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Abstract. This paper presents on-going work on the lexical attraction
models of language, in which the only explicitly represented linguistic
knowledge is the likelihood of pairwise relations between words. This
is in contrast with models that represent linguistic knowledge in terms
of a lexicon, which assigns categories to each word, and a grammar,
which expresses possible combinations in terms of these categories. The
word-based nature and the simplicity of lexical attraction models make
them good candidates for experiments in language learning. I introduce
a parser and an on-line unsupervised learning algorithm based on expec-
tation maximization.

1 Introduction

Every sentence in natural language has an underlying structure that consists of
the relations between its words:

John ate the cake in the restaurant

This simple representation indicates the related words with links connecting
them, i.e. John is the subject and cake is the object of the verb ate, restaurant

is where the eating took place. If the sentence were “John ate the cake in the

box.”, the word box would be linked to cake because presumably John was not
in the box while eating. We effortlessly make such inferences because we know
cakes usually come in boxes and people usually eat in restaurants.

Word associations such as eat-restaurant and cake-box are not only useful
for resolving syntactic ambiguity, but they may play an important role in early
child language acquisition. A common assumption made by language acquisition
theories is that children understand word meanings before syntax acquisition
begins. Word meanings coupled with general world knowledge is usually sufficient
to identify word pairs in the sentence that are related. When a pre-syntax child
hears “John ate the cake”, he can conclude that John is the eater and cake is
the thing that is eaten regardless of the positions of the words. This conclusion
in turn fuels the acquisition of syntactic patterns employed by his particular
language to express functions such as subject and object.

A computer can acquire such word associations from a large corpus. It can
then use this information to infer relations between words in a sentence. The
nature and accuracy of these relations are of interest because they represent an
important portion of the information available to the pre-syntax child.
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Lexical attraction can be defined as the likelihood of two words being syn-
tactically related in a sentence. When deciding whether two words are related
in a sentence we use two types of information. First, there are grammatical con-
straints, e.g. each determiner must modify a noun or transitive verbs must take
objects. Second, there are selectional restrictions, e.g. given the verb eat, cake

would be a more likely object than book. Grammatical constraints by themselves
are typically not restrictive enough to uniquely identify the correct relations.
Lexical attraction models quantify selectional restrictions and can be used to
demonstrate how much of the sentence we can understand without the help of
syntax.

Linguistic models based on pairwise relations between words are called de-
pendency models, and have a long history[1]. Sleator et. al.[2] developed one of
the first large scale implementations of dependency grammar for English. Su-
pervised learning of probabilistic dependency models was introduced in [3, 4].
Unsupervised learning for dependency models was introduced in [5] and later
developed by [6]. More recently, unsupervised learning using both dependency
and constituency was explored in [7].

Section 2 gives some basic results on dependency structures. Section 3 formal-
izes the lexical attraction model in the language of information theory. Section 4
describes the parsing algorithm. Section 5 presents the unsupervised learning
algorithm and experiments.

2 Dependency Structures

The linguistic formalism that takes syntactic relations between words as basic
primitives is known as the dependency formalism. Mel’čuk discusses important
properties of syntactic relations in his book on dependency syntax [1]. Sleator and
Temperley have a large scale implementation of English syntax based on a similar
formalism they call link grammars [2]. This section presents basic properties of
linguistic dependency structures.

In this work we will assume that the dependency structure is acyclic. It is
generally the case that the syntactic relations in a sentence form an acyclic graph,
i.e. a tree. Linguistically, each word in a sentence has a unique head, except for
the root word, which governs the whole sentence1.

Most sentences in natural languages also have the property that syntactic
relation links drawn over words do not cross. This property is called planarity

[13], projectivity [1], or adjacency [14] by various researchers. The examples in
Figure 1 illustrate the planarity of English. In the first sentence, it is easily seen
that the woman was in the red dress and the meeting was in the afternoon.
However, in the second sentence, the same interpretation is not possible. In fact,
it seems more plausible for John to be in the red dress.

Gaifman gave the first formal analysis of dependency structures that satisfy
the planarity condition[15]. His paper gives a natural correspondence between

1 See [1, p. 25] for a discussion.
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John met the woman in the red dress in the afternoon

John met the woman in the afternoon in the red dress

?

