(12)

US006957213B1

United States Patent
Yuret

(10) Patent No.:
5) Date of Patent:

US 6,957,213 Bl
Oct. 18, 2005

(54

(75)
(73)

*)

@D
(22
(D
(52)
(58)

(56)

METHOD OF UTILIZING IMPLICIT
REFERENCES TO ANSWER A QUERY
Inventor: Deniz Yuret, Redondo Beach, CA (US)
Assignee: InQuira, Inc., San Bruno, CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
Appl. No.: 09/572,770
Filed: May 17, 2000
Int. CL7 oo GO6F 17/30
US.CL 707/4; 707/2; 704/9
Field of Search 707/1-4; 704/1,
704/9, 10
References Cited
U.S. PATENT DOCUMENTS
5,321,833 A 6/1994 Chang et al. 707/5
5,535,382 A /1996 Ogawacovvnviriiinnnnnn. 707/5
5,694,546 A 12/1997 Reisman 705/26
5,742,816 A 4/1998 Barr et al. ..ccovvevneennnnnnnn. 707/3
5,794,050 A 8/1998 Dabhlgren et al. 717/144
5,812,865 A 9/1998 Theimer et al. 709/228
5,826,269 A 10/1998 Hussey
5848399 A 12/1998 Burke ...
5,873,076 A 2/1999 Barr et al.
5,873,080 A 2/1999 Coden et al.
5884302 A 3/1999 HO oo,
5,893,091 A 4/1999 Hunt et al. ...
5,897,622 A 4/1999 Blinn et al. ...
5001287 A 5/1999 Bulletal. ...
5,913,215 A 6/1999 Rubinstein et al. 707/10
5,948,054 A * 9/1999 Nielsencccceevvveennn. 709/200
5,966,695 A 10/1999 Melchione et al. 705/10
5,974,412 A 10/1999 Hazlehurst et al. 707/3
5087454 A 11/1999 Hobbs 707/4
5,995,921 A 11/1999 Richards et al. 704/9
6,006,225 A 12/1999 Bowman et al. 705/26
6,016,476 A 1/2000 Maes et al.coeeeeeeerenens 705/1
Parge text to
identify sentances,
R
¥
Merk each
sentence, 34
v
Assign & unique
sentence number,
36
t
Identify tlles and
headings, 38
1
Mark titles and
headings, 40
R

6,021,403 A 2/2000 Horvitz et al.cceeennnene 706/45
6,028,601 A * 2/2000 Machiraju et al. 345/705
6,052,710 A 4/2000 Saliba et al. 709/203
6,061,057 A 5/2000 Knowlton et al. 345/744
6,078,914 A * 6/2000 Redfern e 70773
6,233,547 B1 * 5/2001 Denber e 704/9
6,370,535 B1 * 4/2002 Shapiro et al. .. . 707/100
6,466,899 Bl * 10/2002 Yano et al.ccceouuneee. 704/1
6,471,521 B1 * 10/2002 Dornbush et al. .. . 434/322
6,584,464 Bl * 6/2003 Warthencccceeeueee. 707/4
FOREIGN PATENT DOCUMENTS
wO PCT/US01/15711 5/2001

OTHER PUBLICATIONS

Don Clark, “AnswerFriend Seeks To Sell Question—Answer-
ing Software,” Wall Street Journal, Aug. 24, 2000.

Deniz Yuret, “Discovery of Linguistic Relations Using Lexi-
cal Attraction” PhD Thesis, MIT, May 15, 1998.

Deniz Yuret, “Lexical Attraction Models of Language.”
Submitted to The Sixteenth National Conference on Artifi-
cial Intelligence, 1999.

Boris Katz, Deniz Yuret, et al. “Integrating Large Lexicons
and Web Resources into a Natural Language Query Sys-
tem.” To appear in Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, 1999.

* cited by examiner

Primary Examiner—Greta Robinson
Assistant Examiner—Cheryl Lewis
(74) Attorney, Agent, or Firm—Cooley Godward LLP

(7) ABSTRACT

A method of utilizing implicit references to answer a query
includes receiving segments of text, wherein individual
segments have elements. Implicit references are inferred
between elements of the segments. The inferring operation
includes identifying implicit references to antecedent ele-
ments. A query is received. In response to the query, one or
more segments are identified as relevant to the query based
at least in part on the implicit references.

28 Claims, 5 Drawing Sheets

Pre-

processed
textfile, 42

U.S.

Patent

Pre-pracessing, 30

Parse texd to
identify sentences,
32

v

Mark each
senlence, 34

oy

Assign a unique
sentence number,
38

Y

Identify titles and
headings, 38

'

Mark titles and
headings, 40

Pre-
processed
text file, 42

Figure 1

Oct. 18, 2005

Sheet 1 of 5

Indexing phase 50

1

Generate

identiy recursive
generzlizations, 58

'

Identify special
patlems, 58

Y

Identify proper
names, 60

1

Generate
generalizations of
proper names, 62

!

