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RGB-D Object Recognition Using Deep
Convolutional Neural Networks

BMVC 2017 Submission # 361

Abstract

We address the problem of object recognition from RGB-D images using deep con-
volutional neural networks (CNNs). We advocate the use of 3D CNNs to fully exploit the
3D spatial information in depth images as well as the use of pretrained 2D CNNs to learn
features from RGB-D images. There exists currently no large scale dataset available
comprising depth information as compared to those for RGB data. Hence transfer learn-
ing from 2D source data is key to be able to train deep 3D CNNs. To this end, we propose
a hybrid 2D/3D convolutional neural network that can be initialized with pretrained 2D
CNNs and can then be trained over a relatively small RGB-D dataset. We conduct exper-
iments on the Washington dataset involving RGB-D images of small household objects.
Our experiments show that the features learnt from this hybrid structure, when fused with
the features learnt from depth-only and RGB-only architectures, outperform the state of
the art on RGB-D category recognition.

1 Introduction
Object recognition is a fundamental problem with numerous applications in computer vision
and robotics. With easy availability of low-cost sensors like Microsoft Kinect, depth and
color information can be simultaneously captured and included in recognition of objects.
Depth provides additional information about the 3D structure of the physical environment
and has proven to improve the recognition performance when paired with color information.
Unlike RGB images, depth images are invariant to lighting and allow better background
separation.

Object recognition and classification have been extensively studied for RGB images,
and there are large datasets available. Convolutional Neural Networks (CNNs) have been
particularly successful and have produced state of the art results on these large datasets in
challenges like ImageNet [17]. The ImageNet challenge has led to development of success-
ful deep CNNs for image classification like AlexNet [11], VGGnet [19], GoogleNet [22]
and ResNet [9]. The availability of such models that produce meaningful features for RGB
images are important for tasks that have smaller datasets available, since collection of large
datasets is in general time-consuming and requires large amount of processing time while
training. Likewise, while depth sensors are widely popular in robotics, there are no large
scale dataset or models available as compared to those for color information. The topic of
RGB-D object recognition is being widely researched on, but most of them focus on hand-
designed feature descriptors. In this work, we utilize deep convolutional neural networks
pretrained on a large RGB dataset and address the problem of transfer learning from 2D
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source to 3D for object recognition on relatively small RGB-D datasets containing 3D infor-
mation. In particular, we conduct experiments on the RGB-D Washington dataset involving
household objects [12].

We present an approach that exploits the RGB information learnt by large scale models,
particularly the VGGnet, so as to train a novel hybrid 2D/3D convolutional neural network
and boost the recognition performance via fusion. Our contributions include:

1. We exploit the information in the pretrained VGGnet model to extract features from
RGB images and train a linear SVM (Support Vector Machine) with these features
for RGB-based category recognition. Our approach exceeds the state-of-the-art on the
Washington dataset.

2. We study the problem of training 3D convolutional neural networks from scratch based
on RGB-D images. We preprocess the depth information to produce a spatial 3D voxel
representation combining depth and RGB information.

3. We modify the VGGnet in such a way that it can accept 3D inputs and after the first
layer it continues as 2D like the original VGGnet. By modifying the first layer of
the VGGnet, we can initialize the resulting 2D/3D hybrid network, that we refer to as
VGG3D, by transferring the weights from the original VGGnet.

4. Finally, we fuse the features resulting separately from VGGnet, 3D CNN and VGG3D
architectures. Our fusion results exceed the state-of-the-art for category recognition.

2 Related Work
The previous methods proposed for RGB-D objected recognition are broadly divided into
two categories: the methods that use hand-designed descriptors and those that learn features.
These features are then fed into classifiers along with their labels for the final classification
task which is usually based on SVMs or softmax regression. Some of the methods that use
feature learning include sparse coding, hierarchical matching pursuit [3, 4], convolutional
k-means descriptors [2], regularized reconstructed ICA network [10] and coupled classifiers
[14].

In recent years, deep learning has become extremely popular and has been extensively
applied to machine learning tasks. In particular, convolutional neural networks are being
popularly used to solve vision related task such as scene labeling [7], object recognition
[20], face verification [23] and pose estimation [25]. Convolutional neural networks were
originally introduced by [13] for a hand written digit recognition problem. Since then they
have been used on datasets that include rich images like ImageNet and have achieved state-
of-the-art performance on the ImageNet Large Scale Visual Recognition Challenge [17].
Recently, application of convolutional neural networks for RGB-D data has become popular
and various methods have been suggested to achieve superior performance as compared to
hand-designed descriptors.

