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Abstract Parser Evaluation using Textual Entailments (PETE) is a shared
task in the SemEval-2010 Evaluation Exercises on Semantic Evaluation. The
task involves recognizing textual entailments based on syntactic information
alone. PETE introduces a new parser evaluation scheme that is formalism
independent, less prone to annotation error, and focused on semantically rele-
vant distinctions. This paper describes the PETE task, gives an error analysis
of the top-performing Cambridge system, and introduces a standard entail-
ment module that can be used with any parser that outputs Stanford typed
dependencies.
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1 Introduction

Parser Evaluation using Textual Entailments (PETE) is a shared task in the
SemEval-2010 Evaluation Exercises on Semantic Evaluation that involves rec-
ognizing textual entailments to evaluate parser performance. Given two text

Deniz Yuret and Aydin Han
Kog University

Rumelifeneri Yolu

34450 Sariyer, Istanbul, Turkey
Tel.: +90-212-338-1724

Fax: +90-212-338-1548

E-mail: dyuret,ahan@ku.edu.tr

Laura Rimell

Computer Laboratory

William Gates Building

15 JJ Thomson Avenue
Cambridge CB3 0FD, UK

Tel.: +44 (0)1223 334696

E-mail: laura.rimell@cl.cam.ac.uk



2 Deniz Yuret et al.

fragments called “text” (T) and “hypothesis” (H), recognizing textual entail-
ment (RTE) is the task of determining whether the meaning of the hypothesis
is entailed (can be inferred) from the text. In contrast to general RTE tasks
(Dagan et al 2009) PETE is a targeted textual entailment task that focuses on
syntactic entailments:

Text: The man with the hat was tired.
Hypothesis-1: The man was tired. (yes)
Hypothesis-2: The hat was tired. (no)

By syntactic entailments we mean entailments that can be recognized using
grammatical knowledge alone, without recourse to background knowledge or
logical reasoning. The main goal of PETE is not to create a general entail-
ment system, but to use entailments as a probe to evaluate a basic linguistic
competence, in this case identification of grammatical relations.

The participants were provided with a number of text — hypothesis sentence
pairs as input (similar to the Text—Hypothesis-1 pair given above). The goal of
the participating systems was to output an accurate YES/NO decision on the
syntactic entailment status of each pair (e.g. YES for the Text—Hypothesis-1
pair and NO for the Text—Hypothesis-2 pair). Each entailment was focused
on the relationship of a content word pair (e.g. man—tired for Hypothesis-1
and hat—tired for Hypothesis-2), however these content word pairs were not
made available during testing. Table 1 provides some text—hypothesis examples
from the actual test set. Section 2 provides further details on the dataset and
Section 3 describes the participating systems and their results. All task relevant
data is available at http://pete.yuret.com.

Text Hypothesis Ent.
There’s a man with a wooden leg named Smith. | The man is named Smith. YES
There’s a man with a wooden leg named Smith. | The leg is named Smith. NO
Two share a house almost devoid of furniture. A house is shared. YES
They wanted to touch the mystery. They wanted the mystery. | NO
It took me five hours to write it that way. Something took hours. YES
Add things as you find you need’em. The things find something. | NO

Table 1 Some text—hypothesis pair examples from the PETE test set. The third column
gives the entailment status and the relevant content words are marked in bold.

1.1 Motivation

The motivation behind using targeted textual entailments as a test of linguis-
tic competence is to use non-expert, native speaker judgements and achieve
high inter-annotator agreement. It is generally difficult to achieve high inter-
annotator agreement in artificial tagging tasks. We cite two examples: Dick-
inson and Meurers (2003) have found that of the 34,564 constituent strings
that appear multiple times in Penn Treebank (Marcus et al 1994), 5,584 (16%)
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have multiple conflicting annotations, of which an estimated 3,934 are errors.
If indicative of the general level of inconsistency, 16% is a very high number
given that state of the art parsers claim F-scores above 90% (Charniak and
Johnson 2005). In the field of word sense disambiguation, Snyder and Palmer
(2004), the organizers of the “English all-words task” in Senseval-3, state: “it
seems that the best systems have hit a wall in the 65-70% range. This is not
surprising given the typical inter-annotator agreement of 70-75% for this task.”

The reason for the low inter-annotator agreement is usually not the anno-
tators’ lack of comprehension of the example sentences. The problem is their
less than perfect ability to be consistent with the annotation guidelines, or the
difficulty of coming up with consistent guidelines in the first place: The Penn
Treebank annotation guidelines exceed 400 pages. WordNet (used in Senseval-
3) defines more than 100,000 word senses, some of which are difficult to dis-
tinguish even for professional lexicographers. We believe the situation might
be improved if our systems can target the natural competence of the annota-
tors in comprehending sentences rather than their imperfect performance on
artificial annotation tasks.

One can envision annotation tasks that probe the ability to identify gram-
matical relations, word senses, co-references etc. using basic sentence com-
prehension and generation skills rather than relying on detailed annotation
guidelines or sense inventories. One example that targets the natural compe-
tence of annotators in comprehending and generating sentences is the lexical
substitution task (McCarthy and Navigli 2007) introduced in SemEval-2007.
Unlike standard word sense disambiguation tasks where the annotators need
to comprehend not only the example sentences but the dictionary definitions of
the target words, the lexical substitution task asks them to come up with sub-
stitutes for the target word that preserve the meaning of the sentence. Another
example is (Erk et al 2009), which introduces a usage similarity task asking the
annotators to judge the similarity between different usages of a word without
relying on a sense inventory. Targeted textual entailment tasks that focus on
one type of linguistic competence, like PETE, may be one possible path in the
direction of more such evaluation schemes. To our knowledge, PETE is the
first task to use crowd-sourcing with non-expert, native speaker judgements
for parser evaluation, which has traditionally had to rely on trained experts
because of the complexity of labeling parse trees.