Score file, \

Generate scores
94

92 B

Identify Sthon-
references, 64 em
° * buffer, 80

Q=

Name-isa
database,

US 6,957,213 Bl

Skip-word
databasa,
identify words and 82
stems 50 "
Stem
‘ database,
84
Identify hemadings
that apply to the
sentence 52

Word-isa
database,

Index file,
70

Name-string
database

g0

Figure 2

U.S. Patent

101

Oct. 18, 2005

Run time, 100

Analyse questions

Sheet 2 of 5

Skip-word
database,
82

skip stop words
and identify stems
102

Stem
database,

84

US 6,957,213 Bl

Short term
buffer, 105

y

Match
elements, 108

'

Score
sentences, 110

Y

Sort sentences
by score, 112

y

Decide which
sentences to
display, 114

Find matches, 103

Question
file 104

Index file,
70

Score file,
94

Figure 3

U.S. Patent

Connect to
website, 200

Utter a query, 202

y

Voice to text
transcription of
query, 204

L

Pass ext to query
response engine,
206

[
Y

Generate
responses, 208

I
y

Pass responses to
synthesizer, 210

__hr*‘

Convert text to
speech, 212

[
Y

Play speech to the
user, 214

Oct. 18, 2005

Figure 4

Sheet 3 of 5

Connect to
website, 220

Type a query, 222

Y

Pass text to query
response engine,
224

Generate
responses, 226

1

Return responses,
228

Figure 5

US 6,957,213 Bl

User enters a
query, 230

Pass text to query
response engine,
232

B

Generate
responses, 234

Generate ad |
TAGS, 238 l

J

Extract ads from
inventory, 240

I

Return responses
with ads, 236

Figure 6

U.S. Patent

User browses the
web, 250

|
Y

Derive information
from web page,
252

Y

Apply information
ta engine, 254

R

Generate ad
TAGS, 256

I
Y

Extract ads from
inventory, 258

|
y

Present ads with
web page, 260

Figure 7

Oct. 18, 2005

Sheet 4 of 5

4

Generate TAGS,
270

Extract information
from sources, 280

v

Construct page
based on
extracted

information, 282

I
Y

Construct page
based on
extracted

information, 284

Figure 8

US 6,957,213 Bl

User enters query,
290

v

Query rasponse
engine processes
query, 282

y

Log is generated,
294

Y

Log is analyzed,
296

Y

Update a user
profile, 298

-

Y

Personalize web
pages and
advertising for the
user 300

Figure 9

U.S. Patent

Oct. 18, 2005

Add items to
shopping cart, 310

v

Generate a
question dialog
box for each item,
312

I
v

Ask a
questionabout an
item, 314

|
y

Answer the
queslion, 316

I
Y

Complete the
transaction based
on the answer,
318

Figure 10

Sheet 5 of 5

Questions about
products, 330

US 6,957,213 B1

1
Y

User asks
questions, 338

Process the
request, 332

}
Y

'

Engine processes
questions, 340

Generate list, 334

v

Engine updates
question log, 342

l
y

Buy, 336

Figure 11

Generate
predefined reports,
344

Figure 12

US 6,957,213 B1

1

METHOD OF UTILIZING IMPLICIT
REFERENCES TO ANSWER A QUERY

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is related to commonly assigned patent
application Ser. Nos. 09/573,025 now abandoned; 09/572,
276 now abandoned; 09/572,186 now abandoned; 09/573,
023 now abandoned; 09/573,024 now abandoned; 09/637,
616 now abandoned; and PCT/US01/15711.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to answering natural language
queries.

2. Description of Related Prior Art

Natural language query systems are known in the art.
However, these systems do not utilize implicit references to
answer a query and therefore are dependent upon literal
constructs. Thus, it would be desirable to provide an
improved natural language query system that utilizes
implicit references to answer a query.

BRIEF SUMMARY OF THE INVENTION

The invention includes a method of receiving segments of
text, wherein individual segments have elements. Implicit
references are inferred between elements of the segments.
Inferring includes identifying implicit references to anteced-
ent elements and identifying generalizations of elements
contained in the segments. The implicit references are stored
in a searchable index with a first column listing the elements
and a second column listing corresponding generalizations
of the elements. A query is received. In response to the
query, one or more segments is identified as being relevant
to the query based at least in part on the implicit references.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a preprocessing routine performed in
accordance with an embodiment of the invention.

FIG. 2 illustrates indexing operations performed in accor-
dance with an embodiment of the invention.

FIG. 3 illustrates a run time process performed in accor-
dance with an embodiment of the invention.

FIG. 4 illustrates a voice-based process performed in
accordance with an embodiment of the invention.

FIG. § illustrates a wireless communication process per-
formed in accordance with an embodiment of the invention.

FIG. 6 illustrates an advertising process performed in
accordance with an embodiment of the invention.

FIG. 7 illustrates a web browsing process performed in
accordance with an embodiment of the invention.

FIG. 8 illustrates a tag based process performed in accor-
dance with an embodiment of the invention.

FIG. 9 illustrates a user profile preference process per-
formed in accordance with an embodiment of the invention.

FIG. 10 illustrates an online shopping process performed
in accordance with an embodiment of the invention.

FIG. 11 illustrates a product catalogue navigation process
performed in accordance with an embodiment of the inven-
tion.

FIG. 12 illustrates a report generation process performed
in accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

A query may be a question phrased in English, for
example, and the response may be sentences of text that
belong to a body of free-text sources and are responsive to
the question.

10

15

20

25

30

35

40

45

50

55

60

65

2

One way to find the relevant sentences of text uses an
index that is created in advance. In a simple example, an
index could include the words “Georgia” and “capital” and
associated pointers to sentences that include those words. At
run time, if a question asks about the capital of Georgia, the
index can be used to find responsive sentences.

In the invention, implicit references (also known as ana-
phora in linguistic literature) are inferred from the words of
segments of text. In response to a query, one or more
segments are identified as relevant to the query based at least
in part on the implicit references. Using implicit references
improves the quality of the responses to the query.