Fig. 1. Example illustrating planarity

dependency systems and phrase-structure systems and shows that the depen-
dency model characterized by planarity is context-free. Sleator and Temperley
show that their planar model is also context-free even though it allows cycles
[2].

The number of possible dependency structures for an n word sentence is given
by f(n) = C(3n− 1, n− 1)/(2n− 1), where C indicates the binomial coefficient.
The first few values of f(n) are: 1, 1, 3, 12, 55, 273, 1428. Figure 2 shows the
possible planar dependency structures with up to four words.

Fig. 2. Possible planar dependency structures with up to four words.

3 The Lexical Attraction Model

Lexical attraction is best described within the framework of information theory.
Shannon defines the entropy of a discrete random variable as H = −

∑
pi log pi

where i ranges over the possible values of the random variable and pi is the
probability of value i [8, 9]. Consider a sequence of tokens drawn independently
from a discrete distribution. In order to construct the shortest description of
this sequence, each token i must be encoded using − log2 pi bits on average.
− log2 pi can be defined as the information content of token i. Entropy can then
be interpreted as the average information per token. Following is an English
sentence with the information content of each word given below, assuming words
are independently selected. The word probabilities were estimated using a large
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corpus of news material. Note that the information content is lower for the more
frequently occurring words.

The IRA is fighting British rule in Northern Ireland
4.20 15.85 7.33 13.27 12.38 13.20 5.80 12.60 14.65

3.1 Mutual information

Language models achieve lower entropy by taking into account the relations
between the words in the sentence. Consider the phrase Northern Ireland. Even
though the independent probability of Northern is 2−12.6, it is seen before Ireland

36% of the time. Another way of saying this is that although Northern carries
12.6 bits of information by itself, it adds only log2(0.36) = 1.48 bits of new
information to Ireland.

With this dependency, Northern and Ireland can be encoded using 1.48 +
14.65 = 16.13 bits instead of 12.60+14.65 = 27.25 bits. The 11.12 bit gain from
the correlation of these two words is called mutual information. We measure
lexical attraction with mutual information. The basic assumption of this work
is that words with high lexical attraction are likely to be syntactically related.

The following diagram gives the information content of the words in our
example according to a bigram model. The information content of each word
is computed based on its conditional probability given the previous word. As a
result, the encoding of the sentence is reduced from 99.28 bits to 62.34 bits.

The IRA is fighting British rule in Northern Ireland
4.20 12.90 3.73 10.54 8.66 5.96 3.57 9.25 3.53

> > > > > > > >

3.2 Linguistic context

Using the previous word as context is against our linguistic intuition. In a sen-
tence like “The man with the dog spoke”, the selection of spoke is determined by
man and is independent of the previous word dog. It follows that the context of a
word would be better determined by its linguistic relations rather than according
to a fixed pattern.

The assumption in lexical attraction models is that each word depends on
one other word in the sentence, but not necessarily an adjacent word as in n-
gram models. Lexical attraction models make it possible to define the context
of the word in terms of its syntactic relations.

Words in direct syntactic relation have strong dependencies. Chomsky defines
such dependencies as selectional relations [11]. Subject and verb, for example,
have a selectional relation, and so do verb and object. Subject and object, on the
other hand, are assumed to be chosen independently of one another. It should
be noted that this independence is only an approximation. The sentences “The

doctor examined the patient” and “The lawyer examined the witness” show that
the subject can have a strong influence on the choice of the object.

The following diagram gives the information content of the words in the
example sentence based on direct syntactic relations:
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The IRA is fighting British rule in Northern Ireland
1.25 6.60 4.60 13.27 5.13 8.13 2.69 1.48 6.70

<
<

<
>

<
>

<
<

The arrows represent the head-modifier relations between words. The infor-
mation content of each word is computed based on its conditional probability
given its head. I marked the verb as governing the auxiliary and the noun gov-
erning the preposition which may look controversial to linguists. From an in-
formation theory perspective, the mutual information between content words is
higher than that of function words. Therefore the model does not favor function
word heads.

The probabilities were estimated by counting the occurrences of each pair in
the same relative position. The linguistic dependencies reduce the encoding of
the words in this sentence to 49.85 bits compared to the 62.34 bits of the bigram
model. However, note that this number excludes the encoding of the dependency
structure.

