Multidimensional Broadcast Operation on the GPU

Enis Berk Coban

Computer Science and Engineering
Koc¢ University
Istanbul, Turkey
ecoban16@ku.edu.tr

Abstract—Broadcast is a common operation in machine learn-
ing and widely used in calculating bias or subtracting maximum
for normalization in convolutional neural networks. Broadcast
operation is required when two tensors possibly with different
number of dimensions, hence with different number of elements,
are input to an element-wise function. Tensors are scaled in
process so that the two tensors match in size and dimension.
In this research, we introduce a new broadcast functionality for
matrices to be used on CUDA enabled GPU devices. We further
extend this operation to multidimensional arrays and measure its
performance against the implementation available in the Knet
deep learning framework. Our final implementation provides
up to 2x improvement over the Knet broadcast implementation,
which only supports vector broadcast. Our implementation can
handle broadcast operations with any number of dimensions.

Index Terms—GPU, CUDA, machine learning, broadcast, mul-
tidimensional arrays

I. INTRODUCTION

Machine learning algorithms can effectively learn to solve
complex problems with the use of enormous quantities of
data. Fortunately nowadays, more and more data is available
in the forms of text data from the web (e.g. Wikipedia), or
video from video publishing sites (e.g. Youtube). The Big
Data era has allowed machine learning algorithms to succeed
in various important computational tasks. These tasks involve
image classification [4] and image recognition better than hu-
mans [2], sentiment analysis, caption generation [3] and many
more. However, due to the complexity and iterative nature
of machine learning algorithms, performance optimisations
play an important role for their successful usage. With the
incorporation of big data, the weights and parameter matrices
necessary to construct an accurate machine learning algorithm
hence grow larger in size as well, which makes basic matrix
operations such as broadcast extremely critical to the time
efficiency of those algorithms. Therefore, in this paper we
focus on optimizing the broadcast operation in order to speed
up such algorithms.

In machine learning, broadcast is used in summing the
bias and weight matrices, in loss function calculations. For
example, images can be processed in batches to run on a GPU
for higher efficiency. This process may require weights and
bias to be used more than once for a batch, thus those values
are broadcast. As a result, optimizing the broadcast operation
is essential for speeding up the machine learning algorithms.

Deniz Yiiret

Computer Science and Engineering
Koc¢ University
Istanbul, Turkey
dyuret@ku.edu.tr

Didem Unat

Computer Science and Engineering
Koc¢ University
Istanbul, Turkey
dunat@ku.edu.tr

In this paper, we propose a solution for multi dimensional
broadcast operation on GPUs. We map CUDA threads to
resulting tensor elements. For element-wise operations each
thread needs to know which elements to use from input tensors
to compute the output tensor. However, since broadcast tensors
have fewer elements than the resulting tensor, correct indices
should be calculated. Our method uses the stride values of
tensors and coordinates of resulting element to calculate the
corresponding elements’ indices from input tensors. Because
the elements of the broadcast tensors are used more than
once, different threads access the same elements over and
over again from GPU memory. This causes poor utilization
of memory bandwidth. For this reason we propose data reuse
methodology. Each thread loads an element from the broadcast
tensor and uses this element to calculate more than one
element in the resulting tensor. The highest data reuse is
achieved when one thread is assigned to each element of the
broadcast dimension. However, when the size of broadcast
dimension is low, it causes underutilization of GPU cores.
To balance the trade-off between data reuse and GPU core
usage, we introduce a sliding factor. Sliding factor indicates
how many times a thread will use the same data.

We implement the broadcast operation and compare its per-
formance against the Knet deep learning framework [7], which
only supports vector broadcasting. Knet is written in Julia [1],
which is a high level programming language that generates
CUDA code in the background. Our implementation achieves
up to 2x speedup over Knet, and also supports multidimen-
sional capability for broadcast operations. Our implementation
can be used by any other machine learning frameworks that
require broadcast support for GPU programming.

II. BROADCAST OPERATION

Broadcast operation is an element-wise operation requiring
two input tensors, where one tensor is broadcasted over the
other by applying a binary function (e.g. addition, multiplica-
tion). For a broadcast operation, the number of elements in the
same dimension of two tensors should be the same or one of
these tensors should be a vector in other words have a single
dimension.