A characteristic of natural language text is the use of
words (references) that refer to other words or to concepts
that appear in or are implied by other parts of the text
(antecedents). For example, in the sentence “He is best
known for his theory of relativity,” the word “he” (the
reference) may refer to the name “Albert Einstein” (the
antecedent) that appears in another sentence: “Albert Ein-
stein was one of the greatest scientists of all time.”

Two broad categorizations of references may be useful.
One broad categorization is based on the positions of the
antecedent and the reference. The other broad categorization
is based on the type of reference. The first categorization is
based on three distinct contexts in which the reference may
be used in a question answering setting.

References of the kind that are based on position may
occur in at least three different contexts in a question
answering setting:

1. Between two sentences

S 1: Albert Einstein was one of the greatest scientists of

all time.

S2: He is best known for his theory of relativity.

In sentence S2, the word “he” refers to “Albert Einstein”
in sentence S1.

2. Between two questions

Q1: When was Einstein born?

Q2: Did he invent relativity?

In the question Q2, the word “he” refers to “Einstein” as
used in question Q1.

3. Between a question and a sentence

S3: Einstein is best known for his theory of relativity.

Q3: Who invented relativity?

The word “who” in question Q3 refers to “Einstein” as
used in sentence S3.

All three types of references may have to be resolved to
match a question with responsive sentences in the free-text
sources. Consider the following example:

S4: China is a huge country in eastern Asia

S5: It produces more cotton, rice and wheat than any other

country.

Q4: What is the scientific classification of rice?

Q5: Which countries produce this crop?

The phrase “this crop” in Q5 refers to “rice” in Q4. The
word “it” in S5 refers to “China” in S4. The phrase “which
countries” in Q5 refers to “it” in S5 and in turn to “China”
in S4. A resolution of the three types of references would
show that S5 is a potential answer to Q5.

The second categorization is based on the type of phrase
used for the reference and includes the following five groups
(examples included):

Pronoun: China is a big country. It is in Asia.

Definite Noun Phrase: China is in Asia. This country

produces rice.

US 6,957,213 B1

3

Name variant: International Business Machines versus
IBM, Great Britain versus Britain versus England.

Indirect references: (in an article about China): The cli-
mate is usually mild; (Here the climate does not refer
to China but it is known that it is the Chinese climate
that is under discussion. Indirect references rely on
“has-a” relationships.)

Null references: “Cisco acquired Cerent Corp. for 7.5
billion dollars. The negotiations lasted 3.5 months.”
The second sentence is responsive to the question
“How long did Cisco negotiate with Cerent? even
though it does not contain any words that refer to Cisco
or Cerent.

Implementations of the invention take advantage of ref-
erences to identify sentences in free-text sources that may
answer natural language questions.

One goal of some implementations of the invention is to
shorten the processing delay in receiving an answer after a
question is posed at run time. In general, shifting processing
steps from run time to a preliminary indexing phase can
reduce the delay.

One way to shift processing to the indexing phase relates
to the need to match synonyms that appear in a question and
in a sentence. For example, the words “produces” and
“raise” in the following question and sentence must be
matched at run time:

S6: China produces more corn than any other country.

Q6: In which countries do people raise corn?

By generating and storing synonyms for the word “pro-
duces” during the indexing phase, rather than generating
synonyms for “raise” at run time, the processing delay in
responding to questions can be reduced, an advantage which
justifies the additional storage space required for the larger
index.

Another opportunity for shifting processing to the index-
ing phase relates to the fact that there tend to be many more
specializations of a concept than generalizations of a con-
cept. For example, there are more than 250 countries
(including China) that represent specializations of the con-
cept “country” but relatively few generalizations for the
concept “China”. So, in the following example, overall
processing time is saved by generating and storing the
generalizations of “China”, the concept that appears in the
sentence, during the indexing phase, rather than generating
the larger number of specializations of “countries”, the
concept that appears in the question:

S7: China produces more corn than any other country.

S8&. In which countries do people raise corn?

Thus, in general, in one aspect, the invention features
receiving segments of text (e.g., sentences), each segment
having elements. Implicit references are inferred from the
elements of the segments. A query is received, and, in
response to the query, one or more segments are identified
as relevant to the query (e.g., by scoring) based at least in
part on the implicit references.

Implementations of the invention may include one or
more of the following features. The implicit references may
be inferred prior to the time when the query is received and
may be stored as entries in a searchable index, each entry
including a pointer to one of the segments from which the
reference was inferred. One or more of the identified seg-
ments may be selected for presentation to a user.

The implicit references may be generalizations of the
elements contained in the segments. The references may be
name variations that refer to elements, or indirect references
to elements, or definite noun phrase references to elements,

10

15

20

25

30

35

40

45

50

55

60

65

4

or pronouns, or null references. The antecedents of the
indirect references may be found in titles or in headings. The
antecedent can be a concept recognized by a pattern of
characters (e.g., a date) and it can be referred to by a
generalization (e.g., “when” or “at that time”).

The scoring may be based on a matching of elements in
a question with elements in an index file that contains
information about the inferred implicit references. The
selection of segments to be displayed may be based on
scoring. As few as one segment from a given source need be
displayed. The step of responding to the query may include
identifying implicit references between the query and a
previous query.

Some implementations of the invention are illustrated in
the block diagrams of FIGS. 1 through 12 and described
below.

