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ALPHA-BETA-CONSPIRACY SEARCH '
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New Providence NI, USA

ABSTRACT

We introduce a variant of - search in which each node is associated with two depths rather than
one. The purpose of a-f3 search is to find strategics for each player that together establish a value
for the root position. A max strategy esiablishes a lower bound and the min strategy establishes
an upper bound. Tt has long been observed that forced moves should be searched more deeply.
Here we make the observation that in the max strategy we are only concerned with the forcedness
of max moves and in the min strategy we are only concerned with the forcedness ol min moves,
This leads to two measures of depth — one for each strategy — and to a two-depth variant of
a-fi called ABC search. The two-depth approach can be formally derived from conspiracy theory /
and the structure of the ABC procedure is justified by two theorems relating ABC search and
conspiracy numbers.

1. INTRODUCTION

Conspiracy numbers for min-max search were introduced by McAllester (1988) and provide a game-indepen-
dent framework for guiding non-uniform growth in min-max game trees. The basic idea is to grow search trees
for which one has confidence in the root min-max value. Conspiracy theory measures confidence by measuring
the number of leaf values that would have to be changed to bring about a given change in the root valoe. This
basic theoretical concept has been used with some success o solve tactical problems in chess (Schaeffer,
1990). However, conspiracy theory has not been used directly in competitive computer chess programs. We
believe this is due to a variety of deficiencies in the algorithm presented in McAllester (1988). In this paper
we present a new algorithm, q-8-conspiracy search, or ABC for short, which is based on conspiracy theory
and yet overcomes the deficiencies of the earlier procedure.

The algorithm presented here is a variant of classical - search. Like e~ it uses space that .is linear in \the
depth of the search (but can be augmented with transposition tables). Like a-3 search, ABC is a deptb first
procedure which terminates when depth bounds are exceeded. However, unlike classical - search, in the
ABC procedure each node is associated with rwe depths — a depth of the node when viewed as an element
of a max strategy and a second depth for the node when viewed as an element of a min strategy. The details
of the ABC procedure described here can undoubtedly be improved in game specific ways. However, we have
considerable confidence that the two-depth approach will prove superior to the classical one-depth approach
in e-/3 search.

The ABC procedure overcomes four deficiencies of the procedure presented in McAllester (1988), which we
will call the naive conspiracy procedure, or NC for short. First, the NC procedure requires exponential space
— the entire search tree must be stored. The ABC procedure, as a variant of «-£3, requires only linear space.
Second, the NC procedure is founded on the assumption that deviations from static values are statistically
independent. This causes premature termination of the algorithm down importmllt lines of piz}y. The ABC
procedure provides heuristic corrections for correlations. Third, the NC procedure involves considerably more
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overhead in expanding a single node than does classical «x-3. The ABC procedure should achieve node evalu-
ation rates roughly the same as classical -f3. Finally, the NC procedure does not allow for the incorporation
of game-specific extension heuristics such as check extensions. Although we argue that these game-specific
heuristics are just special case encodings of a general conspiracy theory principal, the direct implementation
of these heuristics achieves greater efficiency than can be achieved using only static values. In section 10.3 we
discuss a “stalic option cstimator” for incorporaling game-specific heuristics such as check extensions.

ABC search uses conspiracy numbers to control search depth. The goal of e~ search is to construct strategies
for each player that together establish a value for the root position. The max strategy establishes a lower bound
and the mia sirategy establishes an upper bourd. Conspiracy numbers can be used to measure the “safety” of
these two strategies. A max strategy is safe to the extent that there exist options Lo the max moves selected
in the strategy. If one of the lines of play in the strategy turns out not to work, i.e., not to achieve the desired
root value, then a different line of play can be chosen provided that options exist to the selected moves in the
strategy. A strategy is unsafe if there are no options to the selected moves, i.e., the selected moves are forced.
For technical reasons described in section 4 we need to work with augmentations of strategies. The conspiracy
depth of a strategy is the least number of leaf nodes in the augmentation of that strategy whose value must be
changed in order to defeat the strategy. It is possible to assign a depth to each node in the stratcgy such that the
conspiracy depth of the strategy is simply the depth of the shallowest leaf, Depth in a max strategy is called
max depth and depth in a min strategy is called min depth. The max depth in a max strategy only increases at
max moves — this is where the max player has options supporting the safety of the strategy. If a max move in
a max sirategy is forced, i.e., there are no options to that move, then max depth does not increasc across the
move and the search must be carried further to achieve a desired safety (depth measurement). If a min move
happens to be forced in a max stralegy this fact does not influence max depth -— max depth is only measuring
the options of the max player.

The idea that forced lines of play should be explored more deeply goes back to the original chess prapers of
Shannon (1950) and Turing er af. (1953). Tt is one of the justifications for the value of quiescence search
in chess. Tt also clearly underlies the use of check extensions. It is also the motivation for the singular
extension heuristic (Anantharaman, Cambell, and h. Hsu, 1990). However, we believe that effective use of
these heuristics has been frustrated by the use of a single depth measurement. Max-depth extensions should be
granted when the max move is forced, min depth extensions when the min move is forced, and the goal of the
search should be to find a max strategy and a min strategy of sufficient max depth and min depth respectively.

2. CONSPIRACY NUMBERS

Consider a partially expanded min-max search tree. Every node in such a tree is classified as either a max
node or a min node in such a way that the child of every max node is a min node and the child of every min
node is a max node. The leaves of the tree are associated with static values. The min-max value of a leaf node
is defined to be its static value; the min-max value of nonleaf max node is the maximum of the min-max value
of its children; and the min-max value of a min node is defined in the dual way. Nonleaf nodes will be called
internal nodes. Let ¢ be a number called the singular margin.* Conspiracy theory can be formulated using the
following definition.

Definition: Let T be a search tree with min-max value V[T1. The lower bound conspiracy number
of T, denoted C-[T], is the number of leaf static values that must be changed to bring the root
min-max value down to V[T'] — 8. The upper bound conspiracy rumber of T, denoted C' [T}, is
the number of leaves that must be changed to bring the leaf value up to V[T7] + 4.

Classical a-f3 search can be viewed as finding strategies for the two players — an optimally pruned uniform
depth «-§ tree is the union of a min strategy and a max strategy. By giving a particular plan of attack for the
max player, the max strategy establishes a lower bound on the min-max root value for the given depth. By
giving a plan of attack for the min player, the min strategy establishes an upper bound on the min-max root
value. If these two bounds are the same then we have a proof that the min-max value of the root for the given
depth is the value of the two sirategies. (/[T as defined above expresses our confidence that the lower bound

4The lerm “singutar margin” comes from the singular extension zlgorithm (Anantharaman ef ol., 1990), Singular extensions are
discussed in more detail in section 9,
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established by the max strategy will not be defeated by further expansion of the search tree. C' [T'] expresses
our confidence that the upper bound established by the min strategy will not be defeated.

Consider a uniform two-ply scarch tree in which all leaf nodes have static vatue 0 and where the root node is
a max node. In order to bring the root value up to § all of the teaves that are children of the same min child of
the root must be increased to 8. In order to bring the root value down to —& one child of each min node must
be brought down to —d. So ' [T] and C-. [T both equal the branching factor of the tree.

3. A STATISTICAL INTERPRETATION

It is possible to provide a statistical interpretation of conspiracy numbers. This is done by constructing a certain
statistical model of the relationship between the static values of nodes and their true values. We assume that
the true values are generated nondeterministically from the static values. Let € be a number in the interval
[0, %} We assume that each leaf node has probability e of having a frue value egual tq +00; probability € of
having true value —oo; and probability 1 — 2¢ of having a true value equal to its static value. We let G
be the tree in which the static values of the Jeaves of T are replaced (according to the probability distribution
described) by their true vatues, We think of the true value tree, G/[T', as being nondeterministically generated
from T

This is an admittedly simplistic model. It assumes that the deviations of the truc values from the static values
are statistically independent at each leaf node. It also assumes that all deviations of true values from static
values are either the value +oco or —oo. However, this model seems to provide insight into the statistical
significance of conspiracy numbers.