1.2 Other approaches

There are currently two main approaches in the field of parser evaluation.
The treebank based measures introduced nearly two decades ago (Black et al
1991) compare phrase-structure bracketings or dependency links produced by
the parser with the ones in an annotated corpus, or “treebank”. A second,
more recent strand of parser evaluation methods is based on grammatical
dependency relations, proposed for ease of use by end users and suitable for
parser evaluation. These include the grammatical relations (GR) of Carroll



4 Deniz Yuret et al.

et al (1999), the PARC representation (King et al 2003), and Stanford typed
dependencies (SD) (De Marneffe et al 2006) (see Bos et al (2008) for other
proposals).

Compared to the first approach, treebank based evaluation methods, parser
evaluation using short textual entailments has the following advantages:

Consistency: Recognizing syntactic entailments is a more natural task for peo-
ple than treebank annotation. Focusing on a natural human competence
makes it practical to collect high quality evaluation data from untrained
annotators. The PETE dataset was annotated by untrained Amazon Me-
chanical Turk workers at an insignificant cost ($19.50) and each annotation
is based on the unanimous agreement of at least three workers.

Relevance: PETE automatically focuses attention on semantically relevant
phenomena rather than differences in annotation style or linguistic con-
vention. Whether a phrase is tagged ADJP vs ADVP rarely affects semantic
interpretation. Attaching the wrong subject to a verb or the wrong prepo-
sitional phrase to a noun, however, changes the meaning of the sentence.
Standard treebank based evaluation metrics do not distinguish between se-
mantically relevant and irrelevant errors (Bonnema et al 1997). In PETE
semantically relevant differences lead to different entailments, semantically
irrelevant differences do not.

Framework independence: Entailment recognition is a formalism independent
task. A common evaluation method for parsers that do not use the Penn
Treebank formalism is to automatically convert the Penn Treebank to the
appropriate formalism and to perform treebank based evaluation (Nivre
et al 2007a; Hockenmaier and Steedman 2007). However, such conversions
are noisy due to fundamental cross-formalism differences as well as inconsis-
tencies in the original treebank (Hockenmaier 2003; Cer et al 2010), com-
pounding the already mentioned problems of treebank based evaluation.
Clark and Curran (2007) similarly found an upper bound of 85% accuracy
when translating between two grammatical dependency based formalisms
for parser evaluation. In addition, manually designed treebanks do not nat-
urally lend themselves to unsupervised parser evaluation. Unlike treebank
based evaluation, PETE can compare phrase structure parsers, dependency
parsers, unsupervised parsers and other approaches on an equal footing.

The second approach, evaluation methods based on grammatical depen-
dency relations, uses a set of binary relations between words in a sentence as
the primary unit of representation. These methods share some common moti-
vations: usability by people who are not (computational) linguists and suitabil-
ity for relation extraction applications. Furthermore, they more closely repre-
sent semantics than treebank constituency or dependency measures, and var-
ious types of parsers are capable of producing dependencies as an interchange
format. Here is an example sentence and its SD representation (De Marneffe
and Manning 2008):
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Bell, based in Los Angeles, makes and distributes electronic, computer
and building products.

nsubj (makes-8, Bell-1)
nsubj(distributes-10, Bell-1)
partmod(Bell-1, based-3)
nn(Angeles-6, Los-5)
prep-in(based-3, Angeles-6)
conj-and(makes-8, distributes-10)
amod (products-16, electronic-11)
conj-and(electronic-11, computer-13)
amod (products-16, computer-13)
conj-and(electronic-11, building-15)
amod (products-16, building-15)

dobj (makes-8, products-16)

PETE was inspired by such methods, but goes one step further by translating
most of these dependencies into natural language entailments:

Bell makes something.

Bell distributes something.
Someone is based in Los Angeles.
Someone makes products.

PETE has some advantages over representations based on grammatical rela-
tions:

Ease of use: Each of the three proposals of grammatical dependency relations
mentioned in this paper (GR, PARC, SD) uses a different set of binary re-
lations. For example SD defines 55 relations organized in a hierarchy, and it
may be non-trivial for a non-linguist to understand the difference between
ccomp (clausal complement with internal subject) and zcomp (clausal com-
plement with external subject) or between nsubj (nominal subject) and
xsubj (controlling subject). In this study we were able to achieve unani-
mous agreement among 3 or more untrained annotators for close to half
of the entailments generated for PETE without any training, correction or
adjudication.

Relevance: Though grammatical dependency schemes represent more seman-
tic information than treebank annotation, they still give equal weight to
dependencies of differing semantic importance, for example determiners
compared to verbal arguments. They are typically used in the aggregate,
so that evaluation is weighted towards more frequent dependency types,
not necessarily more important ones.® When labeled dependencies are used,
differences in annotation style can affect evaluation, for example whether

1 The collapsed and propagated version of Stanford dependencies somewhat mitigates this
problem and this is the parser output representation we chose to use as input to the example
entailment module of Section 7.
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a dependency is labeled amod or advmod. In contrast, PETE is designed
to focus on semantically relevant types, and is label-free.

1.3 Challenges

There are also significant challenges associated with an evaluation scheme like
PETE. It is not always clear how to convert certain relations into grammatical
hypothesis sentences without including most of the original sentence in the hy-
pothesis. Including too much of the sentence in the hypothesis would increase
the chances of getting the right answer with the wrong parse. Grammatical
hypothesis sentences are especially difficult to construct when a (negative) en-
tailment is based on a bad parse of the sentence. Introducing dummy words
like “someone” or “something” alleviates part of the problem but does not help
in the case of clausal complements. In summary, PETE makes the annotation
phase more practical and consistent but shifts the difficulty to the entailment
creation phase.