Convolutional neural networks have been used in combination with other architectures
to solve the RGB-D object recognition problem. One such technique is a combination of
convolutional and recursive neural networks, that is based on the idea that convolutional lay-
ers extract low level features and recursive neural networks extract high level features [20].
Another work modifies this technique to boost the RGB-D based recognition performance
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by proposing a semi-supervised framework based on co-training, which uses less labeled
data but achieves competitive results as compared to the state of the art [5]. A recent work
tackling the same problem of joint learning introduces a multimodal layer to a CNN-based
neural network [26]. Another interesting work [18] converts depth images to RGB images
using a color map and then uses a deep convolutional neural network (AlexNet) pretrained
on color images. An extension of this method further improves the recognition performance
by introducing a multi-modal scheme to learn joint features from the pretrained AlexNet [6].

Due to the availability of faster GPUs and dedicated CUDA libraries for deep learning,
3D convolutional neural networks are now increasingly becoming popular. 3D CNNs are
currently being used for region proposal, object recognition and medical imaging. One such
work focuses on neuroimaging using 3D MRI scans to predict Alzheimer’s disease. The net-
work consist of 3D convolutional layers pretrained via unsupervised learning using sparse
auto-encoders [16]. Several approaches have been suggested to get a 3D voxel representa-
tion from depth images to be fed into 3D CNNs that allow to better exploit the 3D structure
present in depth images. One such approach, called ShapeNets, represents the depth in-
formation into a voxel grid in the form of truncated signed distance function (TSDF) [21].
VoxNets is another approach that encodes depth information into a volumetric occupancy
grid [15].

Transfer learning is a technique which improves the learning on target task using the in-
formation gathered on source task [24]. Especially in the case of object recognition, transfer
learning is widely used with deep convolutional neural networks. The most common strat-
egy is to use a deep CNN architecture pretrained on a large dataset as a feature extractor
[21], [18] or to fine-tune it on a smaller dataset [6], [26]. When the target dataset is small,
using a network that is pretrained with a larger dataset shows better performance on object
recognition as investigated in [27]. This strategy of transfer learning however is currently
applicable, particularly in the case of object recognition, only when the source and target
datasets are of the same type, i.e., involving purely 2D image data. Transfer learning from
2D source to 3D target remains to be an open problem that we attempt to tackle in this work.

3 The Dataset
We conduct experiments on the Washington RGB-D dataset [12]. The dataset consists of
300 small household objects such as fruits, vegetables, boxes and water bottle, which are
instances of 51 categories. Hence the dataset is grouped by category as well as by instance.
For example, apple is a category that has five instances each of which can be red, green or
yellow. Each instance has depth and RGB images from three video sequences. Each video
sequence consists of a full turn table rotation with placing the camera at a certain angle, while
the object is kept stationary. The video sequences are captured with the camera at 30◦, 45◦,
and 60◦. In this work, we use the cropped version of the dataset, which consists of bounding
box images, along with the segmentation masks that filter the background from both depth
and RGB images. Our evaluation is based on a subset of this dataset, which consists of every
fifth frame of each of the video sequences, resulting in about 42000 images. Out of these
images, around 35000 instances are used for training and 7000 for testing.

The Washington dataset can be considered as tricky for the object recognition task due to
various reasons. For example, the ball object can have instances that are not only of different
colors but also of different shapes and sizes. The instances include tennis ball, golf ball and
baseball. For category recognition experiments, the testing set includes instances that are
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completely different from the training set. Also, some round objects like tomato and sponge
that are similar in both shape and color are indeed hard to differentiate.

4 VGGnet for RGB-only recognition
For RGB-only object recognition, we extract features using the pretrained VGGnet [19],
which was the runner-up architecture in the ImageNet [17] classification and localization
challenge in 2014. The VGGnet has a deep but simple structure, deploying very small (3×3)
filters in all of its convolutional layers. Hence it is relatively easy to implement and train,
and therefore commonly used in computer vision for feature extraction from RGB images.
More specifically, we use the 16-layer VGGnet which consists of stacks of convolution lay-
ers followed by maxpooling layers. In this deep architecture, the feature maps increase in
number as the depth increases, and the convolutional layers are eventually followed by three
fully connected layers.