3.3 Symmetry of lexical attraction

Lexical attraction between two words is symmetric. The mutual information is
the same no matter which direction the dependency goes. This directly follows
from Bayes’ rule. What is less obvious is that the choice of the head word and
the corresponding dependency directions it imposes do not effect the joint prob-
ability of the sentence. The joint probability is determined only by the choice of
the pairs of words to be linked.

Consider the Northern Ireland example:

Northern Ireland
1.48 14.65

<

Northern Ireland
12.60 3.53

>

In the first case, I used the conditional probability of Northern given that
the next word is Ireland. In the second case, I used the conditional probability
of Ireland given that the previous word is Northern. In both cases the encoding
of the two words is 16.13 bits, which is in fact − log2 p of the joint probability
of Northern Ireland. Thus a more natural representation would be the following,
where the link has no direction and its label shows the number of bits gained,
i.e. mutual information:

Northern Ireland
12.60 14.65

11.12

I generalize this result below and use the same representation for the whole
sentence. The lexical attraction for a pair of words is defined as the mutual
information gained by the link connecting them.

The IRA is fighting British rule in Northern Ireland
4.20 15.85 7.33 13.27 12.38 13.20 5.80 12.60 14.65

2.95
9.25

2.73
5.07

7.25
7.95

3.11
11.12
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4 The Parsing Algorithm

In this section we will describe an algorithm that finds the dependency structure
with the highest probability for a given sentence and lexical attraction model.
The straightforward way to do this would involve the comparison of exponen-
tially many structures. A more efficient procedure exists and can perform the
calculation in O(n3) steps for an n word sentence.

The leftmost word w1, in the best possible structure, may be linked to several
other words in the sentence, but there must be one that is furthest to the right.
Assume that word is wr.

Consider the case when r 6= n. Then the words between w1 and wr cannot link
to the words after wr, because that would break the no-link-crossing principle.
w1 also cannot link to a word after wr because wr was presumed to be the final
word linked to w1.

 W1  ...  Wr  ...  Wn 

We have divided the sentence into two parts that overlap by one word, wr. If
we multiply the lexical attraction products for the two parts, we get the product
for the whole sentence. Each part has fewer words than the whole sentence, so
the recursion is guaranteed to stop. So, at this point, it would be a matter of
trying all r, and picking the best, except there is the possibility that w1 does
link to wn.

Consider the case when w1 is linked to wn. There must be some words be-
tween w1 and wn that ultimately link to w1 and others that ultimately link to
wn. The two groups must be disjoint, otherwise the dependency structure would
be cyclic. Suppose wq is the rightmost word that links ultimately to w1.

 W1  ...  Wq  Wq+1  ...  Wn 

We have divided the sentence into two parts w1 . . . wq and wq+1 . . . wn, with
a single link joining the two parts. If we multiply the lexical attraction products
for the two parts, and the extra factor for the w1wn link, we get the product for
the whole sentence.

Let us call the dependency structures where w1 is linked to wn covered and
the others uncovered. We can find the best dependency structure by checking
the covered and the uncovered structures and picking the best one.

The computation can be performed bottom up by starting with short seg-
ments of the sentence and inductively computing the best structures for longer
segments. The base of the induction will be consecutive word pairs, for which
linking the two words is the only possible structure. We will use the following
notation.

Dij = the best dependency structure for the segment wi . . . wj .
Dc

ij = the best covered structure for wi . . . wj .
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Du
ij = the best uncovered structure for wi . . . wj .

ρ(D) = the total lexical attraction for D.
D1 ∪ D2 = union of the links in two dependency structures.
〈i, j〉 = a link between wi and wj .

Dij can be inductively computed as follows.

1. r = argmaxk ρ(Dc
ik) + ρ(Dkj)

2. Du
ij = Dc

ir ∪ Drj

3. q = arg maxk ρ(Dik) + ρ(Dk+1j)
4. Dc

ij = Diq ∪ Dq+1j ∪ {〈i, j〉}
5. Dij = arg maxD ρ(Du

ij), ρ(Dc
ij)

The first two steps compute the best uncovered structure. Note that the first
part Dc

ir is covered because r is linked to i. The next two steps compute the
best covered structure. Note that the lexical attraction factor for the wiwj link
is not needed in step 3 because it is fixed for all partitions. The final step chooses
between the two best structures.

In order to compute D1n, these steps will have to be performed for each i, j
pair where 1 ≤ i < j ≤ n. Steps 1 and 3 require O(n) steps to find the best
partition. Therefore the algorithm requires O(n3) steps to find D1n, the best
structure for the sentence.

