
Computational Learning Theory:

Survey and Selected Bibliography

Dana Angluin*

Yale University

1 Goals of the field

Give a rigorous, computationally detailed and plausible
account of how learning can be done. Translation:

Rigorous: theorems, please.

Computationally detailed: exhibit algorithms that

learn.

Plausible: with a feasible quantity of computational

resources, and with reasonable information and in-

teraction requirements.

The alert reader notices the buzzword “reasonable” —

slack for a dazzling variety of models.

1.1 Definition of learning

Not now! This also is part of the goals. So far the em-

phasis has been on inductive learning (from examples)

of concepts (binary classifications of examples) adapting

the methods of analysis of algorithms and complexity
theory to evaluate the resource use of proposed learning

algorithms. When the examples are random, statistical

methods are also important.

1.2 General resources

Directly relevant recurrent meetings are the Interna-

tional Workshops on Algorithmic Learning Theory, ALT

[18, 19] and the annual Workshops on Computational

Learning Theory, COLT [42, 63, 110, 130]. Currently,

*Supported by NSF Grant CCR9014943. Address: Depart-

ment of Computer Science, Yale University, P. O. Box 2158, New

Haven, CT 06520. Emaih angluin@cs.yale.edu.

Permission to copy without fee all or part of this material ie
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notica is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

24th ANNUAL ACM STOC - 5/92/VICTORiA, B. C., CANADA
G 1992 ACM ()-89791.51 2-7/92/0004/03~j -..$1 .~()

the only textbook in the field is Natarajan’s [101]. Sur-

veys by Laird [83] and Valiant [129] are valuable.

Somewhat more peripheral are the European meet-

ings on Analogical and Inductive Inference, AH, and

the AI machine learning communit y’s annual Interna-

tional Conference on Machine Learning. In addition,

the general AI meetings, AAAI and IJCAI, currently

have a large number of papers devoted to learning, as

do the neural net meetings.

1.3 Inductive inference

Inductive inference [16, 35, 80, 102] is to computational

learning theory roughly as computability theory is to

complexity and analysis of algorithms. Inductive infer-

ence and computability theory are historically and log-

ically prior to and part of their polynomially-obsessed

younger counterparts, share a body of techniques from

recursion theory, and are a source of potent ideas and

analogies in their respective fields. However, I must

leave to others better qualified a systematic survey of

recent progress in inductive inference.

2 The basic PAC model

The seminal paper is Valiant’s [131]. In it, he pro-

posed a new criterion of correctness for learning con-

cepts from examples, emphasized the importance of

polynomial time learning algorithms, and demonstrated

that a classical algorithm learns k-CNF formulas with

respect to the new criterion in polynomial time. He

also emphasized the importance of coping with irrele-

vant attributes, introduced additional oracles for learn-

ing and gave learning algorithms for monotone DNF for-

mulas and read-once formulas using these oracles, and

gave cryptographic evidence that boolean circuits are
unlearnable.

We now describe the components of the basic model

introduced by Valiant; much of the work in the field can

be understood as variations on this theme.

351

2.1 Examples

These may be boolean assignments, real numbers,

points in Euclidean space, finite or infinite strings of

symbols, etc. A universe X of possible examples is cho-

sen, and a computational representation of individual

examples.

2.2 Concepts

A concept is extensionally just a subset of X. An un-

known target concept is to be learned; a single concept

(intended to approximate the target concept) will be the

output of the learning algorithm. A particular class C

of possible target concepts is chosen; the learnability of

C is investigated.

The hypothesis space H of a learning algorithm is the

class of concepts from which its outputs are chosen. In

the basic definition, C’ is a subclass of H, that is, we

assume adequacy of representation. A computational

representation of hypotheses from H is chosen. Since

the choice of H and its computational representation

strongly affects the learnability of C’, the relevant notion

is learnability of C in terms of H.

2.3 Distributions on Examples

Examples are generated independently according to a

fixed but unknown probability distribution D on the

universe X. Approximation of one concept c by another

c) is measured with respect to D:

D(c A C’),

where CA c’ is the symmetric difference of the two sets c

and cl of examples 1. D(c A c’) is the probability that an

example drawn according to D will be classified differ-

ently by c and c), the prediction error of c’ with respect

to c and D.

2.4 Classes of distributions.

In general, we may know something (perhaps every-

thing) about the distribution D. A class D of the possi-

ble distributions on X can be used to represent certain
kinds of knowledge about Il. In particular, a singleton

class signifies that D is known to the learning algorithm.

2.5 Labelled Examples

Once the target concept c and the probability distribu-

tion D are specified, the oracle EXAMPLE is defined

to take no input, draw an example z from X according

to D, determine whether z c c, and return (z,+) if so

1Measurability considerations enter here in the non-discrete

case.

and (z, —) if not. Each call to EXAMPLE is statisti-

cally independent of every other call, and produces one

Iabelled example of the target concept. In the termi-

nology of AI, the learning is supervised. Some classes of

concepts may be learned from positive examples only or

negative examples only; that is, the learning algorithms

ignore examples of the other sign.

2.6 Learning algorithm

X, C, and H are fixed, along with their computational

representations. A class D of distributions is fixed. A

learning algorithm A takes as input two parameters e

and 6 and has access to the EXAMPLE oracle deter-

mined by some c c C and some distribution D from

D. When A halts, its output is a single concept from

H. The intuition — A draws Iabelled examples of c us-

ing the EXAMPLE oracle, and eventually conjectures

hypothesis h meant to approximate c to within e with

respect to the distribution D. Sometimes this may not

happen, but the probability that it doesn’t should be

less than b.

2.7 PAC-identification

We say that the learning algorithm A PAC-identifies

concepts from C in terms of H with respect to a class

of distributions D if and only if for every distribution D

in D and every concept c E C, for all positive numbers ~

and 6, when A is run with inputs ~ and b and access to

the EXAMPLE oracle for D and c, it eventually halts

and outputs a concept h G H such that with probability

at least 1 – 6, D(c A h) < c. The initials “PAC” stand

for probably (except for 8) approximately (except for c)

correct.

2.8 Distribution-free learning

If A PAC-identifies concepts from C in terms of H with

respect to the class of all possible distributions on X,

then we simply say A PAC-identifies concepts from C

in terms of H. The distribution-free requirement, that
the learning algorithm work with respect to an arbitrary

unknown distribution, is quite strong. However, since
the performance of the output hypothesis is measured

with respect to the same unknown distribution examples

are drawn from, it is not impossibly strong. In practice

restricted classes of distributions have not been fruitful,

except in the case of the uniform distribution or the

class of product distributions.

2.9 Polynomial time

We measure efficiency of the learning algorithm with

respect to relevant parameters: size of examples, size

352

of target concept, I/c, and 1/6. “Size” of an exam-

ple is usually the length of the string representing it

in the selected computational representation of exam-

ples, though this is not generally used for real-valued

examples. When the examples of a given concept are

of uniform length, this is not problematic; otherwise,

various expedients have been used,

In order to define the “size” of a target concept, we

select a particular computational representation of con-

cepts from the target class C. Then size of the target

concept is usually the length of the string representing

it in the representation chosen for C, though for real-

valued examples it is often the number of parameters to

specify the concept in the chosen representation. Differ-

ent choices of representation may produce very different

sizes for the same target concept c — consider the differ-

ence between representing boolean functions by circuits,

boolean formulas, or DNF formulss.

As is usual, a bound polynomial in the relevant pa-

rameters is a gross indicator of computational tractabil-

ity. This is all in the spirit of traditional complexity

theory; nevertheless, it may get us into trouble.

2.10 Representations and complexity

We may define a representation ‘R of a class of concepts

simply as a set of ordered pairs of strings (z, u). We in-

terpret u as specifying a concept c and x as specifying an

example that is a member of c. For example, to define

one representation, %?DFA, of the class of regular sets

over an alphabet Z, we specify straightforward inter-

pretations of the strings u as deterministic finite-state

acceptors and the strings x as finite strings over X. Then

(z, u) G RDFA if and only if the automaton represented
by u accepts the string x. Representations inherit the

usual definitions of complexit y; for example, 7?DFA is in

PTIME, also in DSPACE(log n). Normally we restrict

attention to representations in PTIME — this means

that there is a uniform polynomial-time algorithm to

classify the example represented by z according to the

concept represented by u.