While the initial layers of the VGGnet learn general features, deeper layers are expected
to learn more dataset specific features. To extract the most meaningful features and make best
use of the VGGnet for our task, we investigate the last three fully connected layers of the
VGGnet to understand where the network inclines towards learning more dataset specific
features. For this, we remove the first, second, and third fully connected layers from the
VGGnet respectively (or their combinations) and extract features for each image by applying
a forward pass on the pretrained VGGnet with no fine-tuning. The resulting features are then
used for training a linear SVM in each case. Based on the experimental results that we will
later present in Section 5, we use the VGGnet up to the depth of its first fully connected layer
as the final architecture, as shown in Figure 1, where “Conv" stands for 3× 3 convolution
followed by ReLU activation, "Pool" for max-pooling and "FC" for fully connected layer.

Figure 1: Our pretrained VGGnet-based architecture for RGB object recognition.

5 3D Pipeline

5.1 3D Input Representation
The first step in our 3D recognition pipeline is to convert the input depth information into
an adequate 3D representation. Rather than encoding the depth information as any function
or descriptor such as truncated signed distance function as in [21], we represent the depth
information as raw as possible along with RGB information and investigate if a 3D CNN can
learn meaningful features.

We represent the depth information in a 3D voxel grid by defining a third dimension
based on the depth values present in the RGB-D images of the dataset. We create a 3D
voxel representation, with the same height and width as the original image, and with a depth
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determined by the difference between the maximum and minimum depth values found in
the images. Each RGB-D pixel of an image is then placed at the same position in the voxel
grid but at its corresponding depth. This results in a 3D representation that simultaneously
encodes the 3D spatial and color information of a given object. Incorporating the RGB
information into the 3D representation helps to jointly learn features that are related to both
depth and color rather than learning features from depth only. Our voxel representation (only
for R channel for simplicity) is shown in Figure 2.

The depth images in the dataset have missing values in some regions where the depth
sensor is not able to capture properly. We process these images by doing an interpolation to
fill the missing values. We then apply the provided segmentation mask to filter out the back-
ground information and encode only the object shape since the turntable in the background
has similar depth values to the object and interfere with its shape.

Figure 2: Illustration of how RGB-D images are converted to voxel representations for a
3×3 input image (fragment), where depth values are quantized into 6 intervals.

5.2 3D CNN Architecture

We follow the VGGnet [19] in terms of architecture while designing our 3D CNN. We em-
ploy two convolutional layers, each followed by a max-pooling layer. Two fully connected
layers are added to the end of the network, as shown in Figure 3. We rescale the resolution
of the voxel representation to 30×30×30, which is considerably smaller than the resolution
of the original RGB-D images, but sufficient to train the network so as to obtain a decent
performance. Note also that training 3D CNNs is significantly more demanding in terms
of computation and memory requirements when compared to 2D CNNs. We use 64 filters
at each convolutional layer and keep the filter size small (3× 3). The number of filters is
maintained through the convolution layers to retain information since the input size is al-
ready smaller as compared to the original object size. The weights are randomly initialized
using the Xavier technique [8] and the network is trained by backpropagation using softmax
classifier.

Figure 3: Our 3D CNN architecture
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5.3 Hybrid CNN Architecture (VGG3D)
In order to transfer learning from 2D source to 3D target, we define a VGGnet-like hybrid
CNN structure than can be initialized with the VGGnet and trained with backpropagation
over the 3D RGB-voxel input generated as described in Section 5.1. The main idea is to
modify the 2D VGGnet into a network that can accept 3D information. To this end, we
replace the first layer of VGGnet-16 with a 3D convolutional layer by adding a dimension
to the pretrained filter weights. After the first layer, the resulting hybrid network continues
as 2D like the original VGGnet, and produces the same result as the original VGGnet would
generate when fed with the corresponding RGB input image. This provides us with a good
starting point to fine-tune the weights transferred from the VGGnet. We call this modified
network as VGG3D and visualize its structure in Figure 4.

In our experiments with the hybrid network, we encode the depth values via non-uniform
quantization based on the distribution of pixels along the third dimension that we denote by
d, resulting in a N ×N ×D×3 voxel representation, where D denotes the depth of the voxel
grid and 3 is the number of color channels. We set N = 224, which is the image size given as
input to the VGGnet. The depth values are quantized into D−1 intervals of varying length so
as to include equal number of pixels (points) at each interval over the whole dataset. The last
depth interval D is spared to the depth values corresponding to the background. We compute
background depth values using the inverse of the segmentation masks provided. We choose
D = 6 as an optimal value in terms of memory constraints and the performance it gives.

Figure 4: Our Hybrid 2D/3D CNN architecture (VGG3D)

The filters at the first layer of the hybrid network are 3D convolution kernels of size
3× 3×D. The weights of these filters are initialized by replicating the filters of the first
layer of the VGGnet along the depth dimension d. The filters at the remaining layers all
remain 2D, initialized directly with the weights of the corresponding layers of the VGGnet.

