
The Greedy Prepend Algorithm

for Decision List Induction

Deniz Yuret1 and Michael de la Maza2

1 Koç University, Istanbul, Turkey, dyuret@ku.edu.tr
2 Park Hudson Finance, Cambridge, MA 02139, USA

Abstract. We describe a new decision list induction algorithm called
the Greedy Prepend Algorithm (GPA). GPA improves on other deci-
sion list algorithms by introducing a new objective function for rule se-
lection and a set of novel search algorithms that allow application to
large scale real world problems. GPA achieves state-of-the-art classifica-
tion accuracy on the protein secondary structure prediction problem in
bioinformatics and the English part of speech tagging problem in com-
putational linguistics. For both domains GPA produces a rule set that
human experts find easy to interpret, a marked advantage in decision
support environments. In addition, we compare GPA to other decision
list induction algorithms as well as support vector machines, C4.5, naive
Bayes, and a nearest neighbor method on a number of standard data sets
from the UCI machine learning repository.

1 Introduction

The Greedy Prepend Algorithm (GPA) is an induction system for decision lists.
A decision list is an ordered list of rules where each rule consists of a pattern and
a classification [1]. A new instance is classified by comparing it to the pattern
of each rule, and the classification of the first matching rule is accepted. An
example of a three rule decision list for the UCI house votes data set [2] is shown
in Table 1.

Table 1. A three rule decision list for the UCI house votes data set

1. If adoption-of-the-budget-resolution = y

and anti-satellite-test-ban = n

and water-project-cost-sharing = y

then democrat

2. If physician-fee-freeze = y

then republican

3. If TRUE then democrat



2 Deniz Yuret and Michael de la Maza

To learn a decision list from a given set of training examples the general
approach is to start with a default rule or an empty decision list and keep adding
the best rule to cover the unclassified or misclassified examples. The new rules
can be added to the end of the list [3], the front of the list [4], or other positions
[5]. Other design decisions include the criteria used to select the “best rule” and
how to search for it.

GPA works by prepending rules to the front of a growing decision list and
distinguishes itself with its simple “best rule” definition. When a rule is added
to a decision list, the increase in the number of correctly predicted training set
instances is called the rule’s gain. In GPA the best rule is defined to be the rule
that has the maximum gain. Earlier decision list induction systems typically
used variants of the Laplace preference function [6], which emphasizes the rule’s
individual accuracy rather than its contribution to the decision list as a whole.
We show that the simple maximum gain rule results in comparable or better
overall accuracy on a number of standard data sets.

By default, GPA uses an efficient admissible search algorithm (Opus [7])
which is guaranteed to find the maximum gain rule. However, in real world
problems with a large number of training instances and distinct feature values
such exhaustive search may become prohibitively expensive. To cope with large
scale problems GPA introduces two novel heuristic search algorithms: one that
restricts the rule set, and another that restricts the search algorithm.

To illustrate the performance of the algorithm on large scale problems we
present two applications of GPA, one to the secondary structure prediction prob-
lem in bioinformatics (Section 3) and the second to English part of speech tagging
(Section 4). Comparisons with other decision list inducers on these problems were
not feasible due to the scale of the problems. Thus we compare the classification
accuracy of GPA to other decision list inducers and well-known concept learning
algorithms on a representative set of problems from the UCI Machine Learning
Repository (Section 5). Section 2 describes the GPA algorithm.

2 The Greedy Prepend Algorithm

To construct the decision list in Table 1, GPA first generates the default rule (rule
#3) which assigns every instance the majority class in the training set. Next,
candidates for rule #2 are searched, and the one that results in the highest gain
in accuracy for the training set is selected. The whole decision list is constructed
from the bottom up until no further improvement can be made. Note that, when
the completed decision list is applied to classify an instance, rules are applied
from the top (rule #1) to the bottom (rule #3).