In some implementations of the invention, free-text
sources are prepared for use in answering questions by first
applying a preprocessing routine 30, shown in FIG. 1. First,
the text is parsed (32) to identify sentence boundaries. For
purposes of parsing, the sentence boundaries are identified
using patterns that are manually created, although other
approaches could be used. In the manual approach, patterns
are described that identify potential end-of-sentence markers
(period, question mark, exclamation point, paragraph break,
title break, sometimes quotes, etc.). Then certain alternative
uses are eliminated. For example, in the case of a period, the
eliminated alternative includes periods that appear at the end
of abbreviations and in acronyms and floating point
numbers, for example.

Each sentence is marked (34) with a single new line in one
implementation, or using markup tags in another implemen-
tation. A unique sentence number is assigned (36) to each
sentence. The numbers are unique within a single index file.
Therefore all sentences (whether or not from different
documents) that go into a single index get unique numbers.
In another implementation, part of the unique numbers (e.g.,
the first six digits) are used to encode the article the sentence
is coming from and another part (the last four digits) is used
to identify the sentence number within the article.

Titles and other headings are identified (38) in a manner
that depends on the text format. Some formats (like HTML)
use markup elements that identify the titles. Plain text
sources require pattern-based analysis. Titles also are
marked (40) to identify some possible indirect references.
An example would be the sentence “The economy is boom-
ing.” found in an article entitled “China”. Notice that unlike
in the case of the sentence “This country produces rice”,
none of the words in the sentence “The economy is boom-
ing” directly refers to China. However, from the title one can
infer that the subject is the Chinese economy. One way to
index the title information is with respect to every sentence
in its scope. Another more complicated way to use the title
information is to build and make use of a knowledge base of
part-whole, group-member relationships. Such relationships
would include, for example, the fact that a typical country
has a population, an economy, a president, and an army, etc.
Then, when any of these words (e.g., economy and
president) are used by itself in a sentence, the indirect
reference to the country can be identified. The output of the
pre-processing is a pre-processed text file 42. In one
implementation, the pre-processed text file has text of one
sentence on each line preceded by a sentence number and a
tab character and followed by the text of the applicable titles.
In another implementation, a special markup language
(similar to HTML or XML) may use specific tags to mark
sentences, paragraphs, sections, documents and titles in the

US 6,957,213 B1

5

text. The sentence tags contain id numbers as part of the tag
such as: <s id=124345>. This format is more flexible and
may be easily extend to include other tags. A user may be
permitted to specify references not identified by the indexer
by explicitly inserting them into the pre-processed text file
using specific tags.

In one implementation, all the text sources that go into a
single application (e.g., a whole encyclopedia) can be con-
verted into one large pre-processed text file before being
passed to the indexer. Another implementation could use
separate pre-processed files for each article and let the
indexer read the information from multiple files. As shown
in FIG. 2, after pre-processing, the indexing phase 50
begins. The purpose of the indexing phase is to use the
preprocessed text file 42 to build an index file (table) 70 that
lists foreseen ways in which a question may refer to an
element of a sentence. A single index file is built for all
sources in the system.

By “element” of a sentence, we mean a concept referred
to in the sentence. The concept may be referred to using an
ordinary word (walk, cake), a name (Bill Clinton), a multi-
word phrase (stand up, put on), a pronoun (he referring to
Bill Clinton), a definite noun phrase (the country referring to
China), an indirect reference (the economy, indirectly refer-
ring to China), or a null reference (there is no word referring
to the concept but the concept is still referenced). For
example, if the text contained the sentences: “The war
started in 1939. Germans invaded Poland.”, the answer to
the question “When did Germans invade Poland?” would be
1939 even though there is no word in the second sentence
directly or indirectly referring to this time phrase. Time
phrases and place phrases often affect more than a single
sentence, therefore creating null-references.)

Each entry in the index file 70 includes a pointer to the
sentence to which the questions may refer based on that
entry. Conceptually the index file relates the elements found
in a sentence to a unique identifier for that sentence. The
index file can be thought of as a two-column table in which
one column contains sentence ID numbers and the other
column contains the words, concepts, referents,
generalizations, and synonyms (collectively referred to as
the elements of the sentence).

For efficient scoring later, the following three components
are created for the index: the string buffer, the sentence id
buffer, and the hash table.

The string buffer contains the null terminated strings of
each element found in the source text. The strings are placed
in the buffer consecutively in no particular order.

The sentence id buffer contains sentence ID arrays for
each element The array for a particular element can be
identified by giving the start position in the buffer and length
of the array. The arrays are placed in the buffer consecutively
in no particular order.

The hash table is a standard hash table that contains
key-value pairs and that enables a fast search of a given key.
The key of each entry is a pointer to the string buffer. The
value of each entry consists of a pointer to the sentence ID
buffer and an array length.

This structure enables finding the sentences that contain a
particular element as follows: First, the element is searched
in the hash table by comparing it with certain keys in the
hash table. For each comparison, the string in the string
buffer that the key points to is retrieved and compared to the
element. When a match is found, the corresponding sentence
ID buffer pointer and array length is read. Finally, the
specified array is located in the sentence ID buffer.

In the indexing phase, each sentence in the preprocessed
text file 42 is read and passed to several modules. Each

10

15

20

25

30

35

40

45

50

55

60

65

6

module reads the words of a sentence and, based on them,
recognizes certain types of constructions and references that
represent foreseen ways in which a question may refer to an
element of the sentence. When a module identifies one of
those ways, it writes an entry into the index file 70 together
with the unique identifying number of the sentence from
which it was generated.