In the sequel, we explain more rigorously how we initialize the hybrid CNN so that
the output of the modified first layer generates exactly the same output as the first layer of
the VGGnet when fed with the same sample (RGB or RGB-voxel). Let x(2)(i, j) denote
the 2D input image of size N ×N and x(3)(i, j,d) the input 3D voxel grid of size N ×N ×
D. For simplicity, we assume that the input images are monochrome with single channel,
but the analysis can easily be generalized to RGB images. The kth filter at the first layer
of the VGG3D, denoted by w(3)

k (i, j,d) of size 3× 3×D, is generated by replicating the
corresponding 2D filter of the VGGnet along dimension d so that

w(3)
k (i, j,d) = w(2)

k (i, j), (1)

where w(2)
k (i, j) is the kth filter at the first layer of the VGGnet, which is of size 3 × 3.

The corresponding outputs at the first layers of the VGGnet and VGG3D are then given by
y(2)k (i, j) = x(2)(i, j) ∗w(2)

k (i, j) and y(3)k (i, j,d) = x(3)(i, j,d) ∗w(3)
k (i, j,d), respectively. By

Eq. 1, we can then write
y(3)k (i, j,D/2) = y(2)k (i, j) (2)
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assuming D is even, since the 3D input is originally a depth image so that x(3)(i, j,d) is
non-zero for at most one value of d, i.e., only one voxel is occupied for a given pixel (i, j).
When the output y(3)k (i, j,D/2) of the first layer of the VGG3D is then fed to the next layer,
the VGG3D generates exactly the same final output as the VGGnet would produce with the
same sample. The illustration of this process is shown in Figure 5.

Figure 5: Illustration of VGG3D (top row) and VGGnet (bottom row) first layer responses.

6 Fusion
We fuse the outputs of the pretrained VGGnet, the 3D CNN and the VGG3D architectures to
get our final overall RGB-D recognition performance. We basically concatenate the features
that we get from individual architectures and then feed the resulting vector to the linear SVM.
Although the 3D voxel input already contains RGB information, the 3D CNN is trained on
a much lower resolution than the VGGnet resulting in a loss of RGB information. So we do
not expect it to model the RGB information as good as the VGGnet does. But incorporation
of RGB information into the 3D CNN helps to train it from scratch using random initializa-
tion on a smaller dataset and to contribute to the overall performance by exploiting mainly
the depth information. Moreover, the inclusion of the VGG3D in the fusion is expected
to compensate some of the 3D information that cannot be modeled by the 3D CNN due to
difficulties in its training, and the VGG3D achieves this via transfer learning.

7 Experiments

7.1 Setup
We implement all the networks using Julia programming language [1] and Knet framework
[28]. The experiments are carried out for the category recognition problem over 10 splits as
in [12]. Each split contains randomly selected objects from each category (51 in total) in the
test set and the remaining 249 objects are included in the training. The reported performance
results are all outputs of the linear SVM fed by the features resulting from individual archi-
tectures or their combinations. Validation and parameter optimization, regarding both SVM
classifiers and CNN architectures that we employ, are performed on Split 1 and repeated
with fixed settings over the remaining splits.
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For 3D CNN training, we fix the learning rate to 0.1 and the number of epochs to 10.
The network is trained using back-propagation. For VGG3D network training, the softmax
layer is first trained with back-propagation by freezing all the other layers with the weights
transferred from the pretrained VGGnet. This learnt layer is then used to initialize the soft-
max layer prior to training of the VGG3D as a whole with backpropagation. For VGG3D
training, we choose a low learning rate of 0.0001, which helps prevent overfitting.

Prior to the experiments, all the images in the Washington dataset are re-scaled to the
input size of the original VGGnet (224×224) and then mean-normalized (the mean is com-
puted over the training set). Beside this, no other preprocessing is applied.

7.2 Results
We first compare the performances of the features extracted from different layers of the
VGGnet in Table 1 (see also Section 4). We observe that as we move closer to the last
fully connected layer of the VGGnet, the performance significantly worsens. This is because
these layers learn features specific to the object categories of the original dataset. The first
fully connected layer performs the best as anticipated. We also consider fusing the features
resulting from a combination of fully connected layers as in [18]. We observe that when the
best performing layers are fused, we get only an increase of 0.03% in the performance. Since
the feature size doubles while fusing, we decide to include only the best performing layer in
our VGGnet based architecture for RGB recognition (see Figure 1).