The high-level Greedy Prepend Algorithm is given in Table 2. Max-Gain-

Rule finds the rule that results in the largest increase in the training set accuracy
when added to the beginning of a decision list. By default, an admissible search
algorithm (Opus [7]) is used to search all possible rules. For large scale problems
where this approach is not feasible, either the search algorithm (see Section 3)
or the set of rules (see Section 4) can be restricted. The selection of rules based



Greedy Prepend Algorithm 3

Table 2. Greedy Prepend Algorithm

GPA(data)

1 dlist ← nil

2 default-class ←Most-Common-Class(data)
3 rule ← [if true then default-class]
4 while Gain(rule, dlist , data) > 0
5 do dlist ← Prepend(rule, dlist)
6 rule ←Max-Gain-Rule(dlist , data)
7 return dlist

on gain, and the heuristic search methods distinguish GPA from other decision
list algorithms such as Prepend [4].

By default, GPA reserves 20% of its training set for validation. As more and
more rules are added to the decision list, the performance on the validation set
peaks, then starts dropping even though the training set performance is improved
with every rule. GPA prevents overfitting by stopping the rule generation when
the validation performance starts to drop.

The antecedents of the GPA rules can represent binary and nominal at-
tributes naturally. Missing values do not pose a problem: an instance with a
missing attribute will not match a rule that specifies a value for that attribute.
For datasets with numeric attributes we use the MDL method of supervised dis-
cretization [8, 9]. We force the resulting attributes to be binary (i.e. less than,
greater than conditions) so that GPA can construct arbitrary ranges using only
two terms of the form attr >= x1 and attr <= x2 in the antecedent.

3 Secondary Structure Prediction

In this section, we present an application of GPA to a large scale problem and
illustrate the use of its heuristic search algorithm. Specifying the tertiary struc-
ture of a protein, the location of all of its constituent amino acids in Euclidean
space, is key to understanding its function and is one of the outstanding unsolved
problems in biology. Ideally, the tertiary structure could be determined from the
primary structure, the linear sequence of amino acids that compose the protein.
A step towards the tertiary structure is the secondary structure which classifies
each amino acids into one of three groups: alpha helix, beta strand, and loop.

Secondary structure prediction has been studied for several decades and
dozens of standard machine learning techniques have been applied to the prob-
lem. Chou [10] described a simple rule based method for predicting secondary
structure. Levin [11] introduced the notion of using multiple sequence alignment
to improve prediction. Rost [12] combined neural networks and multiple sequence
alignment. Huang [13] discusses the limitations of many secondary structure pre-
diction techniques.



4 Deniz Yuret and Michael de la Maza

Data Set: Our GPA evaluation for the secondary structure prediction problem
is based on the recommendations and the data set described in [14]. The data
set, CB513, consists of 513 non-homologous proteins that have been used in a
number of studies. These proteins, along with their homologues, were used with
seven fold cross validation to obtain our accuracy figures. The data set includes
1.7 million instances, nine attributes with 180 distinct values, and three classes.

Methodology: Two decision lists were built to perform secondary structure pre-
diction. The sequence-to-structure list takes a window of 9 adjacent residue
names as input and outputs a prediction of one of three secondary structure
assignments (helix, strand, or loop) for the center residue. The structure-to-
structure list takes a window of 19 adjacent secondary structure assignments

from the first decision list as input, and outputs a possible correction for the
center residue. During testing both decision lists are applied to the test pro-
tein and its homologues, and final assignments are determined by majority vote.
This type of organization is common in the literature [12], although implemented
using different learners like neural networks.

Search Algorithm: Learning disjunctions is critical in the secondary structure
prediction domain so that the decision lists can capture regularities across classes
of residues. However, searching the space of all rules with disjunctions is com-
putationally infeasible and current search techniques, such as Opus [7], cannot
be used in this problem domain.

We implemented a heuristic technique that finds good disjunctive rules. The
search uses randomly selected instances to gradually construct a candidate rule.
If the instance is misclassified by the current decision list and matches the class
of the candidate rule, the rule is generalized to include the instance. If the
instance is correctly classified by the current decision list but the candidate rule
changes its classification, the rule is specialized to exclude the instance. After
every modification, the change in the gain is computed and the modification is
accepted if there is an overall increase in the rule’s gain. The search terminates
after a prespecified number of modifications fail to improve the candidate rule.
A candidate rule is constructed for each class, and the one with the highest gain
is accepted to the decision list.

