
Discriminative vs. Generative Approaches in Semantic Role Labeling

Deniz Yuret
Koç University

dyuret@ku.edu.tr

Mehmet Ali Yatbaz
Koç University

myatbaz@ku.edu.tr

Ahmet Engin Ural
Koç University

aural@ku.edu.tr

Abstract

This paper describes the two algorithms
we developed for the CoNLL 2008 Shared
Task “Joint learning of syntactic and se-
mantic dependencies”. Both algorithms
start parsing the sentence using the same
syntactic parser. The first algorithm
uses machine learning methods to iden-
tify the semantic dependencies in four
stages: identification and labeling of pred-
icates, identification and labeling of ar-
guments. The second algorithm uses
a generative probabilistic model, choos-
ing the semantic dependencies that max-
imize the probability with respect to the
model. A hybrid algorithm combining the
best stages of the two algorithms attains
86.62% labeled syntactic attachment accu-
racy, 73.24% labeled semantic dependency
F1 and 79.93% labeled macro F1 score for
the combined WSJ and Brown test sets1.

1 Introduction

In this paper we describe the system we developed
for the CoNLL 2008 Shared Task (Surdeanu et al.,
2008). Section 2 describes our approach for iden-
tifying syntactic dependencies. For semantic role
labeling (SRL), we pursued two independent ap-
proaches. Section 3 describes our first approach,
where we treated predicate identification and la-
beling, and argument identification and labeling as
four separate machine learning problems. The fi-
nal program consists of four stages, each stage tak-
ing the answers from the previous stage as given

1These numbers are slightly higher than the official results
due to a small bug in our submission.

and performing its own identification or labeling
task based on a model generated from the train-
ing set. Section 4 describes our second approach
where we used a generative model based on the
joint distribution of the predicate, the arguments,
their labels and the syntactic dependencies con-
necting them. Section 5 summarizes our results
and suggests possible improvements.

2 Syntactic dependencies

We used a non-projective dependency parser based
on spanning tree algorithms. The parameters were
determined based on the experimental results of
the English task in (McDonald et al., 2005), i.e. we
used projective parsing and a first order feature set
during training. Due to the new representation of
hyphenated words in both training and testing data
of our shared task and the absence of the gold part
of speech (GPOS) column in the test data, the for-
mat of the CoNLL08 shared task is slightly differ-
ent from the format of the CoNLL05 shared task,
which is supported by the McDonald’s parser. We
reformatted the data accordingly. The resulting la-
beled attachment score on the test set is 87.39%
for WSJ and 80.46% for Brown.

3 The 4-stage discriminative approach

Our first approach to SRL consists of four distinct
stages: (1) predicate identification, (2) predicate
labeling, (3) argument identification, and (4) argu-
ment labeling.

A discriminative machine learning algorithm is
trained for each stage using the gold input and out-
put values from the training set. The following
sections describe the machine learning algorithm,
the nature of its input/output, and the feature se-

lection process for each stage. The performance
of each stage is compared to a most frequent class
baseline and analyzed separately for the two test
sets and for nouns and verbs. In addition we look
at the performance given the input from the gold
data vs. the input from the previous stage.

3.1 Predicate identification

The task of this stage is to determine whether a
given word is a nominal or a verb predicate using
the dependency-parsed input. As potential predi-
cates we only consider words that appear as a pred-
icate in the training data or have a corresponding
PropBank or NomBank XML file. The method
constructs feature vectors for each occurrence of
a target word in the training and test data. It as-
signs class labels to the target words in the training
data depending on whether a target word is a pred-
icate or not, and finally classifies the test data. We
experimented with combinations of the following
features for each word in a 2k + 1 word window
around the target: (1) POS(W): the part of speech
of the word, (2) DEP(W, HEAD(W)): the syntac-
tic dependency of the word, (3) LEMMA(W): the
lemma of the word, (4) POS(HEAD(W)): the part
of speech of the syntactic head.

We empirically selected the combination that
gives the highest accuracy in terms of the preci-
sion and recall scores on the development data.
The method achieved its highest score when we
used features 1-3 for the target word and features
1-2 for the neighbors in a [-3 +3] word window.
TiMBL (Daelemans et al., 2004) was used as the
learning algorithm.

Table 1 (4-stage, All1) shows the results of our
learning method on the WSJ and Brown test data.
The noun and verb results are given separately
(Verb1, Noun1). To distinguish the mistakes com-
ing from parsing we also give the results of our
method after the gold parse (4-stage-gold). Our
results are significantly above the most frequent
class baseline which gives 72.3% on WSJ and
65.3% on Brown.

