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Despite their increasing importance as data retrieval tools,
most Information Retrieval (IR) systems do not have high
precision and recall. Lack of disambiguation power is one
teason for the poor performance of these systems. Correctly
disambiguating and expanding a query only with intended
synonyms before retrieval may improve their performance.

We use the local context' of a word to identify its sense.
Words used in the same context (called selectors) often have
related senses. So, an occurrence of a word and iis synonym
belong to the same sense if they have similar local contexts.

We use WordNet (Miller 1990} and selectors extracted
from Associated Press articles {(Yuret 1998} for
disambiguation. Selectors help us find the right WordNet
synset (synonyms of only one sense) of a word in its context.

Figure 1 shows the process of extracting selectors of charge
in a given sentence. The final tally of identified selectors is
shown in Table 1.

Selector Appointed Asgigned | BEstablished | Hired
Frequency 52 28 20 16

Table 1: Final tally of selector frequencies for Figure 1.

Once the selectors are extracted, the appropriate WordNet
synset is selected by comparing the selectors against the
ambiguous word’s WordNet synsets.

Semcor, a subset of Brown corpus, is commonly used for
disambiguation evaluation. In Semcor, each word is tagged
with its correct part of speech and sense number taken from
WordNet.

The “most frequent heuristic” is accepted as the baseline
for measuring performance of WSD algorithms. When tested
onaly on words with more than one sense, the accuracy of the
“most frequent” heuristic on Semcor was approximately 54%.
In comparison, our algorithm achieved an accuracy of 45%.

To evaluate the effect of disambiguation on IR, we tested
the performance of Smart (Buckley et. al., 1995). These tests
were done in two ways: In the first, the original queries were
expanded with the identified potential synonyms. In the

! Local context of a word is the ordered list of words from the closest
content word on each side up to the target word expressed as a
placeholder. For example, in “the jury had been charged to investigate
reports of irregularites in the primary...” the right-side local context of
“chargad” is “X to investigate™.
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second test, the queries were replicated by replacing only the
target word with one of its identified synonyms. This was
done for all content words in the query. Retrieval tests were
done on CACM, CISI and CRAN collections. In all cases, the
performance of the system became worse.

“...the jury had been charged to investigate reports
of rregularities in the primary...”
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Figure 1; Identification of selectors in a given context
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Low disambiguation performance is probably the main
cause of poor IR performance (Voorhees 1993, Sanderson
1994). Improving disambiguation performance through use of
a different lexical source, or through use of different context
definitions can improve IR performance as well.
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