Table 3. Performance results for the set of CB513 proteins

Algorithm: PHD DSC Predator NNSSP GPA
Accuracy: 72.3 69.1 69.0 71.7 69.2

Results: GPA achieves a classification accuracy of 69.2% on CB513. To put this
number in perspective, always predicting the most common class (loop) gives a



Greedy Prepend Algorithm 5

prediction accuracy of 43%. Predicting the class based only on the identity of
the center amino acid gives a prediction accuracy of 49%.

The secondary structure problem has been the subject of intense interest in
computational biology and machine learning. Table 3 shows the classification
accuracy of several of the leading algorithms on CB513. PHD is a neural net-
work based system [12], DSC is a statistical technique [15], PREDATOR is a
knowledge based system [16], and NNSSP is a nearest neighbor algorithm [17].
GPA gives a strong result and is the only one that produces human readable
models.

4 Part of Speech Tagging

In this section, we present an application of GPA to a linguistic problem and
illustrate the use of rule space restriction to cope with the large search space.
Determining the part of speech of ambiguous words is a useful step in the anal-
ysis of natural language text. The sentence “Time flies like an arrow” can be
interpreted in several different ways depending on the part of speech assign-
ments. The word “time” can be a noun (time moves quickly just like an arrow
does), a verb (measure the speed of flying insects like you would measure that
of an arrow), or an adjective (a type of flying insect, “time-flies,” enjoy arrows;
compare “Fruit flies like a banana.”) The problem of part of speech tagging is
to decide what part of speech each word has depending on its context.

Data Set: We have used the Penn Treebank Wall Street Journal corpus [18]
for evaluating the performance of GPA for part of speech tagging. The Penn
Treebank uses a set of 45 distinct part of speech tags to annotate about a million
words of newspaper text. The data set consists of one million instances with
fifty attributes and half a million distinct attribute values. The data was split
randomly intro training, validation, and test sets using a 4:1:1 ratio.

Methodology: To represent the context of a word to be tagged, we take a win-
dow of seven words centered around the target word and encode the following
information about each one in the attributes:

1. The original word and its lowercase version.
2. The character types (upper case, numeric etc.) used in the word.
3. Prefixes and suffixes of the word up to four characters long.

Common domain specific optimizations were not performed on our GPA
implementation: We did not use an explicit dictionary that lists the possible parts
of speech for each word, or use previous part of speech predictions in the model,
or train a separate model for the unknown words. Nevertheless GPA seems to
extract the necessary information from the surface features of the surrounding
words and achieve comparable accuracy to previously reported results.

The fact that these attributes are very redundant (e.g. the three character
suffix of a word is correlated with its four character suffix) and mostly irrelevant



6 Deniz Yuret and Michael de la Maza

(no attribute filtering was performed) does not seem to prevent GPA from getting
a good result. More formal analysis of the robustness of GPA in the presence of
redundant and irrelevant attributes needs to be performed.

Search Algorithm: The large size of the search space precludes an exhaustive
search for the maximum gain rule. Representing the suffixes and strings of each
word encountered during training creates a large number of distinct values for
some attributes. To cope with the large search space, we limited the search to
rules that add a single attribute to one of the already accepted rules in the
decision list. As a result, after the default rule, only single attribute rules are
searched. After the first single attribute rule, all the two attribute rules which
share the same first attribute, and all the remaining single attribute rules are
searched. This way each rule is forced to specify an exception to a previously
accepted rule that can be expressed by a single attribute.

Table 4. Performance results for part of speech tagging

Algorithm: Post Brill Mxpost GPA
Overall: 96.7 96.6 96.6 96.0
Unknown: 85.0 82.2 86.2 81.8

Results: Part of speech tagging is a much studied problem with a number of
successful approaches. We present the results of three well known algorithms
for comparison in Table 4. The “overall” column gives the overall accuracy,
and the “unknown” column gives the accuracy on unknown words. Post is a
Markov model based stochastic tagger [19], Brill’s tagger uses transformation
based learning [20], and Mxpost is based on a maximum entropy model [21].