2.11 Learnability

With the background of a system of representing exam-

ples, concepts from C, and concepts from H, we may

say that C is learnable in terms of H provided there

exists a polynomial-time learning algorithm that PAC-

identifies C in terms of H. We may want to say just C

is learnable. Two conflicting definitions have been used:

1. C is learnable in terms of C.

2. C is learnable in terms of some

polynomial-time represent ation.

class H with a

Alternative (1) is desirable for positive results; it is

also termed properly Iearnabie. Alternative (2) is de-

sirable for negative results; it is also termed predicta6/e.

We’ll use “properly PAC-learnable” for (1) and “PAC-

learnable” or “polynomially predictable” for (2).

2.12 Alternative definitions

The model described above is noticeably fuzzy — more

of a “definition schema)’ than a definition. Many vari-

ants of the model have been considered. The funda-

mental paper of Haussler, Kearns, Littlestone and War-

muth [60, 61] provides careful definitions and systematic

proofs of equivalence for a large number of alternative

models, including one-button and two-button variants,

the functional model, whether or not a bound is given

on the size of the target concept, randomized algorithms

and probabilistic halting conditions, dependence on 6,

and on-line prediction from random examples. The pa-

per is also a good source of useful proof techniques.

See also the parameterization scheme proposed by Ben-

David, Benedek and Mansour [23] for models of learn-

ability y.

In the two-button model there are separate distribu-

tions and EXAMPLE oracles for the positive and neg-

ative examples of a concept; the model described above

is the one-button model.

The protocol, or environment of the learning algo-

rithm, can be different. For example, in addition to the

parameters c and 6 the learning algorithm may also be

given bounds on the length of examples and the size

of the target concept. Or, instead of the parameters e

and 6 and access to the EXAMPLE oracle, the learning

algorithm may simply be given a collection of labelled

examples as its input, the functional model.

In an on-line prediction model, the learning algorithm

indefinitely repeats a cycle of (1) requesting an ex-

ample (unlabeled), (2) predicting its classification ac-

cording to the target concept, (3) receiving the correct

classification. Haussler, Littlestone and Warmuth [62]

consider the probability of a mistake of prediction at

the t-th trial when the examples are drawn according

to a fixed unknown probability distribution. Haussler,

Kearns, Littlestone and Warmuth [60] prove the equiva-

lence of on-line polynomial prediction from random ex-

amples with PAC-learning using a hypothesis class H

with a polynomial-time representation, justifying the

identification of these two terms.

Littlestone [87] defines the absolute mistake bound

model of prediction; the worst-case number of mistakes

of prediction over any sequence of examples must be

bounded by a polynomial in the length of examples and

the size of the target concept, A polynomial-time al-

gorithm in the absolute mistake bound model can be

transformed into a PAC-learning algorithm for the same

class of concepts. However, Blum- [26] proves that if

353

one-way functions exist then there are PAC-learnable

concept classes that are not predictable in Littlestone’s

absolute mistake bound model by a polynomial time al-

gorithm.

3 Occam’s razor

A basic technique in the construction of PAC-learning

algorithms is “Occam’s razor”: take a large enough set

of Iabelled examples and find a simple enough hypoth-

esis h c H that is consistent with the Iabelled sample,
that is, labels each example as in the sample.

3.1 The discrete razor

Blumer, Ehrenfeucht, Haussler and Warmuth [31] quan-

tify “large enough” and “simple enough” in terms of the

length of the output hypothesis as a string. They show

that if there is a polynomial-time algorithm and a con-

stant @ > 0 such that for any sample of m examples

labelled according to a concept c E C the algorithm

finds a hypothesis h G H consistent with the sample

whose length is bounded by the product of ml-~ and

a polynomial in the length of c, the class C’ is PAC-

learnable in terms of H. Note that this does not require

finding the smallest hypothesis consistent with the sam-

ple; in fact, its size may depend on the sample size, but

not linearly — some nontrivial data-compression must

be going on. Efficient approximations of set covers and

weighted set covers ate useful in this context.

3.2 The continuous razor

The string-based approach does not treat real num-

bers. The ground-breaking paper of Blumer, Ehren-

feucht, Haussler and Warmuth [32] demonstrates that

the Vapnik-Chervonenkis dimension of the hypothesis

space H may be used to give a result analogous to the

discrete Occam’s razor. The VC dimension of a class H

of concepts is the size of the largest sample that can be

labelled in all possible ways by concepts from H. For

example, the class of closed intervals in the real line hae

VC-dimension 2. If it is finite, the VC-dimension gives a
polynomial bound on the number of possible labelings

of a set of m examples by concepts from H. For a finite

class H, an upper bound on the VC-dimension is log H,

a hint of why it generalizes hypothesis length.

3.3 Converse?

Does PAC-learnability imply the existence of an Occam
algorithm? Board and Pitt [104] show that a converse

holds in many natural classes. Another kind of converse

is given by Schapire [121].

3.4 Sample size

If we drop the requirement of a polynomial-time algo-

rithm, we concentrate on the sample size, the number

of examples required by a learning algorithm. An upper

bound on the number of samples required by a consis-

tent learning algorithm for C in terms of C is

o(:log: + $og+),

where d is the VC-dimension of C [32]. Anthony,

Biggs and Shawe-Taylor [17] improve the implied con-

stants. Ehrenfeucht, Kearns, Haussler and Valiant give

an information-theoretic lower bound of

$2(:log: + j

examples on any algorithm for PAC-learning a concept

class C of VC-dimension d.

4 Voting schemes

Voting schemes give another general class of techniques

for constructing learning algorithms.

4.1 Majority vote

Barzdin and Freivalds [20] use voting schemes to achieve

small numbers of errors of prediction in inductive infer-

ence. As a simple example, if H is a finite set of con-

cepts containing the target concept, the majority vote

strategy for on-line prediction takes the first example,

Z, and predicts the label “+” if z belongs to a majority

of the concepts in H and predicts the label “-” other-

wise. When the correct label is received, all the concepts

that misclassify this example are removed from H. At

each point, H contains just those concepts consistent

with all the labelled examples seen so far. Since each

error of prediction removes at least half the remaining

elements of H, the total number of errors of prediction

is bounded by log IH 1. Littlestone [87] gives an optimal

algorithm for this problem, which votes to minimize the

worst-case number of errors of prediction. As shown by

Goldman, Rivest and Schapire [48] there is a close rela-
tionship between counting problems and majority vote.

4.2 Weighted majority

In a generalization of this idea, we can assign a numer-

ical weight w(h) to each hypothesis h G H and use the

weighted majority vote of the hypotheses to make pre-

dictions. The value of w(h) is adjusted in response to
the track record of h’s successful and unsuccessful pre-

dictions. Majority vote corresponds to initial weights

w(h) = 1, where w(h) is changed to O if h makes an

354

error of prediction. A more complex updating scheme

can permit a simpler base of hypotheses.

Littlestone’s Winnow algorithms [87] use multiplica-

tive update rules to learn linearly separable boolean

functions. For example, with the hypothesis space of

single variables and a simple update rule, disjunctions

of k out of n variables can be learned with at most

O(k log n) errors of prediction. Littlestone [88] proves

strong results on the resistance of Winnow to errors in

the data. Littlestone and Warmuth [90] give a general

weighted majority algorithm that is robust with respect

to errors in the data, and they prove bounds on the ab-

solute mistake bound of the algorithm as a function of

the bound for the best algorithm in the initial set H

of algorithms. A generalization of the weighted major-

it y algorithm is given by Vovk [135]. Littlestone, Long

and Warmuth [89] use a weighting scheme to develop

an efficient algorithm for the on-line prediction of lin-

ear functions with a bound on the worst case sum of

squared errors that is optimal up to a constant factor,

which is also robust in the presence of noise in the data.

5 Closure and reductions

As in complexity theory, closure results and problem

reductions give us a means of transferring learnability

(or unlearnability) results among concept classes.