To state the precise relationship between this statistical model and conspiracy numbers we need some addi-
tional terminology. If V[GIT] < V[T] — & then we say that the max strategy in 7' failed. We let Pp[Finys T
be the probability that the max strategy of T fails. We let Fiy, represent the event that V[G[TT} > VIT] + 6,
in which case we say that the min strategy failed, and define I, Finin|T7] to be the probability of this event for
the tree T'. The following theorem states that both of these failure probabilities are polynomials in €. Because
¢ is less than | we define the order of such polynomials to be the sinallest exponent of ¢ in a nonzero term. For
example, 1 — € is order 0 while 4¢ + 6¢? is order 1.

Theorem: P,.[Fu.:|T]is a polynomial in € of order C[T') and P, {Finia|T] is a polynomial in € of
order O [T].

Proof: We consider only the lower bound conspiracy numbers — the proof for upper bound
conspiracy numbers is similar, Let n be a node in the search tree; let Vin, T'] denote the min-max
value of n as a member of the tree T'; and let C'«{n, T be the number of leaf nodes that must be
changed to bring the min-max value of n to a value less than or equal to V[T — d. We will say
that a node n fails (for the max player) in 7" if V[n, G[TY < V[T'] — é. The probability that
a node n fails will be denoted as P, [Fuax[n]IT]. We now prove by induction on the number of
nodes below 7 in the search tree that Py[Finn}| T is a polynomial in € of order C'<fn, 7. This
will establish the desired result for the root node. First we consider a leat node n. If the static
value of n is greater than V{7 — § then we have C<ln, T'] = 1 and Py [Fuain]|T] = € so the
result holds. I the static value of n is less than or equal to V[T'} — 6 then we have C'<[n, T} = 0
and P Fpen]|T] = 1 — € so the result again holds. Now consider an internal max node n. Note
that all children of n must fail before : fails. This implies

Ocln, T = Cele,T]

where ¢ ranges over the children of n, Since all children must fail before n fails, and since the
children behave independently, we also have
Py [P [n)iT] = [ ] P Bnax e T-
c .

From this equation we can see that Pp[Frax[n||T] is a polynomial in € and that the orci-er of t.his
polynomial is the sum of the orders of the polynomials for Py.[Fuax(c]|T]. Now by the induction
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hypothesis for the children nodes we have that the order of the polynomial for P, [P« [n]|7] is
Cin, T). Now suppose that n is a min node. A min node will fail if any one of its children fail.
Hence we have

Celn, T1= mjn Cele, T

where ¢ ranges over the children of n. The probability that n will fail can be writien as

Po[Fon)|T) = 1= {1 = Po[Funaelel| T1)-

This implies that the order of the polynomial for P,.[Fl.[n]|{T] is the minimum of the order for
the polynomials for I, [Fix{c]iT7. The result now follows from the induction hypothesis for the
chiidren nodes.

The statistical model underlying the above theorem is clearly unsealistic. However it does show that conspiracy
numbers are a limiting case of more general statistical formulations such as that given by Baum and Smith
(1993). Both the above model and the one described by Baum and Smith make the assumption that the
deviation of true values from static values behaves independently at each leaf node. It seemns, however, that the
deviations of true values from static values do not behave independently in chess. For example suppose that
one has failed (o incorporate the importance of passed Pawns into the static evaluator. In this case a position
can be lost due to the presence of an unstoppable past Pawn but the static evaluator does not recognize the
danger. The pawn advancement may not happen for a great many moves. In this case virtually all of the static
values in the critical lines of play are in error in the same weay — they call positions even that are actually badly
behind. Although most static evaluators do incorporate the concept of a passed Pawn, there are undoubtedly
many subtle strategic features of positions thal are not incorporated into static evaluators and which cause
errors in static values to be correlated. The next two sections describe ways of correcting for correlations.

4. STRATEGIES

The ABC procedure attempts to overcome the correlations by assuming that errors in static values at different
fevels of the tree are less correlated than errors in static values at the same level. This seems plausible in chess.
To require the conspiracies to involve different levels of the tree we focus on strategies rather than arbitrary
trees, A strategy is a plan of action for one of the two players. This plan of action must take into account
all possible options of the opponent. For example, a strategy for the max player specifies at each max node a
particular planned move. At each min node a max strategy must include all the children of that node.

Definition: A max strategy is a tree which includes exactly one child of every internal max node
and includes all children of every internal min node. A min strategy is defined in the dual way.

Figure 1 shows a max strategy. Max nodes are represented by open circles and min nedes are represented
by closed circles. The strategy shown in this figure happens to have uniform depth, but in general the above
definition allows max strategies of non-uniform depth. Suppose all of the leaf nodes in this strategy have static
value 0. In that case the strategy shows that there is a plan of action for the max player that can achieve the
value 0 five ply down from the root. However, there may be other plans of action for the max player that
achieve values larger than 0. In general, max strategies can be used to establish lower bounds on the d-ply
min-max root value and min strategies establish upper bounds on the d-ply min-max root value. In very large
games such as chess one is usually not particularly interested in the d-ply min-max value — all successful
chess programs search to different depths down different lines of play, In very large trees where one must use
static values rather than true values it is never possible fo establish any irue bounds on the root min max value.
However, intuitively one still wants to think of max strategies as establishing lower bounds and min strategies
establishing upper bounds. We want to find max strategies and min strategies that are “safe”, i.e., such that we
have confidence in the bounds established by those strategies.

As one can see from Figure 1, the value of a max strategy is the minimum of the static values of its leaf nodes.
Let Ti,x be a max strategy with value v. Since Ty is only one of many possible plans of action for the max
player, we should think of % as a lower bound on the root value. One can try to measure the safety of the
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Figure 1: A max strategy.

Figure 2: The augmentation of a max strategy.

strategy by asking how likely it is that the value of the strategy would go down if the leaf values were re.placed
by their true value. This corresponds to asking how large a conspiracy is among the leaf nodes to bring the
value of strategy down. Unfortunately, for any max strategy 7'max, the lower bound conspiracy number C AT
is 1. We are not interested in C's [T because Trax cannot be used to justify any upper bound on the root v:alue.
Hence conspiracy numbers cannot be used directly to measure the safety of strategies. To use conspiracy
aumbers to measure the safety of strategies we define the augmentation of a sirategy.

Definition: If 7}, is a max strategy then the angmentation of I'y,,, denoted A[T], is defined ’Eo
be Tyax plus all children of all internal max nodes of T'naz. The augmentation of a min strategy is
defined in the dual way.

Let Thax be the max strategy shown in Figure 1. The augmentation, A[TY], is shown in Figure 2. Supposc that
all of the feaf nodes in A[T] have value 0. In this case we have that C' [ A[T]] is 6 -— at least six 1eaf nodes in
A[T] must conspire to reduce the root value of A[T']. The concept of augmentation allows us to associate each
strategy with a confidence measure.

Definition: Let Th.y be a max stratepy with value v. We define Cpax[T7] to be the minimum
number of feaf nodes in A[T'] that must be changed to bring the value of A[T] down to v — 8. For
a min strategy T we define Clyiol ] in the dual way.

For example, if Ty is the stratepy shown in Figure [, and all leaf values in the augmentation A[T) shown
in Figure 2 have value 0, then Cy, [T is 6. In general A[T] contains more options for the max player than
the “pure” strategy 7imax. Hence the min-max value of A[7'] can be larger than the min-max value of T pay.
However, we are interested in measuring our confidence in the min-max value of Ty a8 a lower bound on the
root value so we require conspiracies that defeat the value of 7'mqy (rather than the value of A[T).