5 Learning Experiments

This section presents an on-line unsupervised learning algorithm and the results
of training lexical attraction models. The algorithm interdigitates learning and
processing for every input sentence in the following manner:

– Find the most likely structure for an input sentence given the current state
of the model.

– Update the model assuming the structure found is the correct one.

In the following experiments, test results were obtained using one million
words of annotated Wall Street Journal text from the Penn Treebank corpus [19].
The phrase structure annotations were converted into dependency structure links
and the results give the percentage of links guessed correctly in the experiment.
For unsupervised training, out of sample plain WSJ text was used. Experiments
1–3 were run for benchmarking purposes.

Experiment 1 In this experiment, the sentences were parsed using a random
model. The model used a random number generator to generate the lexical at-
traction values. The resulting accuracy was 25.2%.

Experiment 2 The annotated test data was used for supervised training. The
resulting model was tested on the same data to get an upper bound on the
performance of a lexical attraction model which resulted in 77.4% accuracy.
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Experiment 3 One thousand sentences were held out from the test data and the
remaining was used for supervised training. Testing on the held out data led to
53.4% accuracy.

Experiment 4 In this experiment, I started with an empty model, giving 0 fre-
quency for any word pair. I used the same 20 million words of training data as
the previous experiment. The parser was run on every sentence using the ex-
isting model. The model was updated after every sentence by incrementing the
frequencies of the linked pairs. The resulting accuracy was 35.5%.

Experiment 5 Starting with an empty model and using the same 20 million
words of training data, the parser was run on every sentence using the existing
model as in the previous experiment. However, the model was updated after
every sentence by incrementing the frequencies of all first and second degree
neighbors. The resulting accuracy was 40.4%. The accuracy for content word
links was 51.9%.

The difference between experiments 4 and 5 is significant. When the model
is empty, giving 0 frequency to each pair, the parser ends up linking adjacent
words. In experiment 4, positive mutual information between some linked pairs
is discovered and the parser starts linking them even when they are not adjacent.
However, related words that are never seen adjacent cannot be discovered. These
include objects of verbs separated by determiners, as in “kick the ball”, or
prepositional phrases and adverbials modifying a verb that need to follow the
object, such as “kick the ball today”. Incrementing the second degree neighbors
in experiment 5 solves this problem and lets the program discover all related
words eventually.

The use of Penn Treebank data for evaluation of unsupervised language ac-
quisition is debatable. The conversion from the phrase structure representation
to dependency structure representation is bound to have errors. These errors are
most pronounced in noun phrases, where the Penn Treebank gives no internal
structure. The heuristics employed lead to the following linkage which results in
an accuracy result of 50% for the correct linkage discovered by the program:

the New York Stock Exchange Composite Index

Another problem with the evaluation is the equal treatment of content and
function words. For extraction of meaning, the mistakes in content-word links
are significantly more important than the mistakes in function-word links. The
following two sentences illustrate the difference. In the first sentence, a mistake
would result in choosing the wrong subject for flying. In the second sentence,
once the program has detected the relation between kick and ball, which way
the word the links is less important.
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I saw the mountains flying over New York

?
?

He is going to kick the ball

? ?

The program used in experiment 5 discovers 45.6% of the content-word links
correctly. With 180 million words of training, this accuracy goes up to 51.9%.

6 Contributions

I presented some basic results for lexical attraction models, in which the only
explicitly represented linguistic knowledge is the likelihood of pairwise relations
between words. I showed that these models can be used for unsupervised lan-
guage learning. Lexical attraction can perform well in situations where grammat-
ical constraints are not sufficiently restrictive, such as the analysis of complex
noun phrases, prepositional phrase attachment, and general syntactic ambigu-
ity. Figure 3 shows example sentences taken from various stages of unsupervised
learning with ten million words of news material.

(a) The New York Stock Exchange Composite Index fell

(b) Many people died in the clashes in the west in September

(c) A number of people protested. The number of people increased

(d) The pilot saw the train flying over Washington

The driver saw the airplane flying over Washington

Fig. 3. Example sentences output by the model that are particularly challenging for
syntactic models: (a) the internal structure of a complex noun phrase, (b) prepositional
phrase attachment, (c) and (d) two examples of syntactic ambiguity.
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