In relevance to machine learning we focus on broadcasting
tensors rather than scalar values. Figure 1 is a broadcast
example of a matrix X and a vector Y, performing an addition.

01 2 3 10 20 30 40 10 21 32 43

4 5 6 7 |+'10 20 30 40 = |14 25 36 47

8 9 10 11| 5 50" 30 40 18 29 40 51
X Y z

Fig. 1: Broadcasting a vector on a matrix by addition operation

To match the dimension of the matrix X for the addition
operation, the vector Y is scaled by replicating the same
elements over the missing dimension and then elements of
the scaled vector is added to the elements of the matrix to
obtain matrix Z.

I_'II_'I_'l
0 |0:|0::0: 10 20 30 40 10 20 30 40
4 :4|'4|:4|+ 10 20 30 40 = |14 24 34 44
1
8181818, 10 20 30 40 18 28 38 48
X Y Z

Fig. 2: Broadcasting a row over a column vector by addition
operation

Both of the tensors, also multiple dimensions from each
tensor can be broadcast. Figure 2 shows the addition of a
row and column vectors. It demonstrates the case where both
of the vectors need to be scaled in their respective missing
dimension. This example also shows that resulting tensor
always have the same or bigger dimension than both of the
input tensors.

III. IMPLEMENTATION
A. Scale or not to Scale

In the previous section, we describe the broadcast operation
by scaling tensors by replicating their elements in the missing
dimension in memory. If a vector with NV elements is scaled
to the size of N x M matrix, we would need extra memory
space for (N — 1) « M elements, which is not the best way
to implement a broadcast operation. Since device memory is
limited on GPUs, replicating elements is not a good option.
Moreover broadcast operation is mostly memory bound due to
low computational density; for two memory accesses, only one
arithmetic operation is performed at best. For these reasons,
accessing the same element multiple times wastes memory
bandwidth as well as memory capacity. If one chooses not
to replicate the data in memory, then there is a challenge of
finding the corresponding indices of a tensor because if the
tensors are scaled in memory, they would have the same size
and their corresponding elements would have the same index
value. To compute each element of the resulting tensor, we
need to calculate corresponding elements’ indices. Because
indices will not remain the same, we propose a representation
for index values of elements to facilitate the calculation of the
corresponding indices.

B. Index Calculation

Multidimensional arrays can be stored in memory continu-
ously, similar to a one dimensional array. One can calculate
the global index of an element from its coordinates in each
dimension. For example, X array in Figure 3, has an element
at coordinate (0,1) with value of 8, which has a global index
of 4. However, elements in the Y vector other than first row do
not exists in memory. For this reason, during broadcast, access
to those indices should be translated into original elements’
indexes because the vector is not physically scaled. In Figure
3, the circled element from the broadcasted vector Y has
the same coordinates with the corresponding element from X
matrix, however its index is different, which is 0. As a result,
index values of elements in broadcast tensor do not represent
the correct place of that element in memory.

Coordinates | Inde alue

xy) : | vau 3 2 3 5 10 20 30 40

(0,1) 4 8 < ?) 1 12 11 @ 20 30 40

©.1) o |0 4 2 3 8| /10 20 30 40
X Y

Fig. 3: Coordinates and indices in tensors

An element’s index can be calculated from its coordinate
values and tensor’s stride values [6]. A stride value of a
dimension is the number of jumps in the memory required
to access the next element in the same dimension [5]. In other
words, let z, y, z be integers representing coordinate values of
an element in a 3D tensor, stride value of the third dimension,
is the number of jumps required to get from element (z, y, 2)
to element (z,y,z + 1).

Coordinates | Index | value

(x.y.,2)

(1,0,2) 25 |3

dimension X

Stride value | 1

Q’XC
=.
Q
(0]
<
D%
v

Fig. 4: Coordinate and stride values of 3D tensor

To calculate index of an element we take the dot product
of the stride values of the matrix with the coordinates of the
element. As an example, the index of the circled element in
Figure 4 is:

Index = stridevalues| |. x coordinates|]
Index = [1,4,12]. % [1,0, 2]

We store the stride values in memory for index calculation.
To iterate from one element to the next, we increase the

coordinate values. This representation of indices makes the
broadcast operation working on the non-contiguous tensors
easier. The stride values can be changed according to one’s
needs. In case of broadcast, we set the stride value of the
broadcasted dimensions to 0. Therefore, when we change the
coordinates in that dimension, i.e. when we multiply with
stride values, the broadcasted dimensions will not have an
effect on index calculation.