Again let Ty be the tree shown in Figure 1. It is interesting to compare the tree A[Z'] shown in Figure 2 to
the tree shown in Figure 3 which we will call G. We assume that all the static values in A{7"] and  are 0. In
this case we have that C-[(G] = 6 — each of the max moves at the root must be defeated to defeat the root
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Figure 3: A uniform depth tree.

value and defeating any one of these moves requires changing at least two leaf nodes, Even though € g [T
and C . [(7] are both 6, we believe that A[T] provides a safer lower bound than the tree (! in games like chess
where nodes at the same level tend to have correlated errors in static values. Conspiracies for defeating
involve nodes that are all at the same level of the tree. On the other hand, conspiracies for defeating A{7"} must
involve nodes from three different Jevels,

5. CONSPIRACY DEPTH

The conspiracy number Cyax[Tmas] of @ max strategy Ty can be interpreted as a measure of the “depth” of
the strategy T,y In particular we have the following definition and lemma.

Definition: Let T,y be a max strategy with value v, For each max node n in Thu we define
the max options for n in Ty, denoted Ofn, Tinax|, to be those children ¢ of n that are not
comtained in the max strategy and have static value greater than v — 6. Now let m be any node
in the max strategy Tinax. We define the conspiracy depth of m in the max strategy 7. denoted
Araax [, Tmax]> t0 be the sum over all max nodes n above m of |0, Tonax] |-

Lemma: Cinax [Tmax] equals the minimum over all leaf nodes m in Tinax Of digex 172, Thgy] + 1.

AlT] AjG]

N S T
N PPN

Figure 4: Two trees with equal conspiracy depth.

Consider the two trees shown in Figure 4. These are both augmented strategies. Let A[7T] be the left-hand tree
and let A[G] be the right-hand tree where 7" and ' are the max strategies which select the leftmost branch at
each max node. Assume that all leaf nodes have static value 0. We have that €' [7] = Chaux[G] = 8. We also
have that each leaf node in the two strategics has conspiracy depth 7. The above lemma states that C [¢] is
always one greater than the depth of the shallowest leaf. Note that the leftmost child of the root position has
depth 5 in the first strategy but only depth 3 in the second strategy.

6. CORRECTING FOR CORRELATIONS

Although augmentations of strategies seem safer than other tree shapes, we believe that we can give a measure
of the safety of a max strategy T\na, that is somewhat better than the conspiracy number C'pay [Trmax)- Again let
A[T'| be the left-hand tree and let A|] be the right-hand tree in Figure 4. Again assume that all leaf nodes have
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static value 0 so that Cna[T] = Ciax[G] = 8. Note however, that conspiracies for defeating Tmax invol.vc five
conspirators that are all at the same leve] while conspiracies for defeating G involve at most three conspsr.ators
from the same level. Since conspiracies among nodes at the same level seem more likely, T seexms more likely
to be defeated than . We are really interested in the number of “independent conspirators” required to dc.efcat
a strategy. To approximate a count of the number of independent conspirators we place an upper llmft on
the number of conspirators that can come from a single Ievel of the tree. We also normalize t.he conspiracy
numbers so that the largest contribution to a conspiracy number from a single level of the tree is 1. Formally
we introduce a monotone function S from the natural numbers to real numbers. The function S shoulq have
roughly the shape shown in Figure 5 where & is the typical branching factor of the game. As shown in the
figure, the function .5 should exhibit “diminishing returns” for additional options and should agproach the
value 1 for large option sets. Using the function S to bound the contribution to depth from any single move
we define the concept of adjusted conspiracy depth as follows.

Definition: Let Ty, be a4 max strategy with value v and let m be any node in the max strat-
egy Tmax. We define the adjusted conspiracy depth of m in the max strategy Timax, delnoted
Diax [, Thuax)s 10 be the sum over all max nodes n above m of S{|O[n, T.m}i). Th.e adjusted‘
conspiracy depth of Tiyax, denoted Doy [Tinae]. the minimum over all leaf nodes m in Ty of
Dinaxm, Tinax]. For a node n in a min strategy 7o the numbers Dwin[n, T and Digin[ i
are defined in an analogous way.

1.0

c 1 2 b
Figure 5: A typical function S.

For example consider the two irees shown in Figure 4 and as before let A[T] be the tree on .the left and
A|G] be the tree on the right, Assume (hat all static values are 0. The left most leaf I}ode inT hgs an
adjusted conspiracy depth of S{1) + S(1) + S(5). All leaf nodes of T have the same adjust§d conspiracy
depth s0 Dwax[T] = S5(1) + S{1} + S(5). The leftmost leaf node in G has an adjusted conspiracy depth of
S{1) + 5(3) + 5(3). Reasonable values for §(1}, 5{3) and 5(5) might be .4, .9 and 1.0. U.nc!er thes:e Vallues
we have that Dy [T = 1.8 while Dhy[(G] = 2.2. The following lemima shows tha, f01.' different functions
S, adjusted conspiracy depth can simulate either classical ply depth or (unadjusted) conspiracy depth.

Lemma: Let Thax be a max strategy whose root node is a max node. If S{|O[m, Tmull) = 1
for all max nodes in Ty then Dy [Tiax] is |45 | where d is the classical ply depth of the
shallowest leaf node in Thax. 16 S(|O[m, Thadl) = W%‘”‘}; for all max nodes m in T, then
Dm;lx[Trnaxj — Cmax['lgmiax] l

Rather than derive a function S from statistical assumptions about correlations we simply propose a function
which seems to have the appropriate heuristic properties. We suggest the following function 5 for use in chess
where b is the typical branching factor of a chess position (approximately 30y and v > 1 is a real valued
constant which can be tuned empirically.

1 ithk>b
S(k) = 1- (%)"f otherwise
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For v = 1 we get the case where Dy [T ] = %Lémx};l and for v > b, and Olrn, Tie] nonempty for

each max node m in Ty, we have Doy [Tine] = [‘1‘2“ | where d is the classical ply depth of the shallowest

leaf pode in Tyex. So by tuning v from 1 to & we can move continuously from conspiracy depth to classical
ply depth.

7. THE ABC PROCEDURE

The ABC procedure presented here is essentially classical a-3 search modified fo use adjusted conspiracy
depth rather than classical ply depth in determining when to terminate the search. The ABC procedure is
shown in Figure 6 and auxiliary procedures are shown in Figure 7.
Procedure ABC(node, a, (3, duux, dryi, max-options, min-options)
1. If terminate?(node, <, £, dmax, dmiy, Max-cptions, min-options) then return the static value of node.
2. If node is a max node then
(a) setvto
(b) for each child ¢ of node:
L let sibling-options be the list of static values of the siblings of ¢.

il let next-max-options be the the list whose first element is the list sibling-options and whose remaining
elements are the elements of max-options.

iii. set v to max(v, ABC(e, v, B, dimax, dygn, ReXt-max-options, min-options))
iv. if v > [ return v as the value of ABC.

(c) return v.

3. If node is a min node the do the dual of the max node case.

Figure 6: The ABC procedure.

Procedure (erminate?(node, o, 8, dimax, dpy, max-options, min-options)

1. let v the static value of node

2. If v > f and max-depth(B3, max-eptions) > diax then return truc (terminate),
3. If v < « and min-depth(ex, min-options) > d,;, then return true {terminate).
4

- o < v < 8 and max-depth(v, max-options) > dmax and min-depth(v, min-options) > d,;, then return frue
{terminate).

5. Otherwise return false (continue).
Procedure max-depth(v, max-options)

return the sum over all value lists V' in max-options of ${k) where % is the number of elements of 1 greafor
than v — 4.
Procedure min-depth(v, min-options)

return the sum over all value lists V' in min-options of S(k) where k is the number of clements of V less
than v + 4.