5 UCI Machine Learning Repository

The UCI Machine Learning Repository [2] has a long and storied history in the
machine learning community. Although its influence has waned in recent years,
testing a new algorithm on a variety of UCI data sets serves as a sanity check
on the algorithm’s characteristics.

We present two sets of comparisons in this section. First, we compare the
accuracy of GPA and the lengths of the decision lists it generates to other decision
list induction algorithms analyzed in [4]. Then, we report results with a number
of standard machine learning algorithms implemented in Weka [9].

Most UCI datasets are small enough to allow exhaustive search for the maxi-
mum gain rule. We therefore used the admissible Opus algorithm [7] to find the
best rule. On some problems a limit on the maximum number of terms in the
antecedent of a rule was imposed for the sake of efficiency.



Greedy Prepend Algorithm 7

5.1 Comparison with other decision list algorithms

Webb [4] compares the accuracy and average list length of a number of decision
list induction algorithms. Prepend builds decision lists from the bottom towards
the top like GPA, but uses the Laplace preference function which emphasizes the
individual accuracy of a rule. GPA, in contrast, uses the maximum gain function
which only measures the increase in the performance of the whole decision list
caused by the new rule. Append is a variation of the CN2 algorithm [3] which
builds decision lists from the top towards the bottom. Append-p2 implements
rule pruning. C4.5rules is a standard algorithm which generates rules from a
decision tree [22].

Table 5 presents accuracy and average list length for GPA and Prepend on
the 11 problems used in [4]. The GPA results were obtained repeating 5 fold
cross validation 100 times. The number of terms in the antecedents were limited
to 3 for the sake of time.

Table 5. Comparison of GPA and Prepend on accuracy and list length on some UCI
data sets (standard deviations are given in parentheses)

Accuracy Length
Data set GPA Prepend GPA Prepend

audio 74.55 (5.78) 77.2 (5.4) 25.3 (2.15) 10.7 (0.9)
breast 71.96 (4.28) 61.2 (5.6) 4.5 (3.75) 9.6 (1.1)
votes 95.10 (2.41) 94.9 (2.5) 4.1 (1.76) 5.0 (0.5)
lymph 76.60 (7.27) 84.3 (7.4) 7.7 (2.19) 5.1 (0.6)
monks-1 100.0 (0.0) 100.0 (0.0) 5.9 (1.14) 4.7 (0.5)
monks-2 64.94 (2.07) 99.1 (1.5) 64.1 (4.8) 15.8 (0.4)
monks-3 98.92 (0.88) 97.9 (1.2) 4.0 (0.0) 4.9 (0.7)
mushroom 100.0 (0.0) 100.0 (0.0) 8.0 (0.0) 4.0 (0.0)
soybean 89.59 (2.69) 83.6 (5.3) 26.0 (8.6) 20.7 (0.8)
tic-tac-toe 98.41 (0.92) 96.9 (1.0) 9.0 (0.0) 12.0 (0.8)
tumor 40.8 (4.32) 39.1 (5.3) 11.1 (6.67) 16.8 (1.6)

A two tailed z test at 0.05 significance level was used to compare the GPA
results to the ones reported in [4]. Compared to Prepend, GPA had significantly
higher accuracy in 5 problems and worse in 3 problems. The list lengths were
shorter than prepend 5 times and longer 6 times. GPA exceeds the performance
of the original Prepend in accuracy and matches it in length. Comparison with
the other algorithms is summarized in Table 6. The number triples indicate
the number of problems in which GPA won, drew, and lost at the 0.05 signif-
icance level. GPA seems to achieve significantly higher accuracy than append
and append-p2 and build shorter decision lists than append and c4.5rules.