VGG Layer Feature Size Accuracy (%)
FC1 4096 91.08
FC2 4096 89.25
FC3 1000 72.24
FC1+FC2 8192 91.11
FC2+FC3 5096 89.20

Table 1: Recognition performance results with features extracted from fully connected VG-
Gnet layers over Split1, where FC-n denotes the nth fully connected layer.

Table 2 shows the 10-fold recognition results for VGGnet, 3D CNN and VGG3D archi-
tectures, and their combinations, along with the corresponding mean accuracies and standard
deviations. The VGGnet shows good performance of around 89% recognition rate on RGB
images while the 3D CNN performs around 78% with incorporation of depth. However,
the 3D CNN adds a significant 2.5% boost to the recognition performance when fused with
the VGGnet. There are a number of reasons why the 3D voxel input, although comprising
both depth and RGB information, does not yield better results than the RGB-only data itself.
First, unlike the VGGnet, the 3D CNN is trained from scratch via random initialization and
thus can not take any advantage of any previously learnt information. Second, the Wash-
ington dataset is a small dataset when compared to the ImageNet RGB database on which
the VGGnet was pretrained. Moreover, the RGB-D images in the Washington dataset need
to be re-scaled into a small voxel resolution in order to train the 3D CNN structure, which
inevitably yields loss of both RGB and depth information. But when fused with the VGGnet,
the 3D CNN that jointly learns information from depth and RGB adds significantly to the
performance. When the VGG3D is finally incorporated into the fusion scheme, the VGG3D
compensates for some part of the loss in 3D information via transfer learning, and the overall
performance is further boosted and exceeds the state of the art, as given in Table 3, which
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presents 10-fold recognition results in comparison to previous methods. Note also that the
performance of our VGG3D network is superior to the individual performances of the VG-
Gnet and the 3DCNN. To the best of our knowledge, our overall fusion scheme achieves the
highest accuracy on category recognition compared to the previous methods tested on the
Washington dataset.

Split VGGnet 3D CNN VGG3D VGGnet + 3D CNN VGGnet + 3D CNN + VGG3D
1 91.04 76.33 91.22 91.03 91.90
2 92.69 76.88 92.51 92.09 92.76
3 86.15 79.96 87.88 90.90 91.69
4 87.62 74.69 87.56 90.27 90.31
5 88.84 78.63 89.53 92.39 92.63
6 89.72 79.61 90.02 90.40 91.02
7 90.70 83.12 90.92 92.57 92.82
8 87.87 77.40 88.32 91.64 92.27
9 88.79 77.40 89.91 90.35 90.76
10 86.15 80.30 89.97 91.56 92.21
Mean 88.96 78.43 89.78 91.29 91.84
Dev 2.13 2.41 1.55 0.86 0.89

Table 2: Accuracy results (%) with 10-fold split validation for VGGnet, 3D CNN, VGGnet
and fusion combinations.

Method RGB Depth RGB-D
[12] 74.30 ± 3.3 53.1 ± 1.7 81.90 ± 2.8
[4] 82.40 ± 3.1 81.2 ± 2.3 87.50 ± 2.9
[18] 83.10 ± 2.0 N/A 89.40 ± 1.3
[20] 80.80 ± 78.90 ± 3.8 86.80 ± 3.3
[10] 85.65 ± 2.7 83.94 ± 2.8 89.59 ± 3.8
[5] 85.20 ±1.2 81.2 ± 2.3 90.10 ± 1.1
[6] 84.10 ± 2.7 83.8 ± 2.7 91.30± 1.4
[26] 74.6 ± 2.7 N/A 86.90 ± 2.9
Ours 88.96 ± 2.1 78.43 ± 2.4 91.84 ± 0.89

Table 3: Comparison of our fusion scheme with previous methods for category recognition:
Accuracy results (%) with RGB-only, Depth-only and RGB-D modalities.

8 Conclusion
This work can be considered as an attempt to transfer learning from 2D source to 3D target
for the object recognition problem where the datasets comprising 3D information are not
large enough to be able to train deep neural network architectures from scratch. Our findings
show that explicit handling of 3D spatial information as an additional modality to RGB
data (using 3D CNNs in our case) significantly contributes to the recognition performance.
Moreover, even a small amount of learning transferred from 2D source data to 3D (in terms
of the first layer of the VGGnet transferred to the VGG3D in our case) can help further boost
the performance beyond the state of the art. We believe that there is still room for even
further improvements and hence need for better and more comprehensive architectures that
can be trained via transfer learning in order to fully exploit the 3D information available for
object recognition and possibly for other multimodal vision tasks as well.
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