5.1 Closure results

The set of all PAC-learnable classes of concepts over uni-

verse X is closed under the union of two classes. That is,

we can take PAC-learning algorithms for Cl in terms of

HI and C2 in terms of H2 and construct a PAC-learning

algorithm for C’l U C2 in terms of HI U H2. The idea

is to run both learning algorithms and take the output

with the smaller empirical prediction error for a suffi-

ciently large sample. The set is also clearly closed under

the operation of complementing each concept in a class

with respect to X.

However, consider the operation of taking two classes

Cl and C2 and forming the class of unions c1 U C2

where c1 E Cl and C2 c C2, with a straightforward

representation. For example, applying this operation

to two copies of the class of monomials yields the 2-

term DNF formulas. It is not known whether the set of

PAC-learnable classes of concepts is closed under this

operation.z General closure results for the set of all

PAC-learnable classes of concepts are disappointingly

scarce.

Kearns, Li, Pitt and Valiant [75] give some restricted

boolean closure results for the set of PAC-learnable

zThe set of proPer/y PAC-learmable classes is not, as evidenced

by the example given [105].

classes. Another type of closure result is given by Helm-

bold, Sloan and Warmuth [68] for the nested differ-

ences of intersection-closed classes of concepts, predi-

cated on the existence of polynomial-time algorithms

to return the (set-theoretically) smallest concept con-

taining a given set of positive examples. This may be

applied, for example, to the nested differences of orthog-

onal rectangles.

5.2 Problem reductions

Kearns, Li, Pitt and Valiant [75] give substitution-based

reductions for boolean formulas that show, e.g., the

monotone or read-once3 versions of classes of boolean

formulas are no easier to PAC-learn than the basic

classes. For example, if monotone read-once DNF for-

mulas are PAC-learnable, then so are general DNF for-

mulas.

Pitt and Warmuth [1071 define a general type of

problem reduction that preserves polynomial-time pre-

dictability, which they term prediction-preserving reduc-

tions. The basic idea is that each concept c in domain A

is mapped to a concept g(c) in domain B (with at most

a polynomial increase in length of representation) and

each example x in domain A is mapped to an example

f(z) in domain B by a polynomial-time algorithm in

such a way that for all x and c, x E c if and only if

f(z) E g(c). (This is a bit too simple in general, see the

paper for the correct refinements.) The effect is that if

we have a polynomial-time prediction algorithm in do-

main B, we may compose the reduction with it to get a

polynomial-time prediction algorithm for domain A.

For example, we reduce general DNF formulas to

monotone DNF formulas as follows. Formula ~ over the

variables Xl, X2, . . . is mapped to the monotone formula

g(~) over the variables Xl, xl, X2, Y2, . . . by substituting

Yi for each occurrence of Xi. Example x = bl b2 . . . b.

signifying the assignment Xi = bi is mapped to the ex-

ample

~(z) = bl;lbz~z . . .bfi&.

It is clear that the assignment x satisfies # if and only

if the assignment ~(z) satisfies g(#). These transfor-

mations do not in general preserve special distributions

(e.g., product distributions), so the distribution-free re-

quirement is important here.

Pitt and Warmuth define prediction-completeness of

a representation of concepts %3 over a set of such rep-

resentations in the usual way, and prove, for exam-

ple, that the class 7?DFA of regular sets represented

by deterministic finite acceptors is prediction-complete
over DSPACE(log n), and the class %3NFA of regular

sets represented by nondeterministic finite acceptors is

prediction-complete over NSPACE(log n). Since the

3A read-once IX p-f~~tia COntdIIS at mOSt one Occmence ‘f

each variable.

355

class %!BF of boolean formulas is in DSPACE(log n),
this result implies that polynomial predictability of dfas

would imply polynomial predictability of boolean for-

mulas.

Pitt and Warmuth also give several examples of con-

cept classes prediction-complete over PTIME by re-

ductions from the class of all boolean circuits. By a

similar technique, Long and Warmuth [91] prove that

the class of convex polytopes specified as the convex

hull of vertices is prediction-complete over PTIME.

Schapire [119] considers the pattern languages [6] and
exhibits a prediction-preserving reduction of nonde-

terministic boolean circuits to the pattern languages.

(Note that the pattern languages have an NP-complete

membership problem, and are therefore not necessarily

a PTIME representation.)

6 What is PAC-learnable?

6.1 Classes of boolean formulas

Valiant [131] shows monomials and k-CNF formulas are

properly PAC-learnable using only positive examples.

Haussler [57] gives an algorithm using an approximate

cover and Occam’s razor that properly PAC-learns k-

CNF using both positive and negative examples, in

which the dependence on irrelevant attn”butes (that is,

variables not appearing the target concept) is logarith-

mic rather than polynomial.

Littlestone [87] shows that k-CNF formulas are

polynomial-time predictable by an on-line algorithm

with logarithmic dependence on irrelevant attributes.

His algorithm uses a weighted majority of clauses and

gives a worst-case bound on the number of mistakes of

prediction for any sequence of examples. He applies the

technique more generally to linearly separable boolean

formulas.

By constructing Occam algorithms, Rivest [116]

shows that k-decision lists are properly PAC-learnable,

and Ehrenfeucht and Haussler [36] show that rank k

decision trees are properly PAC-learnable. Blum and

Singh [29] show that for a fixed k, the class of all con-
cepts denoted by f(T1, ..., Tk) where f is any boolean

function on k arguments and the ~ are monomials, is

PAC-learnable in terms of the class of general DNF for-
mulas. The questions remain open of whether general

CNF and DNF formulas or general decision trees are
PAC-learnable.

6.2 Geometric & algebraic concepts

Blumer, Ehrenfeucht, Haussler and Warmuth show by

means of their continuous version of Occam’s razor that

classes such as axis-parallel rectangles in En, open or

closed halfspaces in En, or, for fixed k, the set of all

halfspaces in E“ defined by surfaces of degree at most

k are properly PAC-learnable. Baum [21] shows that

for fixed k, unions or intersections of halfspaces in Ek

are PAC-learnable. Long and Warmuth [91] give a re-

duction to prove the polynomial predictability of classes

consisting of a union of a fixed number of flats, and an

Occam algorithm for predicting fixed finite unions of

boxes.

Abe [1] proves that the class of semilinear sets of di-

mensions 1 and 2 with unary coding is PAC-learnable

by means of an Occam algorithm. Helmbold, Sloan and

Warmuth [67] give an efficient on-line algorithm for pre-
dicting membership in an integer lattice, which is ap-

plied to learn rational lattices, cosets of lattices, and

a subclass of the commutative regular languages, By

the closure result for nested differences of intersection

closed classes, they also show that nested differences of

these classes are polynomially predictable [68].

7 What isn’t PAC-learnable?

If RP = NP, then by the discrete Occam’s razor, ev-

ery PTIME representation of concepts II is properly

PAC-learnable. (Use any convenient NP oracle to find

a shortest hypothesis in H consistent with a given set

of labelled examples.) Thus, non-learnability results

are relative to unproved complexity theoretic or crypto-

graphic assumptions.

7.1 If RP#NP . . .

So far, all the nonlearnability results based on NP #

RP have been representation-dependent. That is, they

rely on the restriction that hypotheses must come from

the class If. The general form of these results is:

“If RP # NP, then concept class H is not properly

PAC-learnable.” This does not preclude H being PAC-

learnable in terms of some other class H’.

Pitt and Valiant [105] give several non-learnability

results of this type. They show that if NP # RP then

k-term DNF formulas are not properly PAC-learnable

(for k z 2), nor are boolean threshold formulas nor

read-once formulae. Jerrum [71] similarly shows that a

simple class of formulae invariant under cyclic shifts of
the variables is not properly PAC-learnable.

Note that concepts representable by k-term DNF for-

mulas are also learnable by k-CNF formulas, which are

PAC-learnable. Here is a case in which H is not PAC-

learnable by H (if NP # RP), but H is PAC-learnable

by a larger class H’. Blum and Singh [29] exhibit a

generalization of this phenomenon to arbitrary boolean

functions of k terms. Making the target class smaller
or the hypothesis class larger cannot make learning

harder; however, the opposite changes may make learn-

ing harder.