PETE gets closer to an extrinsic evaluation by focusing on semantically
relevant, application oriented differences that can be expressed in natural lan-
guage sentences. This makes the evaluation procedure indirect: a parser devel-
oper has to write an extension that can handle entailment questions. However,
given the simplicity of the entailments, the complexity of such an extension
is comparable to one that extracts grammatical relations. In Section 7 we
present a standard entailment module which can be used with any parser that
can output Stanford typed dependencies.

The balance of what is being evaluated is also important. A treebank based
evaluation scheme may mix semantically relevant and irrelevant mistakes, but
at least it covers every sentence at a uniform level of detail. In this evaluation,
we focused on sentences and relations where state of the art parsers make
mistakes. We hope this methodology will uncover weaknesses that the next
generation of parsers can focus on.

1.4 Summary

The remaining sections will go into more detail about these challenges and the
solutions we have chosen to implement. Section 2 explains the method followed
to create the PETE dataset. Section 3 presents the participating systems, their
methods and results. Section 4 presents the best scoring Cambridge system
in more detail. Sections 5 and 6 give a detailed error analysis of the c&c
parser and the entailment system used in the Cambridge system. Section 7
introduces a standard entailment system for Stanford typed dependencies and
evaluates some example systems for several state of the art parsers. Section 8
summarizes our contribution.
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2 Dataset

To generate the entailments for the PETE task we used the following three
steps:

— Identify syntactic dependencies challenging to state of the art parsers.
— Construct short entailment sentences that paraphrase those dependencies.
— Identify the subset of the entailments with high inter-annotator agreement.

2.1 Identifying Challenging Dependencies

To identify syntactic dependencies that are challenging for current state of the
art parsers, we used example sentences from the following sources:

— The “Unbounded Dependency Corpus” (Rimell et al 2009). An unbounded
dependency construction contains a word or phrase which appears to have
been moved, while being interpreted in the position of the resulting “gap”.
For example, the relation between wrote and paper in the paper we wrote
is an example of extraction from a reduced relative clause. An unlimited
number of clause boundaries may intervene between the moved element
and the gap (hence “unbounded”).

— A list of sentences from the Penn Treebank on which the Charniak parser
(Charniak and Johnson 2005) performs poorly?.

— The Brown section of the Penn Treebank.

We tested a number of parsers (both phrase structure and dependency)
on these sentences and identified the differences in their output. We took
sentences where at least one of the parsers gave a different answer than the gold
parse. (The gold parses were available since all sentences came from existing
treebanks.) Some of these differences reflected linguistic convention rather than
semantic disagreement (e.g. representation of coordination) and some did not
represent meaningful differences that can be expressed with entailments (e.g.
labeling a phrase ADJP vs ADVP). The remaining differences typically reflected
genuine semantic disagreements that would affect downstream applications.
These were chosen to turn into entailments in the next step.

2.2 Constructing Entailments

Entailment construction was performed manually by annotators trained to
interpret phrase structure and dependency parser outputs. Each hypothesis
sentence was based on the relationship between two content words that have
a syntactic dependency. The content word pairs were chosen to demonstrate
differences between a parser output and the gold parse. All true and false
hypotheses generated in this fashion that passed the annotator agreement test

2 http://wuw.cs.brown.edu/~ec/papers/badPars.txt.gz
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as described in Section 2.3, were added to the dataset. The instructions for
the annotators were:

1. Idenfity a sentence where at least one parser gives a different parse tree
than the gold parse. Use this sentence as the text of a text—hypothesis pair.

2. Identify content words (defined as nouns, verbs, adjectives, and adverbs)
in the sentence which have different syntactic heads or different relations
to their syntactic heads in the parser output and the gold parse. If the
syntactic head is a function word then consider the closest content word
ancestor.

3. For each word—head pair identified in the previous step, construct a mini-
mal hypothesis sentence that expresses the same syntactic relation between
the two as was observed in the source parse tree. If the pair comes from
the gold parse this generates a TRUE entailment, otherwise this generates
a FALSE entailment.

4. If the two content words are not sufficient to construct a grammatical
sentence use one of the following techniques:

— Complete the mandatory elements using the words “somebody” or
“something” (e.g. to express the subject-verb dependency in “John
kissed Mary.” construct the hypothesis “John kissed somebody.”).

— Make a passive sentence to avoid using a spurious subject (e.g. to ex-
press the verb-object dependency in “John kissed Mary.” construct the
hypothesis “Mary was kissed.”).

— Make a copular sentence or use existential “there” to express noun
modification (e.g. to express the noun-modifier dependency in “The
big red boat sank.” construct the hypothesis “The boat was big.” or
“There was a big boat.”).

As an example consider the sentence “John slept in the bed.” Let us con-
sider what entailments can be constructed from this sentence, assuming we
have the gold parse tree. The three content words are “John”, “slept”, and
“bed”. “Slept” is the root of the sentence and has no head. The head of “John”
is “slept”, so we generate the hypothesis (John slept). The syntactic head of
“bed” is “in”, a function word, so we include the content word ancestor “slept”,
resulting in the hypothesis (Somebody slept in the bed). Note that we intro-
duce “Somebody”, as in step 4 of the instructions, to make the hypothesis a
complete sentence without including more constituents from the text. These
are the only two hypothesis sentences that can be generated for this sentence.

In general the number of content words gives an upper bound on the num-
ber of entailments (text—hypothesis pairs) generated from a sentence. However
not every entailment generated in this way made it into the final dataset be-
cause we only included entailments related to parser errors, as described in
the previous section, and we filtered ones that did not result in unanimous
annotator agreement as described in the next section.

The emphasis on having two content words per entailment reflects the
relationship between PETE and grammatical dependency schemes. Entail-
ments were constructed manually, although in the future we hope to develop
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automatic methods. In the first edition of PETE we did not measure inter-
annotator agreement on entailment generation; based on the guidelines there
should in general be a single well-defined H for each pair of content words,
although issues such as embedded clauses and noun modification may need to
be more carefully analyzed from an entailment generation perspective in the
future to be sure of this.