8 Deniz Yuret and Michael de la Maza

Table 6. Win:draw:loss numbers comparing GPA to other rule based algorithms

Algorithm Accuracy Length

prepend-ip2 5:3:3 5:0:6
append 6:3:2 7:2:2
append-p2 5:4:2 5:1:5
c4.5rules 4:6:1 8:1:2

5.2 Comparison with other learning algorithms

Table 7 summarizes GPA’s performance versus naive Bayes, support vector ma-
chines (SMO), a nearest neighbor algorithm (IB5), C4.5 (J4.8), and a decision
table learner (DTable) as implemented in the Weka tool [9]. All algorithms were
run in their default settings. GPA was restricted to rules with at most three
antecedent terms. Each of the 20 data sets were evaluated with five fold cross
validation repeated 10 times. The results were compared with a two tailed paired
t-test at 0.05 significance level.

The key result is that the performance accuracy of GPA is comparable to
leading concept learning algorithms. For example, compared to support vector
machines GPA is better (p < 0.05) on five data sets, worse (p < 0.05) on three
data sets, and statistically indistinguishable on the rest.

Table 7. Comparison of GPA with other common learning algorithms. Standard de-
viations are given in parentheses. A (*) next to a result shows that it is statistically
significantly worse than GPA and a (v) shows that it is significantly better than GPA.
The last line gives the win:draw:loss numbers for each column.

Dataset GPA NBayes SMO IB5 J48 DTable
anneal 98.83(0.76) 86.80(2.41) * 97.37(1.10) * 96.97(1.30) * 98.62(0.76) 98.50(0.87)
audio 75.42(6.55) 71.37(4.44) 80.36(4.53) 60.67(5.22) * 77.57(4.77) 74.35(6.21)
balance 74.42(3.84) 89.97(1.31) v 87.82(1.96) v 87.60(1.70) v 78.11(2.49) 76.78(3.83)
breast 71.57(3.39) 73.21(5.00) 69.19(4.81) 74.02(3.52) 73.18(3.75) 71.47(4.80)
glass 69.27(6.59) 48.45(5.95) * 57.06(6.96) * 65.24(4.69) 67.45(7.13) 68.80(7.01)
heart-clev 79.24(5.81) 83.04(4.97) 83.40(4.37) 81.73(4.43) 76.24(4.80) 77.76(6.56)
heart-hung 78.47(4.24) 83.91(4.40) v 82.15(4.55) 81.84(4.68) 79.83(5.56) 79.77(4.68)
hepatitis 79.29(5.53) 83.42(5.09) 85.16(4.56) 84.32(4.88) 78.52(5.44) 78.77(6.22)
hypo 99.52(0.32) 95.33(0.48) * 93.58(0.29) * 93.26(0.40) * 99.50(0.26) 99.36(0.31)
iris 94.60(3.74) 95.47(3.55) 96.33(2.95) 96.13(3.04) 94.53(3.67) 93.73(3.27)
lymph 76.91(5.65) 82.71(7.02) 85.89(5.78) v 82.58(5.79) 76.11(6.53) 74.41(6.80)
monks-1 100.00(0.0) 74.62(2.75) * 74.64(2.77) * 98.44(1.37) * 97.73(3.80) 100.00(0.0)
monks-2 65.24(1.94) 62.33(2.54) * 65.72(0.22) 57.52(3.29) * 63.18(4.40) 65.72(0.22)
monks-3 98.92(0.80) 96.39(1.45) * 97.15(1.80) 97.71(1.29) 98.92(0.80) 98.92(0.80)
mushroom 100.00(0.0) 95.66(0.52) * 100.00(0.0) 99.98(0.05) 100.00(0.0) 100.00(0.0)
segment 94.44(1.15) 80.27(1.47) * 92.67(0.99) * 95.18(0.93) 96.47(1.14) v 91.60(1.71) *
sonar 70.76(6.68) 68.29(6.81) 76.39(5.86) 80.29(6.28) v 72.98(7.16) 70.74(7.15)
soybean 89.63(2.55) 92.65(1.92) v 93.03(1.61) v 89.66(2.18) 90.57(2.52) 85.78(2.76) *
tic-tac-toe 98.14(1.10) 70.26(2.91) * 98.33(0.84) 98.85(0.76) 83.98(2.26) * 77.40(2.89) *
tumor 40.62(4.49) 48.47(3.62) v 45.87(4.61) 46.96(4.36) v 40.64(4.35) 39.36(4.79)

(9/7/4) (5/12/3) (5/12/3) (1/18/1) (3/17/0)



Greedy Prepend Algorithm 9

6 Contributions

The Greedy Prepend Algorithm is a decision list induction system that achieves
state-of-the art classification accuracy on secondary structure prediction and
part of speech tagging and matches the performance of C4.5 and support vector
machines on a representative set of data sets from the UCI Machine Learning
Repository.