356

The basic lemma, due to Pitt and Valiant, is that if

the problem of deciding whether there is a hypothesis in

H consistent with an arbitrary labelled set of examples

is NP-complete, then If is not properly PAC-learnable

unless NP = RP. To see this, suppose A is an algorithm

to PAC-learn H in terms of H. Let S be an arbitrary

labelled set of examples and consider the distribution

that assigns probability l/lSl to each example from S,

and zero probability to all other examples. Suppose we

run A with c < 1/]S1 and 6 = 1/2, and this distribution

on examples (labelled as they are in S.)

If there is a hypothesis h ~ H consistent with S, then

with probability y at least 1/2 A must halt and output

some h’ E H that is c-close to h. But by the definition

of the distribution and e, any concept c-close to h must

agree with h on all the examples from S, i.e., in this

case h’ is consistent with S. On the other hand, if there

is no hypothesis h E H consistent with S, A will not

output one. Thus our NP complete problem is in RP.

7.2 The pattern languages

Schapire [119] shows that the pattern languages are not

polynomially predictable assuming the class of sets rec-

ognized by deterministic polynomial sized circuits is a

proper subclass of the class of sets recognized by nonde-

terministic polynomial sized circuits. What’s the catch?

As noted above, the membership problem for pattern

languages is NP-complete, so they are not necessarily

a PTIME representation. In particular, it is conceiv-

able that the pattern languages could be properly PAC-

learnable yet not polynomially predictable. This is anal-

ogous to the distinction between identification and pre-

diction in inductive inference.

7.3 Cryptographic assumptions

Stronger results may be had, apparently at the cost of

stronger assumptions. The results are stronger: they

claim that certain classes of concepts are not polyno-

mially predictable — the representation of output con-

cepts doesn’t matter (as long as it is in PTIME.) The

stronger assumptions and basic constructions are bor-

rowed from public-key cryptography. It is logical that

cryptography (which tries to make unpredictable things

ever easier to compute) and computational learning the-

ory (which tries to make more powerful classes of con-

cepts predictable) should meet along certain frontiers.

Valiant [131] observes that the construction of a

pseudo-random function by Goldreich, Goldwasser and

Micali [50] is also the construction of a class of unpre-
dictable boolean circuits. Thus, if one-way functions ex-

ist, the class of all boolean circuits is not polynomially

predictable. Since the representation class of boolean

circuits is in PTIME, Long and Warmuth’s reduction

shows that if one-way functions exist, convex polytopes

in En represented by their vertices are not polynomially

predictable. It is open whether the class of convex poly-

topes in En represented as an intersection of halfspaces

is polynomially predictable.

Kearns and Valiant [78] show that more specific cryp-

tographic assumptions imply that certain less powerful

classes of concepts are not polynomially predictable. In
particular, they show that assuming the intractability of

any of the three problems (1) deciding quadratic residu-

osit y modulo a composite (2) inverting RSA or (3) fac-

toring Blum integers, the class of boolean formulas is

not polynomially predictable, nor is the class of finite

depth feedforward networks of threshold gates. Using

Pitt and Warmuth’s prediction-preserving reduction of

boolean formulas to dfas, the same result applies to dfas.

The basic ideas may be summarized as follows. Imag-

ine a secure public-key cryptosystem to encode single bit

messages. For each pair of keys (e, d), the set of strings

that decode to 1 should be unpredictable — given a

polynomial number of examples of strings decoding to

1 and to O (which we can generate for ourselves, since

this is a public-key system), we should have no polyno-

mial advantage in guessing whether a new encoding of a

coin flip decodes to 1 or O. That is, the class of concepts

C(e,d) = {~ : ~(x)= 1}

should be not polynomially predictable.

So the question comes down to: determine “small”

classes of concepts sufficient to represent the decoding

function in specific cryptosystems. Except this isn’t

enough — e.g., we don’t know of any way to compute

quadratic residuosity modulo a composite with a log

depth circuit or a polynomial-sized boolean formula.

Here Kearns and Valiant supply a very clever idea —

move some tasks that are computationally onerous but

cryptographically irrelevant into the “input .“ Put an-

other way, create additional “features” that reduce the

computational complexity of the decoding function but

not its cryptographic strength. The relevant features

in each case are the successive squares of the input

string z modulo the composite IV that is part of the key.

This does not affect (modulo polynomial-time compu-

tation) the cryptographic security of the predicate, but

it suffices to make the remaining part of the computa-

tion feasible with a log depth circuit (and therefore a

polynomial-sized boolean formula.)

8 Errors and noise

Potential applications of learning algorithms will have

to cope with data contaminated with errors both sys-

tematic and random. In the work described below, the

assumption is that there is a correct target concept to be

approximated within c despite the errors in the exam-

357

pies. Various models of error in the EXAMPLE oracle

have been studied.

8.1 Malicious errors

Valiant [128] defines malicious errors as follows. A coin

flip with success probability ~ determines which calls to

EXAMPLE will be affected by errors. When there is no

error, EXAMPLE returns a correctly chosen Iabelled ex-

ample as before. The result when an error occurs may

be any example whatsoever with correct or incorrect

sign, assumed to be generated by a malicious adversary.

Valiant gives an algorithm to PAC-learn k-DNF formu-

las over n variables using only negative examples that

tolerates a malicious error rate on the order of c/n~.

Kearns and Li [73, 74] prove that, under very weak

conditions on the concept class, no learning algorithm

can overcome a malicious error rate of/3 = c/(1 + e) or

larger. They also show that for algorithms using only

negative examples, no PAC-Iearning algorithm for k-

DNF formulas can overcome an error rate of/3= cc/nk

for some c >0. Of course, in the presence of errors there

may be no hypothesis consistent with all the examples,

so the simple Occam’s razor does not apply. Kearns

and Li give a generalization of Occam’s razor in which

it suffices to find a hypothesis consistent with a large

fraction (at least 1 – c/2) of the examples.

8.2 Less malicious errors

Angluin and Laird [14, 82] define a model of errors called

classification noise. As in Valiant’s model, a coin flip

with success probability ~ determines which calls to

EXAMPLE will be affected by error. When an error

occurs, the example is still drawn correctly according

to the distribution D, but it is returned with its sign

reversed. This kind of error is particularly benign —

Angluin and Laird give an algorithm that PAC-learns

k-CNF formulas for any noise rate ~ < 1/2. In this

case, the running time of the algorithm is allowed to

grow polynomially in the inverse of (~ – 1/2).

Shackelford and Volper [123] consider a model of at-

tribute noise for concepts with n boolean attributes.

In their model, each example is potentially affected by

noise in reporting its attributes. That is, each example
is drawn correctly according to D and is then reported

with the correct sign but with each of the n bits of

the example flipped with probability /3 < 1/2. Shack-

elford and Volper give a procedure to overcome the ef-

fects of such noise provided ~ is known, which gives a

polynomial-time algorithm that PAC-learns k-DNF for-

mulas assuming @is known. The running time depends

polynomially on the inverse of (1/2 – ~) in this case as

well. Goldman and Sloan have shown how to remove

the assumption that /3 is known for the case of learning

1-DNF.

Sloan [125, 126] defines also malicious misclassifica-
tion noise, which is similar to misclassification noise

except that when an error occurs, an adversary may

choose not to reverse the sign of the example. This can

model the situation in which certain examples are more

likely to be misclassified than others. For a natural vari-

ant of attribute noise in which different attributes may

have different rates of noise (each rate bounded by ~),

Goldman and Sloan have shown that under very weak

assumptions about the concept class, no learning algo-

rithm can tolerate a noise rate of /3 = c/2 or larger.

Thus attribute noise with differing rates is essentially

w bad as malicious errors.

9 Distributions, revisited

Recall that in the basic PAC-learning model, a learning

algorithm has to be prepared to cope with an arbitrary

unknown distribution on examples: the distribution-free

requirement. Results described in this section show just

how strong that requirement is, and propose ways of

weakening it.

9.1 (~weak~’ is not so weak

The parameters 8, bounding the failure probability of

the learning algorithm, and c, bounding the prediction

error of the hypothesis output when the learning algo-

rithm succeeds, have very different roles in the learn-

ing protocol. To what extent may each be “boosted”?

Is there a procedure to take a learning algorithm that

achieves a mediocre failure probability (or prediction

error) and improve it?

The answer is straightforward for 6 — we can re-run

the algorithm several times and take the “best-looking”

hypothesis — that is, the one with the best empirical

prediction error over a sufficient number of examples

[60]. However, it is not at all straightforward for c.