A list of the content word pairs used to construct the entailments was pro-
vided to participants as background information, but the list was not accessi-
ble to the entailment systems developed by the participants. Thus entailment
decisions could not be facilitated by limiting interrogation of parser output
to specific lexical items (although some systems did independently choose to
prioritize general categories of words or relations in their decisions).

2.3 Filtering Entailments

To identify the entailments that are clear to human judgement we used the
following procedure:

— Each entailment was tagged by 5 untrained annotators from the Amazon
Mechanical Turk crowd-sourcing service.

— The results from the annotators whose agreement with the “silver” stan-
dard truth values fell below 70% were eliminated.

— The entailments for which there was unanimous agreement of at least 3
annotators were kept.

The second step was necessary to eliminate annotators that were answer-
ing questions randomly. The “silver” standard truth values were “yes” for
entailments generated from parses agreeing with the gold parses, and “no”
for entailments generated from incorrect parses (recall that the gold parses
were available from existing treebanks). We call these truth values silver rather
than gold since they became part of the gold standard only when unanimously
agreed to by three annotators. Though not perfect, the 70% measure provided
a simple benchmark to detect annotators answering randomly.

The annotators were allowed to give “Not sure” answers which were later
grouped with the “No” answers during evaluation. The instructions for the
annotators were brief and targeted people with no linguistic background:

Computers try to understand long sentences by dividing them into a set of short

facts. You will help judge whether the computer extracted the right facts from

a given set of 25 English sentences. Each of the following examples consists of a

sentence (T), and a short statement (H) derived from this sentence by a computer.

Please read both of them carefully and choose “Yes” if the meaning of (H) can be
inferred from the meaning of (T). Here is an example:

(T) Any lingering suspicion that this was a trick Al Budd had thought up was
dispelled.

(H) The suspicion was dispelled. Answer: YES

(H) The suspicion was a trick. Answer: NO

You can choose the third option “Not sure” when the (H) statement is unrelated,
unclear, ungrammatical or confusing in any other manner.
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2.4 Dataset statistics

The final dataset contained 367 entailments which were randomly divided
into a 66 sentence development set and a 301 sentence test set. 52% of the
entailments in the test set were positive.

Approximately half of the final entailments were based on sentences from
the Unbounded Dependency Corpus, a third were from the Brown section of
the Penn Treebank, and the remainder were from the Charniak sentences.
Table 2 gives the breakdown of the original list of entailments and the ones
retained after the annotation filtering, according to the text source and the
entailment value. Between 1/3 and 1/2 of the original entailments were kept
in the final dataset in each category.?

Pre-filter Post-filter
All | Y N All | Y N
Unbounded | 529 | 327 | 202 | 196 | 108 | 88

Brown 335 | 211 | 124 | 124 | 61 63
Charniak 116 | 65 51 47 22 25
Total 980 | 603 | 377 | 367 | 191 | 176

Table 2 Breakdown of data by source and entailment value before and after the annotation
filter.

Table 3 lists the most frequent grammatical relations and constructions
encountered in the entailments before and after the annotation filter. Note
that the resolution of each entailment may rely on multiple grammatical phe-
nomena, thus the numbers add up to more than 100%.

GR Pre-filter | Post-filter
Direct object 48% 42%
Nominal subject 44% 33%
Reduced relative clause 25% 21%
Relative clause 20% 14%
Passive nominal subject 17% ™%
Open clausal complement | 6% 2%
Clausal complement 6% 2%
Prepositional modifier 6% 5%
Adverbial modifier 2% 3%
Object of preposition 2% 5%

Table 3 Most frequent grammatical relations and constructions encountered in the entail-
ments before and after the annotation filtering process.

The two groups of entailments that most often failed the inter-annotator
agreement filter involved clausal complements and passivization. Constructing

3 Note that some of the difficult constructions, plus noise in the laypeople’s responses
meant a large percentage of potential entailments didn’t pass the filter, but nevertheless at
a nominal cost we were able to create a dataset where all the entailments were unanimously
agreed by 3 people, which is not the case for most other commonly used treebanks.
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entailments for clausal complements based on two content words as described
in Section 2.2 was sometimes challenging for the entailment generators and
confusing to the annotators. Annotators failed to reach a unanimous agreement
on examples like the following:

Text: He found a jar of preserved tomatoes and one of eggs that they
had meant to save.
Hypothesis: Somebody had meant to save one.

Passivization, which was used when constructing entailments from a verb
object pair also proved to be confusing at times. Annotators also failed to
reach unanimous agreement on some examples like the following:

Text: But he kept Fruit of the Loom Inc., the underwear maker that
he still controls and serves as chairman and chief executive.
Hypothesis: The maker is served.

3 Task Results

System Accuracy | Precision | Recall | F1

360-418-Cambridge 0.7243 0.7967 0.6282 0.7025
459-505-SCHWA 0.7043 0.6831 0.8013 0.7375
473-568-MARS-3 0.6678 0.6591 0.7436 0.6988
372-404-MDParser 0.6545 0.7407 0.5128 0.6061
372-509-MaltParser 0.6512 0.7429 0.5000 0.5977
473-582-MARS-5 0.6346 0.6278 0.7244 0.6726
166-415-JU-CSE-TASK12-2 0.5781 0.5714 0.7436 0.6462
166-370-JU-CSE-TASK12 0.5482 0.5820 0.4551 0.5108
390-433-Berkeley Parser Based 0.5415 0.5425 0.7372 0.6250
473-566-MARS-1 0.5282 0.5547 0.4551 0.5108
473-569-MARS-4 0.5249 0.5419 0.5385 0.5402
390-431-Brown Parser Based 0.5216 0.5349 0.5897 0.5610
473-567-MARS-2 0.5116 0.5328 0.4679 0.4983
363-450-VENSES 0.5083 0.5220 0.6090 0.5621
473-583-MARS-6 0.5050 0.5207 0.5641 0.5415
390-432-Brown Reranker Parser Based 0.5017 0.5217 0.4615 0.4898
390-435-Berkeley with substates 0.5017 0.5395 0.2628 0.3534
390-434-Berkeley with Self Training 0.4983 0.5248 0.3397 0.4125
390-437-Combined 0.4850 0.5050 0.3269 0.3969
390-436-Berkeley with Viterbi Decoding | 0.4784 0.4964 0.4359 0.4642

Table 4 Participating systems and their scores. The system identifier consists of the par-
ticipant ID, system ID, and the system name given by the participant. Accuracy gives
the percentage of correct entailments. Precision, Recall and F1 are calculated for positive
entailments.