In one implementation, there are eight indexing modules
called: words, title, word-isa, ako, patterns, names, name-
isa, and references.

As shown in FIG. 2, the words module identifies (50) each
word in the current sentence and adds it to the index file. The
words module also derives the stem of each word using a
table of English word and word stem pairs, such as .
flowers->flower and went->go. The words module adds the
stem to the index file for use, for example, in matching
morphological variants of words that may appear in a
question.

In the title module, the words in each heading in the set
of headings that apply to a sentence are added (52) to the
index file with pointers to the sentence. In one implemen-
tation only one heading (the document title) is used for every
sentence in a document. In another implementation, the
pre-processed text file contains tags for titles of various
levels (document, chapter, section, subsection, for example)
and sectioning tags that identify the scope of each title.
Using these tags, the indexer is able to determine, for each
sentence, the document, the chapter, and the section that it
is in. The indexer combines all titles that apply and indexes
them with the sentence. Title indexing may not be appro-
priate for every source. For example, encyclopedia sources
have well defined titles that are usually appropriate and
helpful whereas newspapers have partial sentences for titles,
which are usually not appropriate for the above method.

The word-is a module generates (54) the generalizations
(mentioned earlier) for words that appear in the sentence and
for words that appear in headings. For example, if the word
“red” appears in a sentence, the generalization word “color”
is placed in the index file so that a question that asks “what
color” will be matched to the sentence that includes “red”.
For this purpose, a database table with the same name
(word-isa) and containing two columns is used. The first
column contains words and the second column contains
possible generalizations. For example, “red->color” would
be one of the entries in that table.

The ako module identifies generalizations (56) of gener-
alizations already generated. For example, if the ako module
encounters the generalization “color” that had been gener-
ated at step 54, the ako module adds the further generali-
zation “attribute” to the index file.

The patterns module reviews (58) the text for special
patterns of dates and numbers and adds the generalizations
to the index file. For example, if the date Jan. 23", 1998,
appears in the text, the patterns module would add the
generalizations “date” “time” and “when” so that when a
question asks “when did this event happen?” it matches the
date. Another example that appears frequently in an ency-
clopedia is the lifespan information in biographies. The first
sentence of a typical biography starts “John Doe
(193201987) . . . 7. A pattern that recognizes the life-span
structure allows matching of questions of the type “When
was John Doe born?”

The names module identifies proper names (60) in the text
and generates and indexes the names accordingly. For
example, the names module uses two methods to identify
names in a sentence. The first method uses a list of precom-
piled names and name variations to match those in the

US 6,957,213 B1

7

sentence. For example “United States” and its variations
“U.S.A.” and “United States of America” would be in the
name list and each would be recognized as a name when
seen in the sentence. The second method uses patterns that
identify names and name types. Proper names are marked
with capitalization and can be isolated easily. (There are
some difficulties associated with sentence beginnings and
small function words like “of’ that are not capitalized in the
middle of a name.)

The names-isa module generates generalizations (62) for
proper names and adds them to the index file. For example,
if the name “Clinton” is found in the text, the word “Presi-
dent” could be added to the index file. Other examples are
“China->country” and “Albert Einstein->physicist”. The
name generalization makes use of a knowledge based and a
pattern based method as well. If a name is found in the
database, generalizations of the name are located in the
name-isa table. This is a table just like the word-isa table that
lists one or more generalizations for a given name. For
names that were not found in the table but that were detected
using capitalization, for example, the rough generalization
of the name (person, place, organization) can be inferred
using internal and external clues. An example of an internal
clue would be the appearance of the word “Corp.” as part of
the name, which would imply that it is a company. Similarly
“Mount” or “City” implies a place and “Mr.” or “John”
implies a person. External clues are words outside the name
that provide information. For example, if a name is preceded
by “in” one can deduce that it is a place or possibly an
organization but not a person.

The references module identifies (64) implicit references
in the form of pronouns, definite noun phrases and name
variants. The module could also handle indirect references
and null references. (Handling indirect references would
require a “has-a” table similar to the “is-a” table discussed
below. The “has-a” table would represent relationships of
the kind: “A country has an economy, a president, an army,
etc.”

Antecedents of references are determined using a short-
term buffer 80. The antecedents are added to the index file,
and the short term buffer 80 is updated with the potential
references for the new names in the sentence, in the follow-
ing way:

The short-term buffer contains a set of pairs of the type
“he->Bill Clinton”, “country->China”, i.e. a potential refer-
ence pointing to a potential antecedent. The sentence is
scanned for potential reference words or phrases. For each
one discovered, the set of the potential antecedents is added
to the index file. After each sentence is processed, the
short-term buffer is cleared and updated with new potential
references. The new potential antecedents are the names and
other concepts used in the current sentence (either explicitly
mentioned or implicitly referred to). The new potential
references are all generalizations, name variants and pro-
nouns compatible with these antecedents.

The short-term buffer 80 has two fields. One field contains
antecedent words, the other contains potential references
associated with each of the antecedents. As each element of
a sentence is encountered, potential references are stored in
the short-term buffer (e.g., when “China” is encountered in
a sentence, the potential references “country”, “nation”, and
“it” are added to the potential references field). When a
referring word or phrase such as a pronoun or a definite noun
phrase (e.g., “the country”) is encountered in a later portion
of the text, the word is looked up in the short-term buffer to
identify the possible antecedents.