Kearns and Valiant [78] introduce a model called weak

learning, in which it is sufficient to produce an output

concept h such that

11
D(h Ac)<-– —

2 p(n, s)’

where c is the target concept, p is a fixed polynomial,

n is the length of examples, and s is the size of the

target concept. Thus, h performs slightly (by an inverse

polynomial) better than chance when used to predict

c’s labelling of examples drawn according to D. Their

results show that even a weak learning algorithm for

boolean formulas could be used to get a polynomial-

time algorithm for any of the three basic cryptographic

problems they consider.

Schapire [121, 122] proves this is no fluke: surprisingly

enough, weak learnability implies PAC-learnability (not

358

necessarily with the same hypothesis space.) His
method exploits the distribution-free requirement by

constructing filtered versions of the basic distribution

that focus on the “weaknesses” of output hypotheses

and force enough improvement that an output consist-

ing of a majority vote of three hypotheses exhibits an

improved prediction error. This can be iterated suff-
iciently many times to achieve any given prediction er-

ror e. Schapire’s results have a variety of consequences,

including a strong partial converse of Occam’s razor,

bounds on the space complexity of learning, and bounds

on the expected number of mistakes in the on-line model

of prediction. Freund [41] gives an alternative construc-

tion, in which the final output hypothesis is a single ma-

jority vote of a large collection of hypotheses from the

original class. Goldman, Kearns and Schapire [47] in-

vestigate the sample complexity of weak learning, which

can be quite different from the sample complexity of

PAC-learning.

9.2 Restricted classes of distributions

Suppose the learning algorithm “knows” the distribu-

tion D on examples, or at least a restricted class ‘D of

distributions from which it may be drawn: how much

does this help? In several specific cases it does seem to

help: learning algorithms have been devised for certain
problems assuming the uniform distribution or the class

of product distributions that significantly improve on

the results known for the distribution free case. Benedek

and Itai [25] consider the general situation of learning

with respect to a fixed, known distribution and prove re-

sults characterizing learnability with respect to a fixed

D.

9.3 Polynomial-time algorithms

Kearns and Pitt [76] give a polynomial-time algorithm

for PAC-learning k-variable patterns in terms of disjunc-

tions of k-variable patterns under the following class of

distributions. The distribution on negative examples is

arbitrary, and the distribution on positive examples is

the product of k arbitrary distributions, each supplying

one string to be substituted for a variable of the pattern.

As noted earlier, read-once boolean formulas are no

easier to PAC-learn in the distribution free case than

general boolean formulas, which may be difficult indeed,

by the results of Kearns and Valiant [78]. However, the

reduction does not preserve distributions. Read-once

and read-k-times restrictions appear to interact partic-

ularly favorably with the uniform distribution and prod-

uct distributions, and also, with membership queries

(see below.) In the case of the read-once restriction,

the reason appears to be that changing the value of a

single variable affects only the path of gates from the

unique occurrence of that variable to the root of the

formula (viewed as a tree.)

Kearns, Li, Pitt and Valiant [75] show that read-once

DNF formulas are PAC-learnable with respect to the

uniform distribution, as do Pagallo and Haussler [103].

Goldman, Kearns and Schapire [49] show that some re-
stricted classes of read-once formulas are PAC-learnable

with respect to certain fixed simple product distribu-

tions. Schapire [120] significantly generalizes these re-

sults by giving an algorithm that PAC-learns the class

of probabilistic read-once formulas with respect to the

class af product distributions. The class of probabilis-

tic read-once formulas properly generalizes the class of

read-once formulas, and provides an interesting example

of a class of p-concepts, defined and studied by Kearns

and Schapire [77].

A kp-formula has at most k occurrences of each vari-

able. Hancock and Mansour [56] give an algorithm that

PAC-learns monotone kp-DNF formulas with respect to

the class of product distributions,

9.4 ACO in quasi-polynomial time

Linial, Mansour and Nisan [86] consider learning the

class ACO of constant depth circuits over the basis of

AND, OR, and NOT with unbounded fan-in, applying

Fourier spectrum techniques. Using a representation

of boolean functions w linear combinations of parity

functions of subsets of the input, they show that func-

tions in ACO are well approximated with respect to the

uniform distribution by their lower-order terms in this

representation. (Intuitively, because ACO cannot com-

pute good approximations to the parity of a large set of

inputs.) This is used to derive a straightforward PAC-

learning algorithm for ACO functions with respect to

the uniform distribution that has time and sample com-

plexity 0(nf’0~Y~091nJ), quasi-polynomial. Furst, Jackson

and Smith [43] improve this result to allow the class of

product distributions on the boolean attributes in place

of the uniform distribution. Verbeurgt [133] gives a

simpler algorithm to PAC-learn DNF formulas with re-

spect to the uniform distribution whose running time is

quasi-polynomial, but whose sample complexity is poly-

nomial.

10 Equivalence queries

Often it is convenient to develop learning algorithms us-

ing equivalence queries [8], usually in combination with

other types of queries. The input to an equivalence

query is a hypothesis h e H, and the output is either
“yes”, if h is extensionally the same as the target con-

cept c, or a counterexample x consisting of an arbitrarily

chosen example classified differently by h and the tar-

get concept c. Thus a counterexample is an arbitrary

359

element of (h A c). 11 Active learning: positive

In the equivalence query model, the criterion for suc-

cessful learning is exact identification, that is, the learn-

ing algorithm must halt and output a hypothesis exactly

equivalent to the target concept. The assumption is

that the counterexamples are arbitrarily chosen by an

adversary, though aa Maass [92] points out, random-

ized learning algorithms necessitate care in specifying

the type of adversary.

Since equivalence queries are dependent upon the hy-

pothesis class H and its representation, we say C is ex-

actly identified in t ems of H. When we omit ‘(in terms

of,” we imply that H = C. The term eztended equiva-

lence queries has also been used to signal the situation

that H # C.

Equivalence queries in effect provide “direct access”

to counterexamples, and may at first seem too powerful.

However, a polynomial-time learning algorithm devel-

oped using equivalence queries can be transformed into

an algorithm in the absolute mistake bound model [87]

or in the PAC-model [8]. The idea for the first transfor-

mation is to run the learning algorithm until it makes an

equivalence query with a hypothesis h, and then to use

h to predict the labels of examples until (if ever) there

is a mistake of prediction, say on example x. Then the

suspended learning algorithm is resumed, with z as the

counterexample returned by the equivalence query.

For the second transformation, we substitute for each

equivalence query an ‘(approximate equivalence test’)

that consists of checking the hypothesis h against a suf-

ficiently large set of labelled examples drawn from EX-

AMPLE. If the examples are all correctly classified, we

stop and declare success. Otherwise, any incorrectly

classified example will serve as the counterexample.

Many of the known PAC-learnable discrete concept

classes can be exactly learned in polynomial time using

only equivalence queries. Blum [26] shows that this is

not true in general if one-way functions exist. Maass and

Turan [93] give polynomial-time algorithms for learning

discrete geometric concepts using equivalence queries

only. Yokomori [137] gives a polynomial-time algorithm

for learning very simple grammars using only equiva-

lence queries.

Angluin [10] shows that no polynomial-time algo-

rithm can learn DNF formulas (resp., dfas, nfas, cfgs)

in terms of DNF formulas (resp., dfas, nfas, cfgs) US-

ing only equivalence queries. The idea of is that if hy-

potheses are constrained to be polynomial size DNF for-

mulas (or dfas, nfas, or cfgs) then particularly uninfor-

mative counterexamples may be chosen, enforcing very

slow progress towards exact identification.

In the basic PAC model, aa in the absolute mistake

bound model and the equivalence query model, the se-

lection of examples is not under the control of the learn-

ing algorithm; the model is one of passive learning. If

we permit the learning algorithm control over the selec-

tion of examples, we get a more active model, in which

certain classes of concepts may be easier to learn.

Valiant [13 1] considers specific oracles designed to

give the learner more information about the target con-

cept, and demonstrates the learnability of monotone

DNF formulas and p-formulas with respect to certain

of these oracles. Angluin introduces membership and

equivalence queries [8], and other types of queries [9].