Twenty systems from 7 teams participated in the PETE task. Table 4 gives
the percentage of correct answers for each system. Twelve systems performed
above the “always yes” baseline of 51.83%.
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Most systems started the entailment decision process by extracting syn-
tactic dependencies, grammatical relations, or predicates by parsing the text
and hypothesis sentences. Several submissions, including the top two scoring
systems, used the C&C Parser (Clark and Curran 2007) which is based on the
Combinatory Categorical Grammar (CCG; Steedman (2000)) formalism. Oth-
ers used dependency structures produced by MaltParser (Nivre et al 2007b),
MSTParser (McDonald et al 2005) and Stanford Parser (Klein and Manning
2003).

After the parsing step, the decision for the entailment was based on the
comparison of relations, predicates, or dependency paths between the text
and the hypothesis. Most systems relied on heuristic methods of comparison.
A notable exception is the MARS-3 system which used an SVM-based classifier
to decide on the entailment using dependency path features.

The top two scoring systems, Cambridge and SCHWA (University of Syd-
ney), were based on the c&C parser and used a similar approach (though
Cambridge used GR output in SD format while SCHWA used the native ccaG
dependency output of the parser). They achieved almost identical task accura-
cies, but SCHWA was more accurate on “yes” entailments, while Cambridge
was more accurate on “no” entailments, resulting in a higher overall accu-
racy for Cambridge, but a higher F-score on positive entailments for SCHWA
(Table 4). We attribute this difference to the decision criteria used in the
entailment systems, which will be discussed in Section 4, but notably the dif-
ference suggests that a dependency-based entailment system can be tuned to
favour precision or recall.

The following sections describe the Cambridge system in more detail and
present detailed error analyses for the parser and the entailment system.

4 The Cambridge System

The best-scoring Cambridge system used the c&c parser (Clark and Curran
2007), which can produce GR output in SD format (see Section 1) using custom
tools available with the parser.?

The entailment system was very simple, and based on the assumption that
H is a simplified version of T, which is true for this task though not neces-
sarily for RTE in general. Let grs(S) be the GRs produced by the parser for
a sentence S. The basic intuition is that if grs(H) C grs(T), then in principle
H should be considered an entailment of T. In practice, certain refinements of
this basic intuition were required to account for non-matching GRs resulting
from grammatical transformations used in entailment construction, or noise
in the parse which could be safely ignored.

Three situations were identified in which GRrs in H would not exactly match
those in T. First, syntactic transformations used in entailment construction
could change head-dependent relations. By far the most frequently used trans-
formation in the PETE dataset was passivization.

4 http://svn.ask.it.usyd.edu.au/trac/candc
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Second, the introduction of dummy words and transformations during en-
tailment construction meant that H could contain tokens not present in T.
This included pronouns such as “somebody” and “something”, auxiliary verbs
introduced by passivization, and expletive subjects. In addition, determiners
were sometimes introduced or changed, e.g. “prices” to “the prices”.

Third, the parses of T and H might be inconsistent in a way incidental
to the target entailment. Consider the sentence pair T: I reached into that
funny little pocket that is high up on my dress. = H: The pocket is high up
on something. The intended focus of the evaluation is the relation between
“pocket” and “high”. As long as the parser analyzes “pocket” as the subject
of “high”, we want to avoid penalizing it for, say, attaching the PP beginning
with “up on” differently in T and H.

To address these issues the system used a small set of heuristics. First,
it ignored any GR in grs(H) containing a token not in T. This addressed the
pronouns, passive auxiliaries, expletive subjects, and determiners. Second, it
equated passive subjects with direct objects. Similar heuristics could be defined
to accommodate other transformations, but only this one was implemented,
based on examination of the development set.

Third, when checking whether grs(H) C grs(T), only the core relations sub-
ject and object were considered. The intention was that incidental differences
between the parses of T and H would not be counted as errors. These GR types
were chosen based on examination of the entailments in the development set,
but the system could easily be reconfigured to focus on other relation types,
e.g. PP relations for a PP-attachment task.

Finally, the system required grs(H) N grs(T) to be non-empty (no vacuous
positives), but did not restrict this criterion to subjects and objects.

The system used a PTB tokenizer® for consistency with the parser’s train-
ing data. The morpha lemmatizer (Minnen et al 2000), which is built into the
c&C tools, was used to match tokens across T and H, and all tokens were con-
verted to lowercase. If the parser failed to find a spanning analysis for either T
or H, the entailment decision was “no”. The full pipeline is shown in Figure 1.

Comparing the Cambridge system with the SCHWA system, Cambridge
was more accurate on “no” entailments and SCHWA on “yes” entailments. We
believe this is because both systems required at least one matching relation
between T and H for a “yes” answer, but Cambridge additionally answered
“no” if any core relation (subject or object) was present for H but not for T.
Thus Cambridge permitted fewer false positives than SCHWA.

5 Error Analysis

Table 4 includes the results for the Cambridge system on the test set. On the
development set the system achieved an overall accuracy of 66.7%. On positive
entailments, precision was 0.7857, recall was 0.5789, and F-score was 0.6666.