The main contributions of the GPA are its simple objective function for rule
selection and its heuristic search extensions which allow decision lists to be ap-
plied to large scale problems with thousands of features and millions of instances.
The results show that decision lists can be competitive with the best known al-
gorithms in large scale real world problems. Unlike Bayesian methods, neural
networks, nearest neighbor algorithms, and support vector machines, rule based
learners like GPA produce output that is human readable. Hence GPA is a bet-
ter fit in decision support environments where a decision maker benefits from an
explanation for the recommendations made by automated concept learning sys-
tems. GPA demonstrates by example that high classification accuracy is possible
while still preserving a representation that can be easily interpreted by humans.

A GPA implementation that runs within WEKA [9], an open source envi-
ronment for running machine learning experiments, is available from the first
author.

References

1. Rivest, R.L.: Learning decision lists. Machine Learning 2 (1987) 229–246
2. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine

learning databases (1998) http://www.ics.uci.edu/∼mlearn/MLRepository.html.
3. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3 (1989)

261–283
4. Webb, G.I.: Recent progress in learning decision lists by prepending inferred rules.

In: Proceedings of the Second Singapore International Conference on Intelligent
Systems (SPICIS ’94), Singapore (1994) B280–B285

5. Newlands, D., Webb, G.I.: Alternative strategies for decision list construction. In:
Proceedings of the Fourth Data Mining Conference (DM IV 03). (2004) 265–273

6. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In
Kodratoff, Y., ed.: Machine Learning – Proceedings of the Fifth European Confer-
ence (EWSL-91), Berlin, Springer-Verlag (1991) 151–163

7. Webb, G.I.: Opus: An efficient admissible algorithm for unordered search. JAIR
3 (1995) 431–465

8. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proceedings of the Workshop on Massive
Datasets, Washington, DC, NRC, Committee on Applied and Theoretical Statistics
(1993)

9. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2 edn. Morgan Kaufmann (2005)

10. Chou, P.Y., Fasman, G.D.: Conformational parameters for amino acids in helical,
beta sheet and random coil regions calculated from proteins. Biochemistry 13(2)
(1974) 211–222



10 Deniz Yuret and Michael de la Maza

11. Levin, J.M., Pascarella, S., Argos, P., Garnier, J.: Quantification of secondary
structure prediction improvement using multiple alignment. Prot. Engin. 6 (1993)
849–854

12. Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70%
accuracy. Journal of Molecular Biology 232 (1993) 584–599

13. Huang, J.T., Wang, M.T.: Secondary structural wobble: The limits of protein pre-
diction accuracy. Biochemical and Biophysical Research Communications 294(3)
(2002) 621–625

14. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence meth-
ods for protein secondary structure prediction. Proteins: Structure, Function, and
Genetics 34 (1999) 508–519

15. King, R.D., Sternberg, M.J.E.: Identification and application of the concepts im-
portant for accurate and reliable protein secondary structure prediction. Protein
Sci 5 (1996) 2298–2310

16. Frishman, D., Argos, P.: Seventy-five percent accuracy in protein secondary struc-
ture prediction. Proteins: Structure, Function, and Genetics 27 (1997) 329–335

17. Salamov, A.A., Solovyev, V.V.: Prediction of protein secondary structure by com-
bining nearest-neighbor algorithms and multiple sequence alignments. Journal of
Molecular Biology 247 (1995) 11–15

18. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics 19(2) (1993)
313–330

19. Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L.: Coping with ambigu-
ity and unknown words through probabilistic models. Computational Linguistics
19(2) (1993) 359–382

20. Brill, E.: Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics 21(4)
(1995) 543–565

21. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing.
(1996)

22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)