Gasarch and Smith [44] consider queries in the context

of inductive inference.

11.1 Membership queries

We may permit the learning algorithm access to another

oracle, MEMBER, which takes as input an example z

and returns as output the classification of x with re-

spect to the target concept c. Such a query is called a

membership query. In this setting we may define PAC-

learning with membership queries in the obvious way.

The transformation sketched in the previous section

shows that a polynomial-time algorithm that exactly

identifies C in terms of H using equivalence and mem-

bership queries can be converted to a PAC-learning al-

gorithm for C in terms of l-l with membership queries.

11.2 Automata and formal languages

Angluin [8] gives a polynomial-time algorithm for learn-

ing deterministic finite state acceptors using member-

ship and equivalence queries. Sakakibara [118] gener-
alizes this result to deterministic bottom up tree au-

tomata. Ishizaka [70] gives a polynomial-time algorithm

that exactly identifies the class of simple deterministic

context free grammars in terms of general context free

grammara using membership and equivalence queries.

Maler and Pnueli [95] give an efficient algorithm to learn

a subclass of the infinitary regular sets using member-
ship and equivalence queries.

Rivest and Schapire [111, 112, 113] consider the prob-
lem of a robot navigating in an unknown environment

and attempting to construct an accurate map of that

environment. For the case of finite state environments

with deterministic actions, they give polynomial-time

algorithms to construct a perfect model of the unknown

environment, even in the absence of an operation to re-

set the robot to a known state, One of the corollaries

of their results is a new and more efficient algorithm for

learning dfaa using equivalence and membership queries.

360

11.3 Geometric concepts

Bultman and Maass [34] give efficient algorithms for

identifying a variety of discrete geometric concepts using

only membership queries, Baum [22] demonstrates the

power of membership queries and random examples for

learning concepts describable by certain kinds of neu-

ral nets. In particular, he sketches a polynomial-time

algorithm to learn the intersection of m halfspaces in

n dimensions using random examples and membership

queries.4

11.4 Subclasses of CNF and DNF

Angluin [7] gives a polynomial-time algorithm that ex-

actly identifies k-term DNF formulas using equivalence

and membership queries. Blum and Rudich [28] show

that k-term DNF formulas can be exactly identified in

terms of general DNF formulas by a randomized al-

gorithm that uses membership and equivalence queries

and runs in expected time O(n. 2°(kJ). This means that

DNF formulas of O(log n) terms are PAC-learnable with

membership queries.

Valiant [131] gives an algorithm that can be viewed as
exactly learning monotone DNF formulas in polynomial

time using equivalence and membership queries [9]. A

propositional Horn sentence is a CNF formula with at

most one positive literal per clause. Angluin, Frazier

and Pitt [11] give a polynomial-time algorithm that ex-

actly identifies the class of propositional Horn sentences

using membership and equivalence queries. However,

“more” nonmonotonicit y, e.g., two positive literals per

clause, yields a problem no easier than predicting gen-

eral CNF or DNF formulas with membership queries,

which remains open.

11.5 Read-once formulas

Angluin, Hellerstein, and Karpinski [12] give a

polynomial-time algorithm that exactly identifies the

class of general read-once boolean formulas using mem-

bership and equivalence queries. Subsequent results

have demonstrated the surprising power of membership

queries to aid in learning read-once formulas over a va-

riety of more powerful bases.

Raghavan and Schach [109] give a polynomial-time

algorithm to learn single-contact switch configurations

using equivalence and membership queries. This class

of boolean functions properly includes the read-once

boolean functions, and Raghavan and Schach’s algo-

rithm improves the time bound of the Angluin, Heller-
stein and Karpinski algorithm.

4There jS ~ te&&d Comtrtit on the interaction of the cOn-

cept and the distribution on examples that prevents certain patho-

logical conditions.

A result due independently to Hancock [51] and

Hellerstein and Karpinski [65] shows that there is

a polynomial-time algorithm using membership and

equivalence queries to learn read-once formulas over the

basis of NOT and threshold gates, which is also a proper

generalization of the read-once boolean formulas. Han-

cock [52] gives a polynomial-time algorithm using mem-

bership and equivalence queries to learn p-formula de-

cision trees, another proper generalization of read-once

boolean formulas.

Hancock and Hellerstein [55] give polynomial al-

gorithms using membership and equivalence queries

that exactly identify read-once formulas over extended

bases and fields. These results have recently been ex-

tended and improved by Bshouty, Hancock, and Heller-

stein [33]. Hancock, Golea and Marchand [54] give a

polynomial-time algorithm to learn nonoverlapping per-

ception networks (or read-once formulas over a weighted

threshold basis) using random examples and member-

ship queries.

11.6 kp-formulas

Generalizing the read-once or p restriction to allow two

or a bounded number of occurrences of each variable,

there has also been progress. Hancock gives polynomial-

time algorithms to PAC-identify 2p-DNF formulas and

kp-decision trees using random examples and member-

ship queries [53]. For the first class, Aizenstein and Pitt

[4] prove the stronger result that 2p-DNF formulas are

exactly identifiable in polynomial time using equivalence

and membership queries. Predicting 3p-DNF formulas

with membership queries is no easier than predicting

general DNF formulaz with membership queries [53], so

2 seems to be the limit of this line of attack. The status

of 2p-boolean formulas of greater structural complexity

is open.

11.7 Errors in membership queries

Errors in the responses to membership queries have not
yet been much studied. Sakakibara [117] defines a model

in which answers to queries are subject to random in-

dependent noise, which he shows can be effectively re-

moved by repeating the query sufficiently often. An-

gluin and Slonim [15] consider a model in which a fixed
but randomly chosen fraction of membership queries

can be answered “I don’t know” and the answers are

persistent, that is, do not change when queried again.

They demonstrate a polynomial-time algorithm to learn

monotone DNF formulas in this model.

361

12 Active learning: negative

12.1 Lower bounds

Masss and Turan [94] present general lower bounds on

the number of membership and equivalence queries re-

quired for exact identification of all concepts from a class

C. In particular, they show this quantity is bounded

below by $ of the Vapnik-Chervonenkis dimension of G.

They also give a lower bound in terms of the number

of equivalence queries to identify elements of C using

arbitrary subsets of the domain as hypotheses. In ef-

fect, these results establish that membership queries do

not (even in pathological csses) confer an extraordinary

advantage over computationally unrestricted algorithms

using only examples.

12.2 Reductions

Generalizing Pitt and Warmuth’s definitions, Angluin

and Kharitonov [13] define prediction with respect to

random examples and membership queries, and a reduc-

tion that preserves prediction with membership queries.

In addition to the function g that maps concepts in do-

main A to concepts in domain B, and the function f

that maps examples in domain A to examples in do-

main B, there is also a function h that maps examples

in domain B to answers or examples in domain A. In-

tuitively, h is the inverse of ~, so that examples queried

in domain B may be transformed into examples to be

queried in domain A. However, the examples queried in

domain B may not be in the range off, then the func-

tion h must itself supply an answer, typically a constant

+ or – for all examples not in the range of f.

With this new reduction, the class of dfas is appar-

ently not complete over DSPACE(log n), however, the

class of finite unions of dfas or two-way dfas is com-

plete over DSPACE(log n). Also, general boolean for-

mulss can be reduced to 3p-boolean formulas. Hence,

predicting 3p-boolean formulas or finite unions of dfas

or two-way dfas with membership queries is as hard as

predicting boolean formulas with membership queries.

12.3 Implications of cryptography

Generalizing the results of Kearns and Valiant [78], An-

gluin and Kharitonov [13] use results and techniques

from public-key cryptography to show limitations on the

classes of concepts that are PAC-learnable using mem-

bership queries. Using Naor and Yung’s construction
of a public-key encryption system secure against chosen

cyphertext attack [97], they show that assuming the in-

tractability of (1) recognizing quadratic residues mod-

U1O a composite, (2) inverting RSA encryption, or (3)

factoring Blum integers, there is no PAC-learning al-

gorithm with membership queries for several concept

clssses, including general boolean formulas, constant

depth threshold circuits, 3p-boolean formulas, finite

unions or intersections of deterministic finite acceptors,

2-way deterministic finite acceptors, nondeterministic fi-

nite acceptors, and context-free grammars.