5 http://www.cis.upenn.edu/ treebank/tokenizer.sed
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Tokenize T and H with PTB tokenizer
Parse T and H with c&c parser

Lowercase and lemmatize all tokens

\

Discard any GR in grs(H) containing a token not in T

I

Convert passive subjects to direct objects

I
“yes” if core(H) C core(T) and grs(H) N grs(T) # 0,
“no” otherwise

Fig. 1 Full pipeline for c&c parser and entailment system. core(S): the set of core (subject
and object) GRs in grs(S).

Table 5 lists the frequency of various grammatical relations in the devel-
opment and test set instances where the Cambridge system made mistakes. A
comparison with Table 3 shows direct objects and reduced relative clauses to
be frequent causes of error.

GR Dev Set | Test Set
Reduced relative clause | 45% 36%
Direct object 18% 51%
Relative clause 18% —
Nominal subject 9% 20%
Passive nominal subject | 9% 7%
Adverbial modifier 9% —
Prepositional modifier 9% —
Conjunct 9% —
Object of preposition — 7%

Table 5 Frequency of grammatical relations in entailment instances that got wrong answers
from the Cambridge system.

Table 6 further breaks down the results on the development set to show
how different types of parser and entailment system errors contributed to
incorrect answers. In the majority of cases the parser and entailment system
worked together to find the correct answer as expected. For example, for T:
Trading in AMR shares was suspended shortly after 3 p.m. EDT Friday and
didn’t resume. = H: Trading didn’t resume., the parser produced three GRrs for
H (tokens are shown lemmatized and lowercase): (nsubj resume trading),
(neg do n’t), and (aux resume do). All of these were also in grs(T), and
the correct “yes” decision was made. For T: Moreland sat brooding for a full
minute, during which I made each of us a new drink. = H: Minute is made.,
the parser produced two GRs for H. One, (auxpass make be), was ignored
because the passive auxiliary “be” is not in T. The second, passive subject
GR (nsubjpass make minute) was equated with a direct object (dobj make
minute). This GR was not in grs(T), so the correct “no” decision was made.
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In some cases a correct “yes” answer was reached via arguably insufficient
positive evidence. For T: He would wake up in the middle of the night and fret
about it. = H: He would wake up., the parser produces incorrect analyses for
the VP “would wake up” for both T and H. However, these GRs are ignored
since they are non-core (not subject or object), and a “yes” decision is based
on the single GR match (nsubj would he). This is not entirely a lucky guess,
since the entailment system has correctly ignored the faulty analyses of “would
wake up” and focused on the role of “he” as the subject of the sentence.
However, especially since the target was the relation between the subject “he”
and the lexical verb “wake”, more positive evidence would be desirable. Of the
22 correct “yes” decisions, only two were truly lucky guesses in that the single
match was a determiner; all others had at least one core match.

Type FN | FP | Total
Unbounded dependency 9 1 10
Other parser error 6 2 8
Entailment system 1 3 4
Total 16 6 22

Table 6 Error breakdown on the development set. FN: false negative, FP: false positive.

Table 6 shows the breakdown of errors. The largest category was false
negatives due to unbounded dependencies not recovered by the parser, for
example T: It required an energy he no longer possessed to be satirical about
his father. = H: Somebody no longer possessed the energy. Here the parser fails
to recover the direct object relation between “possess” and “energy” in T. It is
known that parsers have difficulty with unbounded dependencies (Rimell et al
2009), so this result is not surprising. Among the unbounded dependencies,
one gold standard entailment was particularly difficult because it involved
two layers of extraction; this was T: Indez-arbitrage trading is “something
we want to watch closely,” an official at London’s Stock FExchange said. =
H: We want to watch index-arbitrage trading. Here, recovering the entailment
requires not only correctly parsing the relative clause headed by “something”,
but also resolving the reference of “something” as “trading”, a compound task
that few modern syntactic parsers attempt. Nevertheless, this is a legitimate
entailment, constructed according to the guidelines in Section 2.2.

The next category was other parser errors. This is a miscellaneous category
including e.g. errors on coordination, parenthetical elements, identifying the
head of a clausal subject, and one error due to the POS tagger. For example,
for T: Then at least he would have a place to hang his tools and something to
work on. = H: He would have something to work on., the parser incorrectly
coordinated “tools” and “something” for T, making “something” appear to be
an object of “hang”. As a result (dobj have something) was in grs(H) but
not grs(T), yielding an incorrect “no”.

Four errors were due to the entailment system rather than the parser; these
will be dicsussed in Section 6.
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6 Entailment System Evaluation

The utility of PETE as a parser evaluation tool depends on the availabil-
ity of appropriate entailment systems, since the entailment system acts as an
intermediary between the parser and the PETE dataset. We believe the ap-
propriate role of an entailment system is to be fully transparent with respect
to the parser output, that is, to faithfully reflect whether the parser has made
attachment decision(s) for T which entail a “yes” answer for H, neither in-
troducing nor correcting any errors. Recalling the example T: The man with
the hat was tired, if the parser analyzes “man” as the subject of “was tired”,
the entailment system should pass along a “yes” answer to H-1: The man was
tired, and a “no” answer to H-2: The hat was tired. If the entailment system is
transparent in this way, then a correct answer on H indicates a correct parse
(with regard to the content of H) and an incorrect answer on H indicates a
parser error.

It is easy to imagine a variety of non-transparent entailment systems. For
example, an entailment system that always answers “yes” regardless of parser
output will yield an accuracy score exactly equal to the “always yes” baseline,
no matter how well or poorly the underlying parser has performed. On the
other hand, an entailment system that is allowed to override parser output
based on background knowledge or reasoning heuristics would also be non-
transparent because it could improve on the parser’s decisions. Note we do not
say there is no role in NLP for such an entailment system, only that it would
not transparently convey parser accuracy on the PETE dataset. Moreover,
there may be room for an intermediate, semi-transparent variety of entailment
system that cannot override attachments made by the parser, but can add
information.