3.2 Predicate labeling

The task of the second stage is deciding the correct
frame for a word given that the word is a predicate.
The input of the stage is 11-column data, where the
columns contain part of speech, lemma and syn-
tactic dependency for each word. The first stage’s

decision for the frame is indicated by a string in
the predicate column. The output of the stage is
simply the replacement of that string with the cho-
sen frame of the word. The chosen frame of the
word may be word.X, where X is a valid number
in PropBank or NomBank.

The statistics of the training data show that by
picking the most frequent frame, the system can
pick the correct frame in a large percent of the
cases. Thus we decided to use the most frequent
frame baseline for this stage. If the word is never
seen in the training, first frame of the word is
picked as default.

In the test phase, the results are as the follow-
ing; in the Brown data, assuming that the stage 1
is gold, the score is 80.8%, noting that 11% of the
predicates are not seen in the training phase. In
WSJ, the score based on gold input is 88.3%, and
only 5% of the predicates are not seen in the train-
ing phase. Table 1 gives the full results for Stage 2
(4-stage, Verb2, Noun2, All2).

3.3 Argument identification

The input data at this stage contains the syntac-
tic dependencies, predicates and their frames. We
look at the whole sentence for each predicate and
decide whether each word should be an argument
of that predicate or not. We mark the words we
choose as arguments indicating which predicate
they belong to and leave the labeling of the ar-
gument type to the next stage. Thus, for each
predicate-word pair we have a yes/no decision to
make.

As input to the learning algorithm we experi-
mented with representations of the syntactic de-
pendency chain between the predicate and the
argument at various levels of granularity. We
identified the syntactic dependency chain between
the predicate and each potential argument using
breadth-first-search on the dependency tree. We
tried to represent the chain using various subsets
of the following elements: the argument lemma
and part-of-speech, the predicate frame and part-
of-speech, the parts-of-speech and syntactic de-
pendencies of the intermediate words linking the
argument to the predicate.

The syntactic dependencies leading from the
argument to the predicate can be in the head-
modifier or the modifier-head direction. We
marked the direction associated with each depen-

dency relation in the chain description. We also
experimented with using fine-grained and coarse-
grained parts of speech. The coarse-grained part
of speech consists of the first two characters of the
Penn Treebank part of speech given in the training
set.

We used a simple learning algorithm: choose
the answer that is correct for the majority of the
instances with the same chain description from
the training set. Not having enough detail in the
chain description leaves crucial information out
that would help with the decision process, whereas
having too much detail results in bad classifica-
tions due to sparse data. In the end, neither the ar-
gument lemma, nor the predicate frame improved
the performance. The best results were achieved
with a chain description including the coarse parts
of speech and syntactic dependencies of each word
leading from the argument to the predicate. The
results are summarized in Table 1 (4-stage, Verb3,
Noun3, All3).

3.4 Argument labeling

The task of this stage is choosing the correct argu-
ment tag for a modifier given that it is modifying
a particular predicate. Input data format has ad-
ditional columns indicating which words are argu-
ments for which predicates. There are 54 possible
values for a labeled argument. As a baseline we
take the most frequent argument label in the train-
ing data (All1) which gives 37.8% on the WSJ test
set and 33.8% on the Brown test set.

The features to determine the correct label of an
argument are either lexical or syntactic. In a few
cases, they are combined. The following list gives
the set we have used. Link is the type of the syntac-
tic dependency. Direction is left or right, depend-
ing the location of the head and the modifier in the
sentence. LastLink is the type of the dependency
at the end of the dependency chain and firstLink
is type of the dependency at the beginning of the
dependency chain.

Feature1 : modifierStem + headStem
Feature2 : modifierStem + coarsePosModifier +

headStem + coarsePosHead + direction
Feature3 : coarsePosModifier + headPos +

firstLink + lastLink + direction
Feature4: modifierStem + coarsePosModifier
The training phase includes building simple his-

tograms based on four features. Feature1 and Fea-

ture2 are sparser than the other two features and
are better features as they include lexical informa-
tion. Last two features are less sparse, covering
most of the development data, i.e. their histograms
give non-zero values in the development phase. In
order to match all the instances in the development
and use the semantic information, a cascade of the
features is implemented similar to the one done by
Gildea and Jurafsky(2002), although no weighting
and a kind of back-off smoothing is used. First,
a match is searched in the histogram of the first
feature, if not found it is searched in the following
histogram. After a match, the most frequent argu-
ment with that match is returned. Table 1 gives the
performance (4-stage, Verb4, Noun4, All4).