Figure 7: Auxiliary procedures.

The ABC procedure takes seven arguments. The first argument is the position being evaluated. The next two
arguments are the « and 5 arguments of the classical o-# procedure. The next two arguments are two depth
parameters — one specifying the desired depth of the max strategy and one specifying the desired depth of the
min strategy. The next two arguments are lists of lists of values called option values. Each of these arguments
is a list of lists of static valucs of siblings of the given node and its ancestors. The initial procedure call is

ABC(root, —oa, +oco, s i, 0k, nil)

where nil represents the empty list. This top level call returns a value v with the guarantee that there exists a
max strategy Tinae and a min strategy T both of which have value v and such that D aax[Timax] = doax and
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Do Tinin) = dmin. The procedure is identical to the classical a-f3 search procedure except for the termination
test — the test to determine whether one should simply return the static value of the given position. Auxiliary
procedures are shown in Figure 7.

There are two fundamental properties to be established for the ABC procedure. First, if it returns the value v
then there exist max and min strategies with the desired properties. Second, under optimal move ordering the
search tree generated by the procedure is minimal in the sense that no proper subtree adequatcly establishes a
value for the root. The proofs of the following theorems are given in an appendix.

Definition: A tree 7 is said to contain the max strategy Tiax if the two trees have the same root
and every leaf node of Ty is a leaf node of T'. A similar definition applies for min strategies.

Definition: A tree T establishes a value v up to depth {dyux, dmin) if 7' contains a max strategy
Thax and min strategy Tiin both of which have value v and such that D max|Tinax] > dimax and
Dmin [Tmin] 2 dmim

Theorem: If the top level call
ABC(root, —oo, +00, thaxs i, DH, 0il})

returns value v then the tree of nodes examined by the search establishes v up to depth {d max, dumin)-

Definition: For each node n examined by a search we let v, be the value computed for that node.
A search is optimally ordered if at each internal node v we have that v, equals v, where ¢ is the
first child of n examined by the procedure.

Theorem: Let T be the tree of nodes examined by a search using depth parameters {d max, @min)-
If the search is optimally ordered then no proper subtree of 1" establishes any value up to depth

(dmaxa dmin)n

The second theorem states that under oplimal move ordering the procedure examines a minimal search tree.
Since move ordering can be made nearly optimal in chess, the above theorem indicates that ABC should be
nearly optimal for generating chess strategies of sufficient conspiracy depth. Move ordering is even more
important for ABC than it is for classical a-3. In ABC search, move ordering determines both the amount of
c-f pruning performed and the depth to which certain lines are searched. Optimal move ordering not only
improves proning but also allows the search to terminate at shallower levels. To see the effect on search depth
note that the termination test can measure depth relative to « or f# when the static value falls outside of the
search window. In such cases measuring the depth relative to o or 7 rather than the static value increases
the likelihood of termination. Furthermore, the tighter the scarch window the more likely the termination and
hence the shallower the search (as measured in classical ply depth). Optimal move ordering makes the search
window as tight as possible on positions off the principal variation.

The interaction of the search window with the search depth also indicates that narrow window searches can be
quite effective. Consider a top level call of the form

ABC(root, v, 3, duaxs Genin. 0il, nil)

which searches a tree T and returns value v. If v > o then T contains a max strategy T'mux with value v
and such Dyax[Tioax] = doux. If v < B then T' contains a min strategy Ty with value v and such that
DialTain] 2 duin. These two facts together provide a generalization of the first theorem above.

8. SOME EXAMPLES

In this section we consider three hypothetical examples designed to illuminate aspects of the ABC procedure.
The first involves discovering a deep combination. The second involves discovering a flaw in what initially
appears to be a good attack. The third involves discovering a sacrifice that leads to a winning combination.
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ply depth min depth max depth
alpha = —inf beta = +inf
0 0.0 0o 0.0

1 0.0 0 L\\.O‘. 1.0
1.0 0 Ml 1.0

2

3 1.0 0 m 2.0

4 2.0 0605 00 2.0

Figure 8: The nominal case.
ply depth min depth max depth
alpha = —=inf beta = +inf

0 0.0 0o 0.0
1 0.0 0 \o\.\-. 0.5
2 0.0 1 dm 0.5
3 0.0 ; 0 lm 15
4 0.5 2605 04 15
5 0.5 0 m 2.0
B 0.5 16 26 4] 2.0
7 0.5 0 m 3.0
8 2.5 23 10 1 0.0
9 25 1 m 0.0
10 35 1 1 1 0.0
11 35 1 \\h 1.0
12 45 1 16 1 1.0
13 45 1 20

Figure 9: Discovering a combination.

These examples help to illustrate the relationship between the game-independent notion of conspiracy depth
and more familiar classical chess ideas.

In applying the ABC procedure to chess we believe that some form of classical quiescence search should be
used as the stalic evaluator, Quiescence search in chess is an a-f search of a certain game tree that might be
called the stand-pat or capture game. At each node the player to move has the option of stopping and taking
the static value as the true value, the stand-pat option, or capturing a piece and letting the opponent move. If
no captures are available the player must stand pat. In practice -8 search can be used to compute the exact
value of the stand-pat or capture game tree rooted at any node. We will call this the quiescence value of the
node.

In chess the quiescence value of a max position is usnally close to the max of the quiescence values of its chil-
dren with the dual statement helding at min nodes. This cannot always be true because otherwise quicscence
values would equal true values. The static values shown in the examples of this section are like quiescence
values in that the static value of a max node is a good predictor of the max of the static values of its children.
The reader should feel free to assume that these values are chess quiescence values.

All of the examples shown in this section share a common framework. As before, open circles represent max
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nodes and closed circles represent min nodes. The root position in all figures is a max node. All the examples

show the static value of each node just to the left of that node. Note, for example, that static value of the min

node at the sixth ply in Figure 9 is not the minimum of the static values of its children. All the examples show a

single variation plus sibling nodes to the nodes on the variation. Together with the  and 3 values, also shown

in the figure, this is all the information used by the ABC procedure to determine depth. The ABC procedure

used space that is linear in the classical ply depth of the search. The nodes in the diagram are classified in the
obvious way into backbone nodes and sibling nodes. Whether or not a sibling is an “option” depends on the

value of that sibling and the current estimate of the value of the root node. Let n be a variation node whose

depth is being measured. In the case where o < 55, </ the root estimate is &y, the static value of n. If
8, < o then the root estimate is @ and if # < s, then the root estimate is 5. If 5,, < « then the max depth is
not measured and if 5 < s, then the min depth is not measured. Each figure shows a value for o and a value
for 2 to be used at all nodes in the variation. In practice the & and 2 values can change during the search. For

the sake of simplicity we assume they are given at the top level as an a-priori window and that they do not
change during the exploration of the variation shown. A sibling that is a child of a max node is an option if
it is no more than § less than the root estimate. A sibling that is a child of min node is an option if it is no
more than § greater than the rool estimate. We assume that the singular margin 4 is é so if the static values
are integers then any sibling with static value less than the root estimate is cannot be an option and any sibling
with static value greater than the root estimate cannot be a min option. For backbone node the figures show

both the min depth and max depth of that node as measured by the ABC procedure. The letter “N” is used to

indicate that the depth is not measured. Recall that max depth is the sum over all max nodes above the one
being measured of S(k) where k is the number of options at the parent. The depth numbers are computed

assuming that S(k) = £ where k is the number of options so that each option increases the depth by 3. The
search terminates when both the max and min depth reaches 2.0. With a branching factor of 3 max depth can

increase by at most 1.0 at each max ply and min depth can increase by at most 1.0 at each min ply. So requiring
a depth of 2.0 for both max and min corresponds to a classical depth of 4 ply. Figure 8 shows the “nominal”

case of a quiescent position. Both the min and max depths reach 2.0 at the fourth ply.