We can say the PETE task is a valid parser evaluation tool if it is possi-
ble to construct an appropriate entailment system for any given parser. We
do not attempt to evaluate whether the entailment systems of all partici-
pating systems were appropriate, but as a case study, we consider whether
the Cambridge entailment system was an appropriate tool for evaluating the
c&c parser on the PETE dataset. A more generalized entailment system is
described in Section 7.

We use two oracle experiments to isolate and evaluate the performance
of the Cambridge entailment system. The first oracle experiment uses gold-
standard GRs rather than automatic parser output as input to the entailment
system. Assuming the Cambridge GR-based approach is valid, then given gold-
standard GRs for T and H, we expect an appropriate entailment system to
result in 100% accuracy on the task evaluation (because all parses are correct,
and the entailment system should faithfully pass along the correct analyses).
To perform this experiment we manually annotated all T and H sentences in
the development set with gold-standard GRs. Using the Cambridge entailment
system with the gold GRs resulted in a task accuracy score of 90.9%, which
can therefore also be considered the entailment system accuracy score in this
experiment.
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Of the six errors made by the system, three (two FN and one FP) were
due to transformations between T and H which changed the GR label or head.
For example, consider T: Occasionally, the children find steamed, whole-wheat
grains for cereal which they call “buckshot”. = H: Grains are steamed. In T,
“steamed” is a prenominal adjective with “grains” as its head; while in H, it is
a passive with “grains” as its subject. The entailment system did not account
for this transformation. In principle it could account for any transformation
which can be expressed as a rule on GRs, in the same way it accounts for
passivization. In practice, the only way to guarantee that an entailment system
can account for all transformations between T and H in the dataset is for the
complete list of possible transformations to be documented in the entailment
generation guidelines and made available to developers.

Two errors (both FP) occurred when GRs involving a non-core relation or
a pronoun introduced in H, both of which the system ignored, were crucial for
the correct entailment decision. Since the development decision to ignore non-
core relations and pronouns introduced in H was made for overall accuracy,
errors are inevitable in these circumstances, but they are a small percentage
of sentences in the dataset.

The final error was on the difficult unbounded dependency discussed in
Section 5, T: Index-arbitrage trading is “something we want to watch closely,”
an official at London’s Stock Exchange said. = H: We want to watch indez-
arbitrage trading. The gold GRs represent the unbounded dependency correctly,
but nevertheless do not provide the necessary information to resolve the ref-
erence of “something” as “trading”.

The second experiment compared the Cambridge entailment system with
an oracle entailment system, i.e. manual judgements on whether T entails H
given the parser’s analysis. We used the GRs automatically generated by c&c
for the development set, and manually decided for each sentence whether T
entailed H based only on the automatic parser analysis. We then compared this
manual analysis with the automatic entailment system decisions, to determine
how transparent the entailment system was.

Based on the manual analysis, we found the Cambridge entailment system
made six errors on the development set, when using automatically generated
c&C output. Two errors were in the parser’s favor, i.e. the parser analysis was
incorrect, but the entailment system “corrected” the error; and four were to
its detriment, i.e. the parser analysis was correct but the entailment decision
was incorrect. Accuracy of the entailment system was 90.9% on this measure,
consistent with the results of the previous oracle experiment (though the er-
roneous sentences were not identical).

Among the two errors in the parser’s favor, one involved T: They wanted
to see what his back felt like — the General’s. = H: Somebody wanted to see
what his back felt like. The parser analyzed the phrase “what his back felt
like” incorrectly, but made the same error for both T and H, so that the GRs
matched. Only by manual analysis could the error be found. The other error
was on a sentence where the attachment decision was incorrect, but there was
a single GR match on a determiner.
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The four entailment system errors to the detriment of the parser corre-
spond to the “Entailment system” row in Table 6. Three of these errors also
occurred in the first oracle experiment and have been discussed above. The
fourth resulted from a POS change between T and H for T: There was the
revolution in Tibet which we pretended did not exist. = H: The pretended
did not exist. The crucial Gr for finding a “no” answer was (nsubj exist
pretended) in grs(H), but the entailment system ignored it because the lem-
matizer did not give “pretend” as the lemma for “pretended” as a noun. This
type of error might be prevented by answering “no” if the POS of any word
changes between T and H, although the implementation would be non-trivial
since word indices may also change.%

Note that the 90.9% accuracy figure for the entailment system based on
the manual analysis in the second oracle experiment does not reflect parser
accuracy: when the parser made an error on a crucial dependency, leading
to an incorrect entailment decision, we judged the entailment system to be
correct, since it faithfully passed along the parser’s error for the purpose of
parser evaluation. If the c&cC parser had been coupled with an oracle (i.e.
fully manual) entailment system, it would have achieved 69.7% accuracy on
the development set, compared to the 66.7% it achieved with the automatic
entailment system.

The high accuracy levels for the simple Cambridge entailment system,
which was over 90% accurate at passing along the performance of c&cC on
the PETE dataset, are very promising. Some additional accuracy could be
recovered in the future if parser and entailment system developers have ac-
cess to improved documentation of the linguistic transformations permitted in
entailment generation. This is a positive result for the validity of the PETE
task.

7 A Generalized Entailment System

In order to facilitate further research on this task, we implemented a more
modular and generalized entailment system based on the Cambridge system.
By applying similar heuristics and search methods, we are able to replicate the
top score on the task, and are also able to compare different parsing paradigms
using a single entailment system, making for a more level playing field.