They also show that if there exist one-way functions

that cannot be inverted by polynomial-sized circuits, an

application of existing secure signature schemes can be

used to show that CNF and DNF formulas formulas are

either PAC-learnable without membership queries, or

are not PAC-learnable even with membership queries.

This result shows that under fairly weak cryptographic

assumptions membership queries won’t help with learn-

ing CNF or DNF formulas.

Consequently, classes such as CNF and DNF formu-

las, or nondeterministic finite acceptors and context-free

grammars, which have so far resisted PAC-learning with

membership queries, appear to be out of reach.

12.4 Nonclosure results

The “folk wisdom” that finite conjunctions or disjunc-

tions of concepts from a learnable class maybe unlearn-

able is also supported by the results above. For example,

though dfae and read-once boolean formulas are PAC-

learnable with membership queries, the results above

give cryptographic evidence that finite intersections or

unions of dfas are not, and conjunctions or disjunctions

of as few as three read-once boolean formulas are not.

13 Generalizations of the PAC

model

Haussler [58] considers a powerful decision-theoretic

generalization of PAC-learning to settings in which the

rules to be learned are not necessarily boolean-valued

nor deterministic, and adequacy of representation is not

necessarily assumed. He proves very general results on

the sample sizes sufficient for learning in such domains,

using appropriate generalizations of the VC-dimension,

with specific application to the problem of learning in

terms of neural nets.

In one application of this approach, Kearns and

Schapire [77] define a p-concept to be a map c from
X to [0, 1], where c(2) is interpreted as the probability

that c classifies z positively. In this learning paradigm,

examples are drawn according to an unknown distribu-

tion D on X and then stochastically classifed as positive

or negative by an unknown p-concept c. They distin-

guish the goals of(1) finding a good prediction rule, that

is, a decision rule whose prediction error is within c of

the Bayes optimal rule, and (2) finding a good model of

probability, that is, a good approximation h to the tar-

get rule in the sense that [h(z) – c(z) I is small for most

inputs x with respect to D.

362

Yamanishi [136] defines a stochastic rule similarly

and considers the problem of learning stochastic deci-

sion lists. Abe, Takeuchi and Warmuth [2] investigate

relations among various definitions of “distance” be-

tween two p-concepts, with particular emphasis on the

Kullback-Liebler divergence. Fischer, Pelt, and Simon

[37] define related notions of multiplicative, additive or

linear pat-estimability of a class of distributions. Abe

and Warmuth [3] consider the concrete problem of ap-

proximating a distribution using a stochastic automa-

ton.

14 Other models

At this point the reader may feel that the field is coher-

ent, and the models settled; this impression is wrong!

The goal stated in Section 1 is yet very distant, and the

major part of the vitality of the field lies in its ability to

generate new models, approaches, formalizations. We

therefore point, possibly at the future:

Valiant [132]: a model of neuroids, neurons with state,

and task-specific learning algorithms. Aldous and Vazi-

rani [5]: an extension of the PAC model to examples

generated using a Markov chain. Rivest and Sloan [114]:

a model of learning a concept from subconcepts and

an algorithm to learn boolean circuits, see also Kivinen

[79]. Vitter and Lin [134]: a model of parallel learn-

ing. Natarajan [98]: a model of learning from exer-

cises. Li and Vitanyi [85]: a theory of learning “simple”

concepts from ‘(simple” distributions based on program-

size complexity. Floyd [40]: a model of space-bounded

learning. Rivest and Sloan [115]: a Bayesian model of

scientific theories and experiments. Ben-David, Itai and

Kushilevitz [24]: a model of learning using estimates of

“distance” from the target. Li [84]: a model of learn-

ing a string, motivated by DNA sequencing, see also

Jiang and Li [72]. Helmbold and Long [66]: a model of

learning concepts that change over time. Blum, Heller-

stein and Littlestone [27]: dealing efficiently with infi-

nite attribute spaces. Maass [92]: a model of worst-

case “oblivious” example sequences and the power of

randomized algorithms in this setting. Models of teach-

ing have been defined and investigated by Goldman and

Kearns [45, 46] and Shinohara and Miyano [124].

15 Open problems

In order of increasing strength: Are decision trees PAC-

learnable? Is DNF or CNF PAC-learnable? Are inter-

sections or unions of half spaces in En PAC-learnable?

For membership queries: Determine the bases over

which read-once formulas are PAC-learnable with mem-

bership queries. Determine which classes of 2p-formulas

are PAC-learnable with membership queries. Of course,

the basic open problem is to account for the possibility

of learning.

16 Comments

Thanks to Lenny Pitt for help improving the paper.

With luck there will be another, more complete, version

of this paper. Therefore, corrections, comments, sugges-

tions, complaints, and updated references are welcome.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

N. Abe. Polynomial learnability of semilinear sets.

In Proceedings of the Second Annual Workshop

on Computational Learning Theory, pages 25–40.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1989.

N. Abe, J. Takeuchi, and M. Warmuth. Polyno-

mial learnability of probabilistic concepts with re-

spect to the Kullback-Leibler divergence. In Pro-

ceedings of the Fourth Annual Workshop on Com-

putational Learning Theoy, pages 277–289. Mor-

gan Kaufmann Publishers, Inc., San Mateo, CA,

1991.

N. Abe and M. Warmuth. On the computa-

tional complexity of approximating distributions

by probabilistic automata. In Proceedings of the

Third Annual Workshop on Computational Learn-

ing Theory, pages 52–66. Morgan Kaufmann Pub-

lishers, Inc., San Mateo, CA, 1990.

H. Aizenstein and L. Pitt, Exact learning of read-

twice DNF formulas. In Proceedings of the /12nd

Annual Symposium on Foundations of Computer

Science, pages 170-179. IEEE Computer Society

Press, 1991.

D. Aldous and U. Vazirani. A Markovian exten-

sion of Valiant’s learning model. In Proceedings

of the 31st Annual Symposium on Foundations

of Computer Science, pages 392–396. IEEE Com-

puter Society Press, 1990.

D. Angluin. Finding patterns common to a set of

strings. J. Comp. Sys. Sci., 21:46–62, 1980.

D. Angluin. Learning k-term DNF formulas using

queries and counterexamples. Technical report,

Yale University, YALE/DCS/RR-559, 1987.

D. Angluin. Learning regular sets from queries
and counterexamples. Information and Comput a-

tion, 75:87-106, 1987.

D. Angluin. Queries and concept learning. Ma-

chine Learning, 2:319–342, 1988.

3f33

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. Angluin. Negative results for equivalence

queries. Machine Learning, 5:121-150, 1990.

D. Angluin, M. Frazier, and L. Pitt. Learning con-

junctions of Horn clauses. In Proceedings of the

31st Annual Symposium on Foundations of Com-

puter Science, pages 186–192. IEEE Computer So-

ciety Press, 1990.

D. Angluin, L. Hellerstein, and M. Karpinski.

Learning read-once formulas with queries. Tech-

nical report, University of California at Berkeley,

Report No, 89/528, 1989. (Also, International

Computer Science Institute Technical Report TR-

89-05099.) JACM, to appear.

D. Angluin and M. Kharitonov. When won’t

membership queries help? In Proceedings of the

Twenty Third Annual ACM Symposium on The-

ory of Computing, pages 444454. ACM Press,

1991.

D. Angluin and P. Laird. Learning from noisy

examples. Machine Learning, 2:343–370, 1988.

D. Angluin and D. Slonim. Learning monotone

DNF with an incomplete membership oracle. In

Proceedings of the Fourth Annual Workshop on

Computational Learning Theory, pages 139-146.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1991.

D. Angluin and C. Smith. Inductive inference:

theory and methods. Cornput. Surveys, 15:237–

269, 1983.

M. Anthony, N. Biggs, and J. Shawe-Taylor. The

learnability of formal concepts. In Proceedings

of the Third Annual Workshop on Computational

Learning Theory, pages 246–257. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1990.

S. Arikawa, S. Goto, S. Ohsuga, and T. Yok~

mori, editors. Proceedings of the First Interna-

tional Workshop on Algorithmic Learning Theoy.

Japanese Society for Artificial Intelligence, Tokyo,

October 8-10, 1990.