4 The generative approach

One problem with the four-stage approach is that
the later stages provide no feedback to the earlier
ones. Thus, a frame chosen because of its high
prior probability will not get corrected when we
fail to find appropriate arguments for it. A gen-
erative model, on the other hand, does not suffer
from this problem. The probability of the whole
assignment, including predicates, arguments, and
their labels, is evaluated together and the highest
probability combination is chosen.

4.1 The generative model

Figure 1: The graphical model depicting the con-
ditional independence assumptions.

Our generative model specifies the distribution
of the following random variables: P is the lemma
(stem+pos) of a candidate predicate. F is the
frame chosen for the predicate (could be null). Ai

is the argument label of word i with respect to a
given predicate (could be null). Wi is the lemma
(stem+pos) of word i. Li is the syntactic depen-

WSJ Verb1 Verb2 Verb3 Verb4 Noun1 Noun2 Noun3 Noun4 All1 All2 All3 All4
4-stage 97.1 85.5 85.7 71.7 84.6 78.4 61.1 49.4 90.6 81.8 76.6 63.5
generative 96.1 88.4 83.4 74.0 82.8 79.5 69.8 63.2 89.0 83.6 77.4 69.2
4-stage-gold 97.4 88.3 95.2 82.7 85.2 92.7 70.5 81.9 91.1 90.5 86.0 82.4
generative-gold 96.3 92.6 91.1 88.0 83.4 95.5 80.7 86.9 89.4 94.0 86.7 87.5
hybrid 97.1 89.3 85.7 74.7 84.6 80.9 70.9 64.0 90.6 84.9 79.5 70.2

Brown Verb1 Verb2 Verb3 Verb4 Noun1 Noun2 Noun3 Noun4 All1 All2 All3 All4
4-stage 93.0 74.5 78.9 59.0 74.4 58.6 52.3 38.8 86.0 68.6 72.8 54.3
generative 91.4 71.7 76.1 60.0 70.8 59.3 54.0 45.3 83.1 66.6 69.6 55.7
4-stage-gold 93.0 80.8 93.7 73.2 75.7 80.3 70.1 70.5 86.5 80.8 88.2 72.4
generative-gold 91.6 80.6 85.8 78.05 71.2 85.9 70.5 75.1 83.5 82.6 81.8 77.1
hybrid 93.0 73.3 78.9 60.4 74.4 62.9 57.6 47.5 86.0 69.3 73.4 57.0

Table 1: The F1 scores for different datasets, models, stages, and predicate parts of speech. The “Verb”
in the column heading indicates verbal predicates, “Noun” indicates nominal predicates, “All” indicates
all predicates. The numbers 1-4 in column headings indicate the 4 stages: (1) predicate identification, (2)
predicate labeling, (3) argument identification, (4) argument labeling. The gold results assume perfect
output from the previous stages. The highest number in each column is marked with boldface.

dency chain leading from word i to the given pred-
icate (similar to Section 3.3).

We consider each word in the sentence as a can-
didate predicate and use the joint distribution of
the above variables to find the maximum proba-
bility F and Ai labels given P , Wi, and Li. The
graphical model in Figure 1 specifies the condi-
tional independence assumptions we make. Equiv-
alently, we take the following to be proportional to
the joint probability of a particular assignment:

Pr(F |P)
∏
i

Pr(Ai|F) Pr(Wi|FAi) Pr(Li|FAi)

4.2 Parameter estimation

To estimate the parameters of the generative model
we used the following methodology:

For Pr(F |P) we use the maximum likelihood
estimate from the training data. As a consequence,
frames that were never observed in the training
data have zero probability. One exception is lem-
mas which have not been observed in the training
data, for which each frame is considered equally
likely.

For Pr(Ai|F) we also use the maximum like-
lihood estimate and normalize it using sentence
length. For a given argument label we find the
expected number of words in a sentence with that
label for frame F . We divide this expected num-
ber with the length of the given sentence to find
Pr(Ai|F) for a single word. Any leftover prob-
ability is given to the null label. If the sentence
length is shorter than the expected number of ar-

guments, all probabilities are scaled down propor-
tionally.

For the remaining two terms Pr(Li|F,Ai) and
Pr(Wi|F,Ai) using the maximum likelihood es-
timate is not effective because of data sparseness.
The arguments in the million word training data
contain about 16,000 unique words and 25,000
unique dependency chains. To handle the sparse-
ness problem we smoothed these two estimates us-
ing the part-of-speech argument distribution, i.e.
Pr(Li|POS, Ai) and Pr(Wi|POS, Ai), where POS

represents the coarse part of speech of the predi-
cate.