Now consider the example shown in figure 9. Note that early in the search the static values of nodes on the
variation are 0. Assuming that the root value is 0, the max player has mamy options. So the max depth increases
rapidly, reaching 2.0 at the fifth ply and 3.0 at the seventh ply. However, the min player is fighting for his life
— there are very few options to the variation shown, The min depth does not climb above 0.5 until the eighth
ply. At the eighth ply the static value of the nodes on the variation shift from 0 to 1. This means that the
estimate of the root value shifts from O to 1. The min player, who was fighting for his life, has lost this critical
varjation. To establish that the root value is 1 we must establish that the max player can “hang on” (o this
advantage. Suddenly the max player has very few options. In order to hang on to the value | the max player
is essentially forced down this variation. So at the eighth ply the max depth immediately goes to 0.0. The min
player on the other hand suddenly has lots of options. If the root value is 1 then the min player is free to select
moves not on this variation which also have valne 1. At the eighth ply the min depth jumps to 2.5. From the
root to the seventh ply the search is continued because of insufficient min depth -— the min player does not
have an adequate strategy for defending a root value of 0. At the eighth ply we have sufficient min depth —
the min player has a more than adequate strategy for defending a value of 1. However, at the eighth ply the
max depth, which was adequate up to this point, is suddenly insufficient — although the max player has an
adequate strategy for defending a value of 0 the max player does not have an adequate strategy for defending
a value of 1. An adequate max strategy for defending the value 1 is not achieved until the thirteenth ply.

Figure 9 shows a 13-ply search that is required to establish a conspiracy depth of 2.0. This might seem dis-
turbing — ABC seems in danger of generating huge search trees to achieve even small conspiracy depths, We
believe that this will not be a problem in practice. Under optimal move ordering the first variation considered
will be the principal variation and the static value encountered at the end of that variation will be the true root
value. Of course move ordering is not perfect in practice, but hash tables and iterative deepening can be used to
make move ordering nearly optimal. The search will tend to go deepest down the principal variation because
static values on the principal variation are near the true root value and the principal variation involves making
the best choice at each move so options tend to be limited. At moves off the principal variation, static values
tend to be either significantly less than o or sigrificantly larger than £. If the values are greater than 5 then the
search terminates as soon as the max depth reaches a sufficient value (ignoring max depth). But if the values
are greater than /3 then § is used as the estimate of the root value and the max player has many options. Hence
in a region of the tree where the static values are greater than £ max depth increases rapidly and the search
terminates. A similar statement holds for regions of the tree with static value less than a.
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ply depth min depth max depth
alpha=0 beta = +inf
0 0.0 0.0
1 0.0 N
2 0.0 N
3 0.0 N
4 0.5 N
5 0.5 N
6 05 N
7 0.5 N
8 2.5 0.0
9 25 0.0
10 3.5 0.0
11 3.5 1.0
12 45 1.0
13 45 1 2.0

Figure 10: A successful sacrifice.

Figure 10 shows a search that is similar to that shown in Figure 9 except that the move considered from the
root node is a “sacrifice”. It has a static value less than the static value of other options at the max node. This
example is intended to show how the ABC procedure can search sacrificial moves deeply under appropriate
circumstances. In Figure 10 the max player selects a move with value -1 when moves with vatue 0 are available.
Furthermore, seeing the true value of this sacrificial move requires an 8-ply search. The search is being done
to a depth of 2.0 for both min and max depth. This is nominal depth of only four ply so it may seem surprising
that a sacrifice move is carried deep enough (eight ply) to see its value. For the first seven ply the static values
of the backbone positions are less than o which is 0. In this case the max depth is ignored and only min depth
is computed. As the depth calculation at ply 4 shows, min depth is calculated relative to o — we are measuring
the safety of the min strategy for establishing the value «v. As the figure shows, however, the backbone nodes
represent a critical line for the min player. Even though the static values on the backbone line are less than
«, the min player has very few options if the max player takes this line of play. Because of the lack of min
options, the min depth grows very slowly. The fact that options for the max player have low static values
does not change the fact that if the max player decides to take this line of play the moves for the min player
are largely forced. At the eighth ply the static value becomes 1 rather than -1, This means that this critical
line of play for the min player has failed and it now seems quite possible that this is winning line for the max
player. The situation is similar to that shown in Figure 9. The max depth, which was not even measured in the
first seven ply, suddenly becomes important at the eighth ply. At the eighth ply the estimate of the root value
becomes 1 and we must continue the search until the max player has enough options for defending a value of
1. This happens at the thirteenth ply. Notice that only very special cases of sacrifices are searched deeply. The
sacrifice must generate “pressure” on the opponent so that the safety of the opponent under the sacrifice is in
question.

Figure 11 shows a case where we are given a narrow initial a3 window with @ = 0 and 8 = 1. For integer
static values (and with § = %) The procedure must either find a min strategy for achieving 0 or a max strategy
for achieving 1. At nodes where the static value is 0 or less, the max depth is not measured. At nodes where
the static value is 1 or greater the min depth is not measured. In measuring the min depth at a node with static
value O or less any sibling node which is a child of a min node and has static value 0 or greater is an option
for the min player, regardless of the static value of the node being examined. Note that the min depth climbs
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ply depth min depth max depth
alpha=0 beta=1
) 0.0 0o N
1 N 1 l\o\.% 0.0
2 N 1 5 14 0.0
3 N 1 i%‘. 0.0
4 N 26T 14 0.0
5 N e e T 0.5
6 N 1 25 1 0.5
7 N 1 lm 05
8 0.0 o2 N
9 0.0 N
10 1.0 N
11 1.0 N
12 20 N
Figure 11: A failed attack within a narrow window.
rapidly at the end of the search. If o = —co then the min moves at the end of the search would be considered

to be forced and the depth would not climb. The example shown in Figure 11 also shows a case where an
apparently suceessful move for the max player fails after a deep search. At ply one through seven the static
value of the backbone node is 1. Tt appears that the max player has a winning strategy. However, there are very
few max options for achieving the value 1 so the max depth grows slowly. This is a critical line if the value 1
is to be achieved. The line of attack fails at the eighth ply. From the eighth to the twelifth ply the static value
of the backbone nodes are less than «. In this case the max depth is not measured and the min depth increases
rapidly because there are several min options for achieving the value ¢ at the tenth and twelfth ply.

The last three examples show very deep searches generated by relatively modest depth inputs. It should be
noted that these are exceptional cases near the principal variation of the play. As noted above, in quiel positions,
or in regions of the tree with static values less than « or greater than 4, depth should increase rapidly and the
search should be shallow. Under intelligent move ordering only the lines that seem critical are explored deeply.
None the less, we expect that in tactically complex positions very large searches will be generated with modest
depth requirements.

9. CHESS HEURISTICS FOR VARIABLE DEPTH

In this section we consider classical heuristics for non-uniform tree growth. We consider four heuristics —
guiescence search, capture extensions, check extensions, and singular extensions. These are usually presented
as chess-specific heuristics. In this section we argue that they are all special cases of the game-independent
“conspiracy depth principal” — search should be continued as long as conspiracy depth is low,

Chess heuristics for searching to variable depth can be roughly divided into two calegories — selectivity
heuristics and extension heuristics. Selectivity heuristics control the termination of the search — cither causing
a line of play to terminate unusually early or causing a line of ply to be taken unusually deep. Under this
classification, quiescence search is a selectivity heuristic. Extension heuristics are used to discount certain
moves as a ply of search. For example, almost all competitive chess programs do not count a response to
check when computing the depth of a given node in the search. This causes the tree under a response 1o
check to be searched one ply deeper than it would without this check extension heuristic, We believe that all
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successful selectivity and extension chess heuristics can be viewed as special cases of the conspiracy depth
principal.