This system takes Stanford dependencies as input and thus integrates with
several publicly available parsers which are capable of producing Stanford
typed dependencies. The parsers used were the Berkeley Parser (Petrov and
Klein 2007), Charniak Parser (Charniak and Johnson 2005), Collins Parser
(Collins 2003), c&c Parser (Clark and Curran 2007), Malt Parser (Nivre et al

6 There were eight POS changes in the development set, most of which did not result in
errors on evaluation. Note also that this particular H is ungrammatical English. Recall that
the negative H sentences were derived from genuine parser errors; it was not always possible
to construct grammatical sentences corresponding to such errors, though we will consider
constraining all H sentences to be grammatical in future work.
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Parse T and H
Convert to Stanford collapsed dependencies with propagation of conjunct dependencies

Lowercase and lemmatize all tokens

\

Convert passive subjects to direct objects

)

Extract core dependencies: nsubj, dobj, prep-*

I
“yes” if core(H) C core(T) and core(H) N core(T) # 0,
“no” otherwise;
allow matching of dummy pronouns in H with lexical items in T

Fig. 2 Full pipeline for Stanford dependencies entailment system. core(S): the set of core
(subject, object and preposition) GRs in grs(S).

2007b), MSTParser (McDonald et al 2005) and Stanford Parser (Klein and
Manning 2003). Each parser was trained on sections 02-21 of the WSJ section
of Penn Treebank. MaltParser and MSTParser were trained on the Stanford
dependencies format of Penn Treebank as described in (Cer et al 2010), and
c&c was trained on CCGbank (Hockenmaier 2003).

Stanford typed dependencies come in several varieties (De Marneffe and
Manning 2008). The Cambridge system used the option of tree-breaking de-
pendency types ref, zsubj, and pobj and propagation of conjunct dependencies,
but no collapsed dependencies. The generalized entailment system used Stan-
ford dependencies with fully collapsed dependencies (including tree-breaking
dependencies) and propagation of conjunct dependencies. Using the fully col-
lapsed dependencies was intended to allow improved matching of various re-
lations, especially prepositions, between T and H.

The outputs of all parsers except c&C were converted to the Stanford col-
lapsed dependency representation with propagation of conjunct dependencies
using the Stanford Parser. Because the ¢c&C parser does not produce a rep-
resentation suitable for conversion with the Stanford tools, we converted the
c&C output to Stanford dependencies using custom tools, as in Section 4.

To decide on entailments both the test and hypothesis sentences were
parsed. All the words in T and H were lemmatized and lowercased after pars-
ing. We apply the same heuristics as in the Cambridge system for active-passive
conversion and dummy word matching. We then consider the core dependency
types nsubj, dobj, and prep—* when comparing T and H (the use of the col-
lapsed dependency representation making it possible to consider prepositions
as a core relation). If there is at least one core dependency in H, and all core
dependencies in H are also found in T, the decision is “yes”. If the core H de-
pendencies are not found in T the decision is “no”. The full pipeline is shown
in Figure 2.

Table 7 lists the results achieved. There are significant differences in the
entailment accuracies of systems that have comparable unlabeled attachment
scores (UAS), with UAS derived from parser output in the CoNLL repre-
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sentation. One potential reason for this difference is the composition of the
PETE dataset which emphasizes challenging syntactic constructions that some
parsers may be better at. The difference between UAS and PETE scores re-
flects the indifference of treebank based measures like UAS to the semantic
significance of various dependencies and their impact on potential applications.

Note that different conversion steps en route to Stanford dependencies may
mean that results are not exactly comparable for all parsers. Nevertheless, the
PETE score provides a notably different perspective on the parser results. We
note that the two dependency parsers, MaltParser and MSTParser, show lower
accuracies than the constituent parsers; this is consistent with the results in
(Cer et al 2010). No UAS is available for c&c, which does not produce CoNLL
style output.

System PETE | UAS
C&C Parser 73.42% | —
Collins Parser 71.43% | 91.6
Berkeley Parser | 71.10% | 91.2
Charniak Parser | 68.44% | 93.2
Stanford Parser | 67.11% | 90.2

MaltParser 64.12% | 89.8

MSTParser 62.46% | 92.0
p-value Coll Berk | Char | Stan Malt MST
C&C Parser 5663 | .4567 | .0966 .0351 | .0032 | .0004
Collins Parser 1.0 .2893 .1056 .0108 | .0012
Berkeley Parser .2299 .0667 .0192 | .0024
Charniak Parser .6582 .1485 .0421
Stanford Parser 3134 .1149
MaltParser .5595

Table 7 Example systems: The first table gives the performance on the PETE test set, and
the unlabeled attachment score on section 23 of the Penn Treebank. The second table gives
the p-values for the differences between PETE scores based on the McNemar test (Dietterich
1998). Statistically significant differences (p < .05) are indicated with bold typeface.

8 Contributions

We introduced PETE, a new method for parser evaluation using textual en-
tailments. By basing the entailments on dependencies that current state of
the art parsers make mistakes on, we hoped to create a dataset that would
focus attention on the long tail of parsing problems that do not get sufficient
attention using common evaluation metrics. By further restricting ourselves to
differences that can be expressed by natural language entailments, we hoped
to focus on semantically relevant decisions rather than accidents of convention
which get mixed up in common evaluation metrics. We chose to rely on un-
trained annotators on a natural inference task rather than trained annotators
on an artificial tagging task because we believe (i) many subfields of com-
putational linguistics are struggling to make progress because of the noise in
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artificially tagged data, and (ii) systems should try to model the natural com-
petence of annotators in comprehending sentences rather than their imperfect
performance on artificial tagging tasks.

Multiple systems, including the examples described in Section 7 achieved
good results on the PETE task using state-of-the-art parsers and simple en-
tailment systems. The analysis of the Cambridge entailment system showed
it to have accuracy of approximately 90% as a tool for evaluating the cé&c
parser, or potentially any parser producing GRs, on the PETE development
data. This result is perhaps even more important than the task scores since it
suggests that PETE is worth pursuing as a parser evaluation approach.

Our hope is datasets like PETE will be used not only for evaluation but also
for training and fine-tuning of systems in the future. Further work is needed to
automate the entailment generation process and to balance the composition
of syntactic phenomena covered in a PETE dataset.
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