The modules that are active during the indexing phase use
the following lexical databases to perform their functions.

10

15

20

25

30

35

40

45

50

55

60

65

8

A skip-word database 82 lists function words such as
prepositions, conjunctions, and auxiliary words that are not
to be added to the index file. The skip-word database is used
in step 50 of FIG. 2.

A stem database 84, also used in step 50, contains a list of
the stems of most English words. The word stems can be
found in sources such as the CELEX lexical database
available from the Linguistic Data Consortium of the Uni-
versity of Pennsylvania. Other sources for this material
include on-line dictionaries. Alternatively, one could use a
rules-based approach by analyzing a word and stripping its
suffixes.

A word-isa database 86, used in step 54, contains gener-
alizations of single words that can potentially match ques-
tion words. The word-isa table is generated using three
approaches: 1. Consulting online lexical (“word-related”)
databases like wordnet or thesauri like Roget’s. 2. Writing
data-mining programs that process large corpora (text
sources) or the actual source to be indexed as a way to
discover such relations. 3. Manually editing and cleaning up
the results of 1 and 2. A source like an encyclopedia typically
includes an article classification and a title index which
contain useful information related to the generation of the is
a and ako tables.

An ako database 88 contains lists of generalizations for
single words and is used in step 56. The ako database is
generated in a manner similar to the generation of the word
is a table.

A name-isa database 90 contains generalizations for rec-
ognized proper names like countries, companies, and
famous people and is used in step 62. The name-isa database
is generated in a manner similar to the generation of the
word is a table. The pattern-based rules mentioned before
(which assign person/place/organization type general
classes to names) can be used to expedite the process.

After the indexing phase, scores are generated (92) for
each unique sentence element contained in the index file.
The score is inversely proportional to the number of times
the sentence element appears in the index file. The score also
reflects the part of speech and the confidence in reference
resolution. The score is stored in a score file 94.

In one implementation of the scoring algorithm, the score
file contains a set of pairs of the type, for example, “walk-
>7.8611, “Clinton->15.76”. The numbers are computed
based on the frequency of the given term, e.g., as-log 2
(frequency). The frequency is either computed based on the
index file by counting the number of occurrences of each
term in the index file or based on a large reference corpus
(such as the Cob corpus frequencies from CELEX). The
latter is particularly useful when the data to be indexed is
small and its frequencies are not statistically significant. The
score file may then be manually modified to assign higher
values to domain-specific terms or lower values to optional
modifiers.

The index file is in the form of a set of pairs of the type
“walk->132459”, “Clinton->345512” etc. The numbers are
unique sentence ID numbers. Here is an example sentence
and some sample terms that are inserted into the index file
for this sentence:

Sentence: He was the one of the brothers of the apostle Peter.

Example terms:

Plain word: apostle

Stem: brother (from brothers)

Generalization: person (from apostle via word-is a file)

Indirect reference: Andrew (“he” refers to Saint Andrew in
the previous sentence).

Once the indexing phase is completed, the index file and
score file can be used as the basis for answering questions.

US 6,957,213 B1

9

As shown in FIG. 3, the run time process (100) receives
questions posed by a user and uses the index file and the
score file to identify sentences that may answer the ques-
tions. The run time process has two main parts. One part is
the analysis of the questions 101 to produce a question file
104. The second part is the matching of information 103 in
the question file with information in the index file to identify
sentences that are likely to provide answers to the questions.

In the first part of the run time process, each word in a
question is processed using modules similar to those used in
the indexing phase.

A stems module 102 uses the skip-word database 82 to
pass over certain words and uses the stem database 84 to
determine stems of each word and records them in the
question file 104.

A g-ref module identifies (106) potential references
between the current question and antecedent elements of
other questions. The identification is done in a manner
similar to step 64 in FIG. 2, using a short-term buffer 105.
The antecedents are recorded in the question file 104.

No generalizations, synonym generation, etc. are per-
formed at run time. It is important that such steps not be
performed at run time to avoid double matching.

The matching part of the run time process searches in the
index file for each element in the question file 108. If an
element in the question file is found in the index file, an
answer score for the sentences associated with that element
is updated by adding the score 108 associated with that
element in the score file 94.

After all elements in the question have been matched, the
sentences are sorted 112 according to their respective total
scores.

Using the sorted sentence list, a decision 114 is made
about which sentences to display as the answer to the
question.

One approach is to display sentences that are at the top of
the scoring. By comparing the sentences having the highest
scores with the maximum possible sentence score, a deter-
mination can be about the quality of the answer represented
by each of those sentences. A typical noun in English is
worth about 10 to 15 points. A sentence that has a score
within 10 points of the maximum possible score would
represent a high quality answer. If the answer quality of the
highest scoring sentence is high, that sentence could be
displayed alone. If several of the top-scoring sentences have
close scores, they can all be displayed. A bias can be applied
to cause the display of high-scoring sentences from different
free-text sources in lieu of multiple sentences from a single
source.

If the highest scoring sentence is not a high quality
answer, or if the question is a “how” or “why” question,
additional context around the sentence can be displayed to
aid the user’s interpretation. For this purpose, the display
algorithm can be configured to display one or two neighbor
sentences around the sentence or the whole paragraph
around the sentence.

If the highest scoring sentence is a low quality answer, the
user could be told that no good answer was found and a few
pointers to relevant documents could be displayed.

The answer system is useful in a wide variety of contexts,
including the Internet, local networks, or a single worksta-
tion. In the case of the Internet, the indexing can be done at
a central location and the run time process can handle
questions received from browsers at a central server.