9.1 Quiescence Search and Capture Extensions

Shannon (1950) and Turing ef al. (1953), in the earliest papers on computer chess, suggested that “forced”
variations should be searched beyond the horizon, i.e., to a depth greater than the nominal ply depth of the
search. The most immediately successful implementation of this idea has become known as quiescence search.
As defined in section 8, the quiescence value of a position is the value computed from searching the stand-pat
or capture tree from that position — at each position the player to move can either elect not to move (stand
pat) or can elect a capture move. The stand-pat or capture tree can be searched quickly in practice, especially
when static values fall outside the -f window. Almost all competitive programs use some form of quiescence
values at the leaves of the search. We show here that if the ABC procedure is used with static values (rather
than guiescence values as recommended in practice) ABC search automatically simulates quiescence search.

The main observation is that capture moves tend not to increase conspiracy depth. This observation underlies
both quiescence search and attempts to capture extensions — extensions granted at capture moves. Althou gh
quiescence search is almost universally used, generating an extension at every capture move tends to generate
too large a search tree. Heuristics have been proposed for restricting capture extensions in some way to avoid
the avalanche of extra positions (Kaindl, 1983). Here we show that the ABC procedure will automaticaily
search deeper under a fairly restricted class of capture moves.

Consider the situation shown in figure 12. This shows a very long capture sequence. In this sequence the nodes
are labeled with classical static values rather than quiescence values. Every move on the backbone down to
the ninth ply is a capture move. Since the ABC procedure measures depth on the principal variation relative to
the static value of the node whose depth is being measured, and since the static value of the backbone nodes
are oscillating between 0 and 3, the min depth and max depth also oscillate as the procedure descends the
exchange sequence. However at no point are both depths at least 2.0 until the thirteenth ply. From the ninth
ply forward the exchange sequence stops and the depths stabilize. At this point the exchange is resolved as
a winning combination for the max player. Although the min depth is quite adequatc — the min player can
easily defend a value of 3 — the max depth at the ninth ply is zero. The search must be continued until an
adequate number of options for the max player to defend the value 3 has been established. In the example
shown the exchange sequence occurs at the root of the trec. However, a similar failure to increase depth occurs
if the exchange sequence is near the leaves of the tree.

It is interesting to note that if the static value is greater than or equal to 4 then min depth is not measured. Note
that in Figure 12 the max depth tends to be high at max nodes (where the value is low). I, in an exchange
sequence, there is a max node with value above /3 then the max depth will be high and the min depth will
be irrelevant so the search is likely to terminate. This is exactly what happens in the interaction between the
stand-pat option and the o-f window in computing quiescence values. If the static value at a max node is
greater than or equal to 4 then the stand-pat option causes a cut off and no search need be done. Near the
leaves of the tree quiescence search with the stand-pat option and «-# pruning efficiently simulates ABC.

If the ABC procedure uses quiescence values instead of static values then the values of the backbone nodes
would very likely all be 3. However, the values of the sibling nodes (off the backbone) would very likely
remain unchanged. In this case the min depth would increase steadily and the max depth would remain 0.0
until the ninth ply after which it would increase steadily to 2.0 at the thirteenth ply. This corresponds to a
special case of classical capture extensions — the search is extended below capture moves. However, the
circurnstances under which ABC extends search under capture moves are fairly restrictive. The depth of the
player making the capture move must be the controlling factor in determining the depth of the search. For
example, if the capture move is a move by the max player then it must be the max depth that is determining
the depth of search. Furthermore, the capture usually only causes an extension if it is a move from a position
with static value less than v, — § where v, is the estimate of the root value and § is the singular margin.
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0 0.0 OO\\O\ 0.0
1 0.0 3 U s 0.0
2 0.0 3 M/O J> 1.0
3 1.0 3 lm 0.0
4 0.0 3635 04 2.0
5 2.0 3 0 Y 0.0
6 0.0 367 35 0 3.0
7 3.0 3 lm 0.0
8 0.0 367 35 0 <L 4.0
9 4.0 3 m 0.0
10 5.0 3 357 3 0.0
11 5.0 3 m 1.0
12 6.0 3 m cL 1.0
13 6.0 3 20
Figure 12: An exchange sequence starting at the root.
ply depth min depth max depth
alpha = ~inf beta = inf
0 0.0 0o 0.0

1 0.0 0 L\\.O\. 1.0
2 0.0 o% c|:> 1.0

+inf  +inf

Figure 13: An agpressive check,

9.2 Check Extensions

Conspiracy depth tends not to increase at moves which are responses to check. Figures '13 and 14 show tvs'fo‘
different ways that check moves can affect conspiracy depth. Figure 13 shows thf: effectlveluse ofa ::heck as:
an aggressive move. The check is performed by the max player at the first p}y. Since the min pla}‘zer s1 ]movea.
are highly restricted at the second ply, min depth does not increase at the nin _players move. This will cause
the search below the check move to go deeper in regions where search termination 1s cogtroﬂed bj{ min depth.
In general, at a move out of check the depth of the player moving out of check does n‘ot increase significantly.
Note that the use of two depths allows a more refined application of the check extension heuristic.

Figure 14 shows a defensive check move. The check is performed' by the max player at the first ply under
tactical pressure — all of the options to the checking move lose a piece. In this case both the checking move
and the response to check fail to increase conspiracy depth. So the search bf.:neath the response to check mov.e
will be extended in both the regions where termination s controlled by min depth and in the regions where
termination is controlled by max depth.
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ply depth min depth max depth
alpha = =inf beta = inf
0 0.0 0o 0.0
1 0.0 0 L\s. e 0.0
2 0.0 5 0 0.0
+inf  +inf

Figure 14: A defensive check.

9.3 Singular Extensions

Conspiracy depth does not increase at forced moves. This is the fundamental principal of conspiracy depth and
is also the fundamental principal behind singular extensions. The great success of the former world-champion
conputer-chess program, DEEP THOUGHT, is considered to be due in part to the use of singular extensions
(Kopec, 1990; Anantharaman ef al., 1990). A max node is called Jail high singular for a depth d search if it
appears to be forced, i.e., for all siblings n/ of n we have

Vgop(?'] < vp — &

where vg_,[n] is the min-max value of n searched to depth d — r, the value v, is an estimate of the root
vatue of the search and 4 is a fixed number called the fuil high singular margin. The dual definition would
hold at min nodes. The reason for calling this “fail high”” singular rather than simply singular is explained
befow. This definition is closely related to the definition of the option set Ofn, T| given in section 5, If we
replace vq. [c'] by the static value (or quiescence value) s,,, then we get that a move is singular if and only
if the option set Ofn, 7' is empty. Although conspiracy theory was ori ginally developed independently of the
singular extension heuristic, the term “singular margin” for the parameter 4 is taken from the above definition
by Anantharaman ef al. (1990).

One difference between singular extensions and conspiracy depth is that conspiracy depth, as formulated in
this paper, is based on a static rather than dynamic computation of the option set — a static evaluator is used
rather than a dynamic search to compute the vatues of the options. This allows depth to be computed more
efficienfly and simplifies the structure of the ABC procedure, However, at shallow nodes, where one can afford
spending considerable time evalvating the option set, the dynamic approach is more accurate. It scems that
some variant of the ABC procedure could be defined to use dynamic evaluation of the option set.

Another difference between conspiracy depth and singular extensions is the fact that sin gular extensions are
based on a Boolean decision at a given move — it is either singular or not singular. Conspiracy depth is
fundamentally based on “fractional extensions” — measuring depth in fractions of a ply. Anantharaman ef a/.
(1990) mention the use fractional extensions as a possible enhancement of singular extensions.

Of course the most significant difference between singular extensions and conspiracy depth is that conspiracy
depth involves two depths rather than one. Under a two-depth approach to singular extensions a min depth

extension would be granted at singular min moves and a max depth extension would be granted at singular
max mnoves.