5 Results and Analysis

Table 1 gives the F1 scores for the two models
(4-stage and generative), presented separately for
noun and verb predicates and the four stages of
predicate identification/labeling, argument identi-
fication/labeling. In order to isolate the perfor-
mance of each stage we also give their scores with
gold input. The rest of this section analyzes these
results and suggests possible improvements.

A hybrid algorithm: A comparison of the two
algorithms show that the 4-stage approach is su-
perior in predicate and verbal-argument identifica-
tion and the generative algorithm is superior in the
labeling of predicates and arguments and nominal-
argument identification. This suggests a hybrid al-
gorithm where we restrict the generative model to
take the answers for the better stages from the 4-
stage algorithm (Noun1, Verb1, Verb3) as given.

Tables 1 and 2 present the results for the hybrid
algorithm compared to the 4-stage and generative
models.

Data/algorithm Unlabeled Labeled
WSJ 4-stage 81.15 69.44
WSJ generative 81.01 73.66
WSJ hybrid 82.94 74.74
Brown 4-stage 76.91 58.76
Brown generative 73.76 59.05
Brown hybrid 77.22 60.80

Table 2: Semantic scores for the 4-stage, genera-
tive, and hybrid algorithms

Parsing performance: In order to see the effect
of syntactic parsing performance, we ran the hy-
brid algorithm starting with the gold parse. The
labeled semantic score went up to 78.84 for WSJ
and 67.20 for Brown, showing that better parsing
can add about 4-6% to the overall performance.

Syntactic vs lexical features: Our algorithms
use two broad classes of features: information
from the dependency parse provides syntactic ev-
idence, and the word pairs themselves provide se-
mantic evidence for a possible relation. To iden-
tify their relative contributions, we experimented
with two modifications of the generative algo-
rithm: gen-l does not use the Pr(Wi|FAi) term
and gen-w does not use the Pr(Li|FAi) term. gen-
l, using only syntactic information and the pred-
icate, gets a labeled semantic score of 70.97 for
WSJ and 58.83 for Brown, a relatively small de-
crease. In contrast gen-w, using only lexical infor-
mation gets 43.06 for WSJ and 33.17 for Brown
causing almost a 40% decrease in performance.

On the other hand, we find that the lexical fea-
tures are essential for certain tasks. In labeling the
arguments of nominal predicates, finding an exact
match for the lexical pair guarantees a 90% accu-
racy. If there is no exact match, the 4-stage algo-
rithm falls back on a syntactic match, which only
gives a 75% accuracy.

Future work: The hybrid algorithm shows the
strengths and weaknesses of our two approaches.
The generative algorithm allows feedback from the
later stages to the earlier stages and the 4-stage ma-
chine learning approach allows the use of better
features. One way to improve the system could be

by adding feedback to the 4-stage algorithm (later
stages can veto input coming from previous ones),
or adding more features to the generative model
(e.g. information about neighbor words when pre-
dicting F). More importantly, there is no feedback
between the syntactic parser and the semantic role
labeling in our systems. Treating both problems
under the same framework may lead to better re-
sults.

Another property of both models is the inde-
pendence of the argument label assignments from
each other. Even though we try to control the num-
ber of arguments of a particular type by adjusting
the parameters, there are cases when we end up
with no assignments for a mandatory argument or
multiple assignments where only one is allowed.
A more strict enforcement of valence constraints
needs to be studied.

The use of smoothing in the generative model
was critical, it added about 20% to our final F1
score. This raises the question of finding more
effective smoothing techniques. In particular,
the jump from specific frames to coarse parts of
speech is probably not optimal. There may be
intermediate groups of noun and verb predicates
which share similar semantic or syntactic argu-
ment distributions. Identifying and using such
groups will be considered in future work.

References
Daelemans, W., J. Zavrel, K. van der Sloot, and

A. van den Bosch. 2004. TiMBL: Tilburg memory-
Based Learner. Tilburg University.

Gildea, D. and D. Jurafsky. 2002. Automatic label-
ing of semantic roles. Computational Linguistics,
28(3):245 288.

McDonald, R., K. Crammer, and F. Pereira. 2005. On-
line Large-Margin Training of Dependency Parsers.
Ann Arbor, 100.

Surdeanu, Mihai, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
the 12th Conference on Computational Natural Lan-
guage Learning (CoNLL-2008).