The invention offers a number of advantages. In
particular, the quality of the answers is high because the
indexing of implicit references significantly improves the

10

15

20

25

30

35

40

45

50

55

60

65

10

chances that useful responsive sentences will be found. The
invention is useful in a wide variety of contexts, among them
on-line searching using the World Wide Web.

Other implementations are within the scope of the claims.

For example, portions of text other than sentences, such as
paragraphs or sections or chapters can form the basis of the
indexing and scoring. Also, other kinds of references and
generalizations could be used as the basis for the indexing
phase.

Questions need not be phrased as complete English sen-
tences.

Languages other than English can be used.

Indexing need not be captured in a single central index file
and score file but can be distributed among multiple index
files and score files. At run time, questions may be answered
by a scoring system that operates on all of the files.

Other types of references (null, indirect) can easily be
integrated into the existing framework once the necessary
knowledge is built. Also, once grammatical relations are
determined with satisfactory accuracy, they can be incorpo-
rated into the existing indexing retrieval framework without
major changes to the architecture.

Avariety of other applications may make use of the query
response techniques discussed above. Among the applica-
tions are the following:

1. As shown in FIG. 4, a person could use any voice-based
communication device, such as a wireless or wired phone, to
connect (200) to a web site, and using voice, navigate the
web site and obtain information by issuing voice commands
and questions. The user could utter a natural language query
(202). The website would include speech recognition soft-
ware that would permit voice-to-text transcription of the
query (204). The text would then be passed to the query
response engine described earlier (206). The query response
engine generates one or more responses (208) in text form
and passes them to a speech synthesizer (210). The speech
synthesizer converts the text to speech (212) that is played
back over the phone to the user (214).

2. As shown in FIG. 5, a person could get answers to
questions from a wireless communication device. After the
device is connected to a web site 220, the user types a query
on the device, either using a keyboard or a stylus only a
touch-sensitive screen. At the website, the query is passed to
the query response engine described earlier (224). The query
response engine generates responses (226) that are in the
form of answers to the query rather than in the form of links
to places where the answer may be available. The answers
are then returned to the wireless device (228). For example,
the question entered by the user might be “What was one of
Einstein’s achievements?” One response might be the
answer “Einstein developed the theory of relativity.”

3. As shown in FIG. 6, advertising delivered to a web user
can be personalized based on questions that the user asks.
The user enters a query (230). As before, the text of the
query is passed to the engine (232) and a response is
generated (234). The engine also uses the response to
generate ad TAGS (238). For example, if the question is
“what are the ski conditions like in Aspen?” the engine will
generate TAGS that relate to commerce for Aspen, such as
“Ski Rental, Cabin Rental, Dining in Aspen, Flying to
Aspen”. These TAGS are then used to extract appropriate
ads from ad inventory. The ads are presented to the user
along with the answer to the question asked.

4. As shown in FIG. 7, a user browses the web (250).
Based on a web page being displayed to the user in the
course of the browsing, a set of information, for example,
words that appear on the web page, is derived for use with

US 6,957,213 B1

11

the query response engine (252). The information is applied
to the query response engine as if it were a query (254). The
results of the query are used to generate ad TAGS (256) and
the TAGS are used to extract appropriate ads from ad
inventory (258) as before. The ads are presented to the user
as part of the page being read, or a later page (260).

5. As shown in FIG. 8, in an application similar to the one
described in FIG. 6, except that the TAGS are chosen 270 to
relate to articles or information, for example, about Aspen,
such as “latest Aspen news, Traveling in Aspen, Events in
Aspen”, etc. These TAGS are then used to extract appropri-
ate information from information sources (280) and con-
struct the next page that is shown to the user (282). The
resulting personalized page is then presented to the user
along with the answer to the question asked (284).

6. As shown in FIG. 9, another application develops user
profile and preference information based on questions asked
A user types (or asks) questions 290. The query response
engine processes the questions (292) and generates a log
(294) that includes the following information, for example:
identity of the user (name, IP address, etc.); the questions
asked and answers to the questions; any un-answered ques-
tions; and the click stream reflecting what the user did after
the answers were delivered to him. The log is analyzed (296)
to generate profile TAGs. The profile TAGS are used to
update a user profile (298). The next time the user logs in,
or enters another query, the updated profile is used to
personalize web pages and advertising for the user (300).

7. As shown in FIG. 10, another application facilitates on
line shopping by answering questions about products in the
shopping cart. The user adds items to a shopping cart on a
commercial web site (310). The items are used as the basis
for generating question dialog boxes for each of the items
(312). Each dialog box hovers above the shopping cart. The
user may then ask a question about an item (314). The query
response engine answers the question without forcing the
user to leave the shopping cart (316). The answer is shown
in the hovering dialog box. The user completes the transac-
tion based on the answer (318).

As shown in FIG. 11, in another application, the user can
navigate, e.g., a product catalogue by asking questions. The
user (in plain language) asks the system to show products
that meet specific criteria (e.g., “show me the cheapest PC”,
“the fastest car”, etc.) (330). The query response engine
processes the request (332) and generates a list or an item
that meets the criteria (334). The user then clicks on the
items to buy (336).