The one depth formulation of singular extensions used by Anantharaman et al. (1990) canses some difficulties.
To simplify the discussion we assume that the search is optimally ordered. Near optimal ordering can be
achieved in practice. An optimally ordered search tree can be divided into three regions — the principal
variations where computed values equal the root value, the non-PV max strategy where A equals the root value
and all computed values are at least £, and the non-PV min strategy where o equals the root value and all
computed values are no larger than a.. On the principal variation the search termination test involves both the
min depth and the max depth. In the non-PV max strategy successful termination tests involve only the max
depth. In the non-PV min strategy successful termination tests involve only the min depth.

Consider the non-PV max strategy. Since termination in the max strategy is determined by max depth, and
since max depth only increases at moves for the max player, it seems clear that for non-PV max strategy nodes
singular extensions should only be granted for forced max moves. Similarly, in non-PV min strategy nodes
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singular extensions should only be granted for forced min moves. This is in fact what is done by Anantharaman
et al. (1990). A max node n where the search value v, > A is called a fail-high node. In an optimally orgerfsd
search, the fail-high max nodes are exactly those max nodes in the non-PV max strategy: The_ term fa1-1-
high” comes from the negamax formulation of a-f search. Under the negamax formulau(_)n Qf a-ff a min
node n where v, < ¢ is also called a fail-high node. In an optimally ordered search the fall-hlgljk nodes are
exactly the non-PV nodes which are either max nodes in the max strategy or min noc‘iffs il’.l the min strat.eg-y.
For non-PV nodes Anantharaman er al. (1990) enly grant singular extensions at the fail-high nodes. Th1§ is
exactly as prescribed hy the conspiracy depth analysis. However, Anantharaman et al. (1990) do not mention
any theoretical justification for the restriction of singular extensions to fail-high nodes and even suggest that
some formulation of singular extensions for the fail-low nodes can be found. For nodes on the PV it seems
very likely that Anantharaman et al.’s (1990) use of singular extensions is hampered py the. lack of two-depth
measurements. The fact that two depths are needed on the PV seems to be reflected in their algorithm by the

use of a different singular margin for the PV nodes.

10. EFFICIENCY CONSIDERATIONS AND STATIC OPTION ESTIMATORS

In the ABC procedure calculations of conspiracy depth control the shape of the searqh tree. An exact calcu-
lation of conspiracy depth requires the calculation of static values of option moves. In most cases these are
moves not examined by classical o~ (the option nodes are not part of the min or max strategy). Qlear]y there
is a tradeoff between the cost of refining the shape of the search and the improved performance gamed by.such
refinement. Since search speed is very important in computer chess, it seems important to consider techniques
for reducing the overhead of the depth calculations.

10.1 TIncremental Depth Calcolations

Under nearly optimal move ordering, or under narrow window scarches, the vast majority Qf depth compu-
tations will be performed relative to the values « and 8. The procedure can be easily modlﬁed to take two
additional parameters d,, and dg. Tn any call to ABC these parameters should have the following values.

d, = min-depth(a, min-options)

dp = max-depth(f, max-options)
Clearly the numbers d, and dg could be computed from the other parameters of the procedurq. However,
passing them explicitly greatly improves the efficiency of cases 2 and 3 of the termination test. Under .go_od
move ordering, or with narrow window searches, these are the cases that will be used at th(? vast majlonty
of nodes. Giiven the numbers d, and dg the termination test will almost always be done using two simple
comparisons. Furthermore, in the case where the o~ window for the call to a child node is the same as the
- window for the parent node (again the vast majority of nodes) the parameters d , and dg can be updated
incrementally.

10.2 Quiescence Values

The ABC procedure should use quiescence values, as defined at the beginning of section 8, rather than clasgi—
cal static values. Quiescence search gives an efficient approximation of ABC search to shallow depths. Us.mg
quiescence values rather than static values should greatly improve the pen“ormfcmcelof the procedure by el{m-
inating depth calculations during quiescence search and by improving the estimation of the value‘ of option
nodes. Unfortunately, the use of quiescence values for option nodes also increases the overhead ot.the dc?th
calculations. A static option estimator, as discussed below, can be used to reduce the cost of measuring option
values at nodes near the leaves of the tree.

10.3 Using a Static Option Estimator

The most significant source of overhead in the depth calculations is the computation of the values of option
nodes. We believe that this overhead can be greatly reduced with the use of a static option estimator. A static
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option estimator is function (5 such that for any node n, O,[n] is a list of values representing an estimate
of the values of the children of the node n. We would suggest computing O ,[n] in a way fthat combines
check extensions with the null-move heuristic. The null-move value of a max node 7 is defined here to be
the quiescence value of the node n assuming the min player is allowed to move first from that position. The
null-move value of a min acde is defined in the dual way.

o If the player to move is in check then O [n] is two copies of the quiescence value of n.

» If the player to move is not in check then O ;[n] is three copies of the quiescent value of n plus thirty
copies of the mull move value of n.

For example, consider a max position in which one of the max pieces is in danger of being captured, In this
case the null-move value of the position is considerably less than the quiescence value of the position. Most
max moves will lose the piece and yield roughly the same value as the null-move value of the max position.
The children of the max node should have roughly the value distribution indicated above. Tf the null-move

value is above f at a max node then max depth will increase significantly even though a max piece is danger
of being captured.

Intuitively, the nodes of search tree can be classified into three types: leaf nodes, near feaf nodes, and shallow
nodes. The near leaf nodes are those nodes at which the min and max depth are nearly sufficient to terminate
the search. The shallow nodes are all the nodes dther than leaves and near leaves, There are vastly more leaf
and near Ieaf nodes than shallow nodes. The cost of evaluating option nodes at shallow nodes is negligible
compared fo the time spent evaluating leaf and near leaf nodes. Therefore the ABC procedure can use quics-
cence values in counting options at shallow nodes without incurring undue overhead. At near leaf nodes the
cost of evaluating option nodes can become significant. At near leaf nodes it seems best to use the static option
estimator. When computing the value of a near leaf node n one can compute O, [n] once and use this value list
as the option list for all of the children of n.

11. SUMMARY

The idea that all lines of play should be scarched to a uniform depth is ludicrous to most chess players.
The idea that forced moves should be searched more deeply that unforced moves goes back to the original
papers on computer chess by Shannon (1950) and Turing er al. (1953). This basic idea underlies most of
the heuristics for search to variable depth that have been used in competitive programs, quiescence scarch,
check extensions, and singular extensions being the most notable examples. The main innovation of the ABC
procedure is the mtroduction of two separate measures of depth and the realization that the forcedness of a
given move influences only one of these two depths. Conspiracy theory, as the theoretical underpinning of the
ABC procedure, also gives considerable guidance in the construction of heuristic depth measures.

The task of -7 search is to find a strategy for the max player and a strategy for the min player that together
establish the value of a given position. The max strategy provides a lower bound and the min strategy provides
an uppey bound. The max depth of a max strategy provides a measure the safety of that strategy — the deeper
the strategy the less likely it is to fail. Similarly, the min depth of a min strategy is a measure of the safety of
that strategy. The basic observation behind ABC search is that if a max move in a max strategy is forced then
the strategy is “frail” — it is more likely to fail than if the max moves are not forced. A forced min move in
a max strategy does not influence the safety of the strategy — if anything it makes the strategy safer. Hence
max strategies in which the max moves are forced should be searched deeply independent of the forcedness of
nin moves.

We are quite conlident in the two-depth approach to a-f search. We are far less confident in the details of
the ABC procedure specified in this paper. For example, it may be better to use a more dynamic approach
to measuring forcedness as is done with singular extensions. There are almost certainly better static option
estimators than the one described here. We look forward to the evolutionary development of variants of the
ABC procedure.




