1): 45-64.

[8] Cavazza, M., R. Earnshaw, N. Magnenat-Thalmann, and D.
Thalmann. 1998. Motion control of virtual humans. IEEE
Computer Graphics and Applications 18(5): 24–31.

[9] Chapman, D. 1990. Vision, instruction, and action. Ph.D.
thesis, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory.

[10] DiEugenio, B. and B. Webber. 1992. Plan recognition in
understanding instructions. In Proceedings of the First
International Conference on Artificial Intelligence
Planning Systems, 52—61.

[11] Douville, B., L. Levison, and N. Badler. 1996. Task level
object grasping for simulated agents. Presence 5(4): 416–
430.

[12] Earnshaw, R., N. Magnenat-Thalmann, D. Terzopoulos,
and D. Thalmann. 1998. Computer animation for virtual
humans. IEEE Computer Graphics and Applications 18(5):
20–23.

[13] Firby, R. 1994. Task networks for controlling continuous
processes. In Proceedings of the Second International
Conference on AI Planning Systems, 49—54, Chicago IL.

[14] Granieri, J., Becket, W., and Reich, B.D. 1995.
Behavioral control for real-time simulated human agents.
Symposium on Interactive 3D Graphics, 173—180.

[15] Huffman, S.B., and J.E. Laird. 1995. Flexibly instructable
agents. Journal of Artificial Intelligence Research, 3:
271—324.

[16] Johnson, W.L. and J. Rickel. 1997. Steve: An animated
pedagogical agent for procedural training in virtual
environments. SIGART Bulletin, 8(1-4): 16—21.

[17] Joshi, A.K., 1985. How much context sensitivity is
necessary for characterizing structural descriptions: Tree
adjoining grammars. In D. Dowty, L. Karttunen, and A.
Zwicky, eds., Natural Language Parsing: Psychological,
Computational and Theoretical Perspectives, 206–250.
Cambridge: Cambridge University Press.

[18] Joshi, A.K., and Y. Schabes. 1996. Tree-Adjoining
Grammars and Lexicalized Grammars. Handbook of
Formal Languages and Automata. Springer Verlag,
Berlin, eds: A. Salomaa & G. Rosenberg, 409-431.

[19] Kallmeyer, L. and A. Joshi. 1999. Underspecified
Semantics with LTAG. In Proceedings of Amsterdam
Colloquium on Semantics.

[20] Kallmann, M., and D. Thalmann. 1999. A behavioral
interface to simulate agent-object interactions in real-time.
In Proceedings of Computer Animation, 138–146. Los
Alamitos, CA: IEEE Computer Society.

[21] Kalra, P., A. Mangili, N. Magnenat-Thalmann, and D.
Thalmann. 1992. Simulation of muscle actions using

rational free form deformations. Proceedings Eurographics
’92, Computer Graphics Forum 2(3): 59-69.

[22] Lutz, M. 1996. Programming Python. Sebastapol:
O’Reilly.

[23] Narayanan, S. 1997. Talking the talk is like walking the
walk. In Proceedings of the 19th Annual Conference of the
Cognitive Science Society, 548-553. Palo Alto, Calif.
Mahwah, NJ: Lawrence Erlbaum and Associates.

[24] Palmer, M., J. Rosenzweig, and W. Schuler. 1998.
Capturing motion verb generalizations with synchronous
tag. In P. St. Dizier, ed., Predicative Forms in NLP. Text,
Speech, and Language Technology Series, 250-277.
Dordrecht, The Netherlands: Muwer Press.

[25] Perlin, K., and A. Goldberg. 1996. Improv: A system for
scripting interactive actors in virtual worlds. In Computer
Graphics, 205-216. New York, NY: ACM SIGGRAPH.

[26] Rickel J., and W.L. Johnson 1999. Animated agents for
procedural training in virtual reality: Perception, cognition
and motor control. Applied Artificial Intelligence (13):343-
382.

[27] Schuler, W. 1999. Preserving semantic dependencies in
synchronous tree adjoining grammar. In Proceedings of
the 37th Annual Meeting of the Association for
Computational Linguistics, 88—95.

[28] Shi, J., T. J. Smith, J. Granieri, and N. Badler. 1999. Smart
avatars in JackMOO. In Proceedings of IEEE Virtual
Reality, 156–163. Los Alamitos, CA: IEEE Computer
Society.

[29] Shieber, S. 1994. Restricting the weak-generative
capability of synchronous tree adjoining grammars.
Computational Intelligence 10(4).

[30] Shieber, S. and Y. Schabes. 1990. Synchronous tree
adjoining grammars. In Proceedings of the 13th
International Conference on Computational
Linguistics. Helsinki, Finland.

[31] Trias, T., S. Chopra, B. Reich, M. Moore, N. Badler, B.
Webber, and C. Geib. 1996. Decision networks for
integrating the behaviors of virtual agents and avatars. In
Proceedings of IEEE. Virtual Reality Annual International
Symposium. Los Alamitos, CA: IEEE Computer Society.

[32] Vere, S. and T. Bickmore. 1990. A basic agent.
Computational Intelligence, 6: 1—22.

[33] Webber, B., N. Badler, B. Di Eugenio, C. Geib, L. Levison,
and M. Moore. 1995. Instructions, intentions and
expectations. Artificial Intelligence Journal 73:253–269.

[34] Wilcox, S, K. Web Developer’s Guide to 3D Avatars.
Wiley, New York, 1998.

[35] XTAG Research Group. 1998. A lexicalized tree
adjoining grammar for English. Technical Report,
University of Pennsylvania.

[36] Zeltzer, D. 1990. Task-level graphical simulation:
Abstraction, representation, and control. In N. Badler, B.
Barsky, and D. Zeltzer, eds., Making Them Move:
Mechanics, Control, and Animation of Articulated Figures,
3–33. San Francisco, CA: Morgan-Kaufmann.