9. As shown in FIG. 12, in another application, corporate
and departmental reports can be generated based on a
question log. Users ask questions to interact with a reporting
system (338). The query response engine processes the
questions (340) and updates the question log (342). The log
includes the following information: identification of the user
(name, IP address, etc.); questions asked, and answers to the
questions; un-answered questions; and the click stream
indicating what the user did after the answer was given. The
log is analyzed by a report generator to generate pre-defined
reports (344). The reports use question subjects, frequencies,
users, whether they were answered or not, and other infor-
mation contained in the questions to surmise information
that is relevant to various departments such as product
development, support, finance, human resources, etc. The
reports are interpreted by humans to make business deci-
sions about new products, product design, financing, internal
processes, control, and other aspects of the business. The
reports are based on context and intelligence extracted from
the questions the users ask.

10

20

25

30

40

45

55

60

65

12

What is claimed is:

1. A method, comprising:

parsing text from at least one source of free-text into

segments that each comprise elements;

inferring implicit references between elements of said

segments prior to any query, wherein inferring includes
identifying one or more implicit references to at least
one antecedent element to form one or more identified
implicit references;

receiving a query;

in response to said query, identifying one or more seg-

ments as relevant to said query based at least in part on
said one or more implicit references; and
selecting said one or more segments for presentation.
2. The method of claim 1 wherein said parsing segments
of text includes dividing said free-text source into said
segments of text and corresponding generalizations.
3. The method of claim 1 in which said segments com-
prise sentences.
4. The method of claim 1 in which segments that are
presented to said user are determined based on scoring.
5. The method of claim 1 in which only one segment is
displayed.
6. The method of claim 1 in which only a single segment
from a source is displayed.
7. The method of claim 1 wherein an implicit reference of
said implicit references comprises a name variation that
refers to an element.
8. The method of claim 1 wherein an implicit reference of
said implicit references comprises an indirect reference to an
element.
9. The method of claim 1 wherein an implicit reference of
said implicit references comprises a pronoun.
10. The method of claim 1 wherein an implicit reference
of said implicit references comprises a definite noun phrase.
11. The method of claim 1 wherein inferring implicit
references further comprise deriving one or more general-
ized representations for said at least one antecedent element.
12. The method of claim 11 wherein deriving comprises:
generating said one or more generalized representations
that refer to said at least one antecedent element; and

identifying each of said one or more generalized repre-
sentations that refers to said at least one antecedent
element as a potential reference.

13. The method of claim 12 wherein said one or more
generalized representations include one or more of:

a number of name variations,

a number of single words,

a number of multi-word phrases,

a number of definite noun phrases, and

a number of indirect references.

14. The method of claim 12 further comprising:

associating said potential reference with one of said

segments from which said at least one antecedent
element was parsed; and

storing said one of said segments as a stored segment.

15. The method of claim 14 wherein storing comprises
tagging said stored segment with said potential reference to
form a tagged, stored segment, which is searchable by said
potential reference.

16. The method of claim 12 wherein inferring implicit
references further comprises:

generating alternative representations for an element

other than said at least one antecedent element; and

US 6,957,213 B1

13

matching at least one of said alternative representations
with said potential reference to form one of said one or
more identified implicit references.

17. The method of claim 16 further comprising:

associating said one of said one or more identified implicit
references with said at least one antecedent element;
and

supplementally storing another of said segments from
which said element was parsed as a stored another
segment.

18. The method of claim 17 wherein supplementally
storing another of said segments comprises tagging said
stored another segment with said at least one antecedent
element to form a tagged, another stored segment, which is
searchable by said at least one antecedent element.

19. The method of claim 18 wherein receiving said query
further comprises:

parsing query text into query segments, each of which

comprise query elements;

matching at least one query element with said at least one

antecedent element that identifies said tagged, another
stored segment; and

retrieving said tagged, another stored segment.

20. The method of claim 19 wherein retrieving said
tagged, another stored segment further comprises searching
an indexed database using said at least one antecedent
element.

21. The method of claim 19 further comprising determin-
ing the relevancy of tagged, another stored segment to said
query text.

22. A method, comprising:

extracting a first segment of text and a second segment of

text, both of which are from an electronic document of
free-text;

decomposing each of said first segment and said second

segment into a first set of elements and a second set of
elements, respectively;

inferring a number of implicit references between an

antecedent element of said first set and a reference
element of said second set prior to any query;

10

15

20

25

30

35

40

14

storing said second segment in a database such that said
second segment is indexed by said antecedent element;

receiving a query comprising at least one query element;
and

in response to said query, identifying at least one of said
first segment or said second segment as relevant to said
query based at least in part on one of said number of
implicit references.

23. The method of claim 22 further comprising supple-
mentally inferring a number of implicit query references
based on potential query references derived from an ante-
cedent query element of a preceding query.

24. The method of claim 23 wherein supplementally
inferring said number of implicit query references further
comprises deriving one or more generalized representations
of said antecedent query element.

25. The method of claim 24 wherein deriving comprises:

generating said one or more generalized representations
that refer to said antecedent query element; and

identifying each of said one or more generalized repre-
sentations that refers to said antecedent query element
as a potential query reference.

26. The method of claim 25 wherein identifying further
comprises storing said antecedent query element and said
one or more generalized representations in a first column
and a corresponding second column, respectively, wherein
said first column and said second column constitute a short
term buffer.

27. The method of claim 25 wherein supplementally
inferring said number of implicit query references further
comprises matching said query element with said potential
query reference to form a matched query element, which is
one of said number of implicit query references.

28. The method of claim 27 wherein identifying one or
more segments as relevant further comprises retrieving said
second segment using said one of said number of implicit
query references to search a database.

#* #* #* #* #*