C. CUDA Implementation

In a serial implementation of broadcast operation, we would
iterate over resulting tensor elements with an iterator. Iterator
would increase the coordinate values one by one and set to
zero when it reaches to an upper limit. When an index calcu-
lation is required, then the coordinate and stride values would
be used. This is possible because one iterator is responsible
for calculating all the elements. In CUDA, we cannot do
this because broadcasted tensor is not kept contiguously in
memory and an increment on a coordinate value would require
jumps in memory. we assign threads to the resulting tensor,
which is always kept continuously in memory. From resulting
tensor’s index (global index), we calculate the coordinates of
the resulting tensor, which has the same coordinates for input
elements. The corresponding memory indexes of broadcast
elements are then calculated from the stride and coordinate
values for each input. Only after the index values are known,
arithmetic operation can be applied.

D. Sliding Factor Optimization

Algorithm we described previously supports tensors with all
different number of dimensions. This wide support prevents us
to optimize our algorithm easily. For this reason, we create an
optimized broadcast implementation that limits the operation
inputs to a vector and a matrix, which is still commonly used
in machine learning.

0% 14|24 38| l[0j 203305 408 10 21 32 53
mslid{ f_i_g%lei 74| 10 _20J30 40 14 25 36 57
11§73 103 11§ .10 20 _30_40 11 27 40 51
33 18128 3% 10 120 30 401 _ |13 21 32 43
2nd <:_6_$_E§EG$ 75| 10 20 30 40 16 25 36 47
1§ 12813128 10 20 30 40 11 32 31 51
3rd 8% 931108 138 710 20 30 40 18 29 40 51
side |23 182218 "0 20 30 40 12 21 52 58
X Y z

Fig. 5: Sliding thread blocks over matrix for addition

As mentioned earlier, broadcast operation is memory band-
width bound. To enable data reuse for improving the memory
bandwidth usage, we assign a single thread to apply the same
broadcasted value to multiple rows or columns of the matrix.
A thread loads element once from the vector in GPU memory
and slides down this value through from beginning of matrix
to end of it. In this scenario, an thread loads an element

from a vector with size of N and uses this element for M
times over a matrix with dimensions of NzM if a single
dimensional thread block is used. For multidimensional thread
blocks, M would be divided by the size of the thread block
in that dimension. We refer to this implementation as thread
sliding and how many times a thread slides as sliding factor.
Figure 5 shows two thread blocks with 2x2 threads in each.
Each thread is assigned to one element from the vector Y but
responsible for calculating 4 elements of resulting matrix Z.
A 2x2 thread block shown in the figure slides over the matrix
and new locations after each slide is drawn with dashed lines.

E. Shared Memory Optimization

GPUs come with software managed memory, called shared
memory, which can act as a cache managed by the pro-
grammer. For the broadcast operation we explore the usage
of shared memory to improve the performance further. In
the shared memory implementation In each thread block, all
threads in the first row load one element from vector Y to
shared memory. Threads in the same thread block but in other
rows can use the values loaded into the shared memory by
the threads in the first row. Then similar to sliding factor
implementation, thread blocks start from the top of the matrix
and slides over the matrix until end of it, adding numbers
from vector. If we refer back to the example in Figure 5,
two threads in the first row of each thread block would load
data from vector Y to shared memory. In the sliding factor
implementation every thread in a block would load data from
global memory.

IV. RESULTS

We explained three algorithms, first one is generalized
broadcast algorithm, which supports tensors with any num-
ber of dimensions. Secondly we proposed two performance
improvements over generalized algorithm specific to vector
broadcast. We used idea of sliding factor to increase data
reuse. Next, we added shared memory support to sliding factor
algorithm to decrease memory accesses even further. In this
section, we compare the performance of those implementations
and use Knet’s broadcast as baseline.

We measured the performance on an Nvidia Tesla K40m
GPU. The bandwidth test provided by Nvidia shows 179GB
effective bandwidth for the device memory. In our perfor-
mance tests, we broadcast a vector to a matrix. Length of
the vector determines how many elements will be broadcast.
Length of second dimension of the matrix correlates with how
many times we can use a broadcast element from the vector.