34 ICGA Journal March 2002

12. REFERENCES

Anantharaman, T. 8., Cambell, M. S., and Hsu, E. h. {1990). Singular Extensions: Adding Selectivity to Bruate
Force Search. Artificial Intelligence, Vol. 43, No, 1, pp. 99-110. 1SSN 004-3702. Also published (1988) in
ICCA Journal, Vol. 11, No. 4, pp. 135-143.

Baum, E. B. and Smith, W. D. (1993). Best Play for Imperfect Players and Game Tree Search. submitted for
publication, available for anonymous fip from external.nj.nec.com as pub/eric/papers/game.ps.Z.

Kaindl, H. (1983). Searching To Variable Depth in Computer Chess. JCAI-83, pp. 760-762.

Kopec, D. (1990). Advances in Man-Machine Play. Computers, Chess, and Cognition (eds. T. A. Marsland
and J. Schaeffer), pp. 10-32. Springer-Verlag, New York, N.Y. ISBN 0-387-97415-6.

McAllester, D. A. (1988). Conspiracy Numbers for Min-Max Search, Artificial Intelligence, Vol. 35, No. 3,
pp- 287-310. ISSN 0004-3702.

Schaeffer, I. (1990). Conspiracy Numbers. Artificial Intelligence, Vol. 43, No. 1, pp. 67-84. [SSN 0004-3702.

Shannon, C. E. (1950). Programming a Computer for Playing Chess. Philosophical Magazine, Vol. 41, No. 7,
pp. 256-275.

Taring, A. M., Strachey, C., Bates, M. A., and Bowden, B. V. (1953). Digital Computers Applied to Games.
Faster than Thought (ed. B. V. Bowden), pp. 286-310. Pitman, London, England.

13. APPENDIX: PROOFS OF THE ABC SEARCH THEOREMS

First we restate the two theorems regarding the ABC procedure along with the definitions involved in the
statements of the theorems.

Definition: A tree T is said to contain the max strategy Ty if the two trees have the same root
and every leaf node of Ty, is a leaf node of T'. A similar definition applies for min strategies.

Definition: A tree T establishes a value v up to depth {dpax, dmin) if T contains 2 max strategy
Tnax and min strategy Tinin both of which have value # and such that I x[Tinax] = dinax and
Dmin[ﬂnin] 2 dmin-

Theorem: If the top level call
ABC(root, —oc, +00, max, Gnin, Dil, nil}

returns value v then the tree of nodes examined by the search establishes v up to depth {d max, dmin)-

Definition: A search is optimally ordered if at each internal node n we have that v,, equals v,
where ¢ is the first child of n examined by the procedure.

Theorem: Let T be the tree of nodes examined by a search using depth parameters (4 max, @min).
It the search is optimally ordered then no proper subtree of T establishes a value up to depth
(dmﬂm dmjn)-

To prove these theorems we need some additional terminology. Let n be any node examined during the search.

Let cr;, and /3, be the o and 3 parameters passed to the ABC procedure in the evaluation of n. Let s, be the
static value of n and let v,, be the value returned by the call to ABC on n. Note that values less than o, are
replaced by o, and values greater than /3, are replaced by 5. We therefore have i, < v, < f,,. Let v, be
the value returned by the search.
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To prove the first theorem consider an arbitrary application of ABC. Let T be the subset of the tree defined
by starting at the root and taking the child with largest min-max value at each max node and all children at
each min node. If a max node has two children that are tied for having the largest min-max value then 7 g
includes that child which was examined first by the procedure. The tree Tz is defined in the dual way. We
will show that T and Ty, are the desired strategies. First, it should be clear that both T e and Ty, are max
and min strategies respectively and that both have value v,.. It remains only to show that D,y [Tmex] = dmax
and Dyin{Tinin) 2 . We consider only Ty, the proof for Tiyg is similar, We make the following claims for
any node i in Ty
ttp < Up

Up < Up

up < fy

The first condition follows from the fact that if v,, < v, then n will be pruned from the max strategy. The
second condition follows from the fact that in a max strategy the max player only has one move at any given
position so the value of a max strategy is computed to be the minimum of the value of all the nodes in the
max strategy. The third condition is a little trickier. If 4, = +oo then the result is trivial. If 8, < 400
then there exists some min node m above n such that v, < F,. Butin this case v, must be a member
of the max strategy Tuax and we have v, < p,, so v, < Br. We must show that for every leaf node n in
Toaxs Doz Tinax] = dimax. Since n is a leaf node it must have passed the termination test at step 1 of the
ABC procedure and v,, = min(8,, sn) where s, is defined above as static value of n. Since v, > ay it
must have passed either step 2 or step 4 of the termination test. If it passed step 2 then the depth of the node
in T, was measured relative to the value 8,. Since v, < 3, the depth measured relative to v,, which is
the true depth, must be at least as large as the depth measured relative to 4,. If node n passed step 4 of the
termination test then the depth of n in T, was measured relative to v,,. Since v, < v, we again get that
D[, Tax] 2 diux. Since vy, < w,, we again have that Dy [n, T] > dmax. Note that the depth always
measured relative to the minimum of 3, and v, and hence the procedure always uses the tightest possible
upper bound on v,.

We now prove the second theorem. As in classical - search, it is easy to show that under optimal ordering
the tree T" of all nodes examined is the union of a max strategy Ty and a min strategy 7. By the proof of
the first theorem, both these strategies have value v, and D[ Tinas] = diax and Digin [Thin] = duin. Now let
T be a proper subtree of T" and assume that 7" establishes a value for the ool. In order for T to establish
a value it must contain both a max strategy and a min strategy. So T’ can be written as T}, U T, where
Tnax and Ty are max and min strategies that are subtrees of Tyay and T, respectively. We now consider two
cases. Pirst, we suppose that the min-max value of T is different from the min-max value of T. In this case
we consider the principal variation, i.e., the intersection of Ty and Tiin. The principal leaf of T is defined
to be the leaf node that is a member of principal variation. The principal leaf of 7' is defined to be the element
of the principal variation that is a leaf node in T’ Since 7" establishes a value, the value of the T/, and 7"
must be the same. This implies that the min-max values of T and T must both be equal to the static value
of their respective principal leaf nodes. So in the case where the values of the two trees are different we nust
have that the principal leaf of 7" is a proper ancestor of the principal leaf of 7. Let n be the principal leaf
of T'. In an optimally ordered search the termination test measures the depth of every node on the principal
variation relative to the assumption that the root value is the static value of that node. Since the termination
test failed on node n we have that either Dngx[n, 7] < dmax Of Dmin[n, Tihy] < dain. Now we consider
the case where the min-max value of 7" is the same as the min-max value of 7. Tn this case let n be a leaf
node in 7" that is an internal node of T'. The existence of such a node is guaranteed by the statement that T/
is a proper subtree of T' and that both 7" and T/ are unions of a max and min strategy. If rz is a member of the
principal variation then by the preceding argument either D puxfn, T ] < dox OF Dinfre, Tl < disin- So
we can assume that ro is not a member of the principal variation, We consider only the case where n is a leaf
node of T, the case where n is a leaf of 777, is similar. Since the value of T equals the value of 7" equals
vy, the value of T must equal v,.. Since the value of a max strategy is the minimum of the values of the
leaves, we must have v, < s,. Furthermore, in a perfectly ordered search we have Ba = v, for every node
7 in Thax not in the principal variation. Putting these two facts together we get that 3, = v, < 5,. Also, for
a perfectly ordered tree we have that «,, = —oo for every node n in Tyyac. This implies that the termination
test on node 7 was based on step 2 of the termination test procedure and therefore measured only the the max
strategy depth and measured that depth relative to 3,, which equals v,. Since the termination test failed, we

have Dmax{n; Tmax} < s /