In Figure 6 and 7, we compare two optimized versions
of algorithm and native implementation from Knet. Y-axis
shows the effective bandwidth (Gb/s) achieved in the broadcast
operation, so higher is better. X-axis shows the length of Y
dimension in the matrix. In both figures, we can see that
for the small number of elements, baseline is slightly better
because there is not enough data reuse for optimization and
the overhead of optimization slows down the program. Sliding
factor with shared memory is always slower than the baseline.

The sliding factor implementation performs better than the
baseline when the size of the Y dimension reaches 1000. At
that point data reuse can be 4 to 6 times with large number of
thread blocks so the algorithm uses all stream multiprocessors
(SM) efficiently on the GPU. Otherwise, the number of thread
blocks might not be sufficient to occupy all the SMs and
performance of our algorithm suffers due to inactive SMs.

Effective Bandwidth (Gb/s), vector length=100

90

. Baseline (Knet)

70 Sliding Factor with Shared Mem.

Sliding Factor
50

40

30

Effective Bandwidth

20

1 10 100 128 512 1000 1024 2048

length of Y dimension of Matrix

Fig. 6: Effective bandwidth achieved by Knet, sliding factor
optimization, and sliding factor using shared memory. Higher
is better.

Effective Bandwidth (Gb/s), vector length=1014
Baseline (Knet)
120 Sliding Factor with Shared Mem.

100 Sliding Factor

Effective Bandwidth
8

1 10 100 128 512 1000 1024 2048

length of Y dimension of Matrix

Fig. 7: Effective bandwidth achieved by Knet, sliding factor
optimization, and sliding factor using shared memory. Vector
size is 1024.

In Figure 7, the algorithm with shared memory performs
better than baseline algorithm but still performs worse than
the sliding factor optimization without shared memory. This is
mainly because data sharing between threads in a thread block
is not beneficial enough to cover the cost of synchronization
between threads. Sliding factor algorithm performs better than
the baseline, reaching over 140 GB/s and getting closer to the
sustained memory bandwidth of the device memory.

Lastly we compare Knet with our generalized multidi-
mensional broadcast algorithm according to their effective
bandwidth performance in Figure 8. X-axis shows the number
of elements in a matrix in a single dimension. We could
not compare Knet’s performance on broadcasts other than
vector broadcast because because Knet does not support it.
Our algorithm is more generalized for this reason it is slower

Effective Bandwidth (Gb/s), for matrix sizes
60

50 Multidimensional

40

Baseline (Knet)
30

10

128 256 512 1K 2K 4K 8K 16K

Matrix Size in Y dimension (X dimension is set to 1024)

Fig. 8: Effective bandwidth comparison between generalized
multidimensional broadcast and Knet for broadcasting a vector
to a matrix with different sizes. Vector size is 1024.

than Knet, however, for vector broadcast one should use our
implementation that performs the sliding factor optimization,
which is a lot faster.

V. CONCLUSION

In this paper, we proposed an algorithm for multidimen-
sional broadcast operation that works on CUDA enabled
GPU devices. We optimized our algorithm for broadcasting
vectors to over multidimensional arrays. We incorporated our
algorithm into a deep learning framework called Knet, which
was previously only capable of supporting vector broadcasts.
The optimized vector broadcast achieves up to 2x speedup
over the baseline and reaches 140GB/s on K40 GPUs. We
also support multidimensional broadcast operation, which is
general and can be applied to tensors with any dimensions.
Future work will focus on improving the performance of
other common machine learning operations such as reduction,
permutation.

REFERENCES

[1] J. Bezanzon, S. Karpinski, V. Shah, and A. Edelman. Julia: A fast
dynamic language for technical computing. In Lang. NEXT, Apr. 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. CoRR,
abs/1502.01852, 2015.

[3] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3128-3137, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.

[5] Wikipedia. Stride of an array — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 12-February-2017].

[6] G. Wilson and A. Oram. Beautiful Code: Leading Programmers Explain
How They Think. Theory in Practice (O’Reilly). O’Reilly Media, 2007.

[7] D. Yuret. Knet: beginning deep learning with 100 lines of julia. In
Machine Learning Systems Workshop at NIPS 2016, 2016.