S. Arikawa, A. Maruoka, and T. Sate, editors.

Proceedings of the Second International Workshop

on Algom”thmic Learning Theory. Japanese Soci-

et y for Artificial Intelligence, Tokyo, October 23-

25, 1991.

J. M. Barzdin and R. V. Freivalds. On the pre-

diction of general recursive functions. Sov. Math.

Dokl., 13:1224-1228, 1972.

E. Baum. On learning a union of half spaces. Jour-

nal of Comp/ezity, 6:67–101, 1990.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

E. Baum. Polynomial time algorithms for learn-

ing neural nets. In Proceedings of the Third An-

nual Workshop on Computational Learning The-

ory, pages 258-272. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1990.

S. Ben-David, G. Benedek, and Y. Mansour. A

parameterization scheme for classifying models of

learnability. In Proc. of the Second Annual Work-

shop on Computational Learning Theory, pages

285–302. Morgan Kaufmann Publishers, Inc., San

Mateo, CA, 1989.

S. Ben-David, A. Itai, and E. Kushilevitz. Learn-

ing by distances. In Proceedings of the Third An-

nual Workshop on Computational Learning The-

ory, pages 232–245. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1990.

G. Benedek and A. Itai. Learnability by fixed dis-

tributions. In Proceedings of the 1988 Workshop

on Computational Learning Theory, pages 80-90,

1988.

A. Blum. Separating distribution-free and

mistak~bound learning models over the boolean

domain. In Proc. 31st Annual Symposium on

Foundations of Computer Science, pages 211-218.

IEEE Computer Society Press, 1990.

A. Blum, L. Hellerstein, and N. Littlestone.

Learning in the presence of finitely or infinitely

many irrelevant attributes. In Proceedings of

the Fourth Annual Workshop on Computational

Learning Theory, pages 157–166. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1991.

A. Blum and S. Rudich. Fast learning of k-term

DNF formulas with queries. In Proceedings of the

Twenty-Fourth Annual ACM Symposium on The-

ory of Computing. ACM Press, 1992.

A. Blum and M. Singh. Learning functions of k

terms. In Proceedings of the Third Annual Work-

shop on Computational Learning Theory, pages

144–153. Morgan Kaufmann Publishers, Inc., San

Mateo, CA, 1990.

A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. Warmuth. Classifying learnable geometric
concepts with the Vapnik-Chervonenkis dimen-

sion. In Proc. 18th ACM Symposium on Theory

of Computing, pages 273–282. ACM Press, 1986.

A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. Warmuth. Occam’s razor. Information Pro-

cessing Letters, 24:377–380, 1987.

364

[32] A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. J. ACM, 36:929-965,

1989.

[33] N. Bshouty, T. Hancock, and L. Hellerstein.

- Learning arithmetic read-once formulas. In Pro-

ceedings of the Twenty-Fourth Annual ACM Sym-

posium on Theoy of Computing. ACM Press,

1992.

[34] W. Bultman and W. Maass. Fast identification

of geometric objects with membership queries. In

Proceedings of the Fourth Annual Workshop on

Computational Learning Theory, pages 337-352.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1991.

[35] J. Case and C. Smith. Comparison of identi-

fication criteria for machine inductive inference.

Theor. Comp. SCZ., 25:193-220, 1983.

[36] A. Ehrenfeucht and D. Haussler. Learning deci-

sion trees from random examples. In Proceedings

of the 1988 Workshop on Computational Learning

Theory, pages 182-194, 1988.

[37] P. Fischer, S. Pelt, and H. Simon. Proba-

bly almost Bayes decisions. In Proceedings of

the Fourth Annual Workshop on Computational

Learning Theory, pages 88–94. Morgan Kaufmann

Publishers, Inc., San Mateo, CA, 1991.

[38] P. Fischer and H. Simon. On learning ring-sum

expansions. SIAM J. Comput., 21:181-192, 1992.

[39] S. Floyd. On Space-bounded Learning and the

Vapnik-Chervonenkis Dimension. PhD thesis,

University of California, Berkeley, 1989. Issued

as ICSI TR-89-061.

[40] S. Floyd. Space-bounded learning and the Vapnik-

Chervonenkis dimension. In Proc. of the Sec-

ond Annual Workshop on Computational Learn-

ing Theory, pages 349–364. Morgan Kaufmann

Publishers, Inc., San Mateo, CA, 1989.

[41] Y. ~eund. Boosting a weak learning algorithm

by majority. In Proceedings of the Third An-

nual Workshop on Computational Learning The-

ory, pages 202–2 16. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1990.

[42] M. Fulk and J. Case, editors. Proceedings of the

Third Annual Workshop on Computational Learn-

ing Theory. Morgan Kaufmann Pubishers, Inc.,

San Mateo, CA, Rochester, NY, August 6-8,1990.

[43] M. Furst, J. Jackson, and S. Smith. Improved

learning of ACO functions. In Proceedings of

the Fourth Annual Workshop on Computational

Learning Theory, pages 317-325. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1991.

[44] W. Gasarch and C. Smith. Learning via queries.

In Proc. 29th Annual Symposium on Foundations

of Computer Science, pages 130–137. IEEE Com-

puter Society Press, 1988.

[45] S. Goldman. Learning Binary Relations, Total

Orders, and Read-Once Formulas. PhD thesis,

MIT, 1990. Issued as MIT/LCS/TR-483.

[46] S. Goldman and M. Kearns. On the complex-

ity of teaching. In Proceedings of the Fourth An-

nual Workshop on Computational Learning The-

ory, pages 303–3 14. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1991.

[47] S. Goldman, M. Kearns, and R. Schapire. On the

sample complexity of weak learning. In Proceed-

ings of the Third Annual Workshop on Compu-

tational Learning Theory, pages 217–231. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[48] S. Goldman, R. Rivest, and R. Schapire. Learning

binary relations and total orders. In Proceedings of

the Thirtieth Annual Symposium on Foundations

of Computer Science, pages 46–51. IEEE Com-

puter Society Press, 1989.

[49] S. A. Goldman, M. J. Kearns, and R. E. Schapire.

Exact identification of circuits using fixed points

of amplification functions. In Proc. $Ist Annual

Symposium on Foundations of Computer Science,

pages 193-202. IEEE Computer Society Press,

1990.

[50] O. Goldreich, S. Goldwasser, and S. Micali. How

to construct random functions. In Proc. 25th An-

nual Symposium on Foundations of Computer Sci-

ence, pages 464-479. IEEE, 1984.

[51] T. Hancock. Identifying p-formula decision trees
with queries. Technical report, Harvard Univer-

sity Center for Research in Computing Technol-

ogy, TR-16-90, 1990.

[52] T. Hancock. Identifying p-formula decision trees

with queries. In Proceedings of the Third An-

nual Workshop on Computational Learning The-

ory, pages 23–37. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1990.

[53] T. Hancock. Learning 2pDNF formulas and kp

decision trees. In Proceedings of the Fourth An-

nual Workshop on Computational Learning The-

365

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

ory, pages 199–209. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1991.

T. Hancock, M. Golea, and M. Marchand. Learn-

ing nonoverlapping perception networks from ex-

amples and membership queries. Technical report,

Harvard University Center for Research in Com-

puting Technology, TR-26-91, 1991.

T. Hancock and L. Hellerstein. Learning read-

once formulas over fields and extended bases. In

Proceedings of the Fourth Annual Workshop on

Computational Learning Theory, pages 326-336.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1991.

T. Hancock and Y. Mansour. Learning monotone

kp DNF formulas on product distributions. In

Proceedings of the Fourth Annual Workshop on

Computational Learning Theory, pages 179-183.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1991.

D. Haussler. Quantifying inductive bias: AI learn-

ing algorithms and Valiant’s learning framework.

Artificial Intelligence, 36:177-221, 1988.

D. Haussler. Generalizing the PAC model: sam-

ple size bounds from metric dimension-based uni-

form convergence results. In Proceedings of the

Thirtieth Annual Symposium on Foundations of

Computer Science, pages 40–45. IEEE Computer

Society Press, 1989.

D. Haussler. Learning conjunctive concepts in

structural domains. Machine Learning, 4:7-40,

1989.

D. Haussler, M. Kearns, N. Littlestone, and

M. Warmuth. Equivalence of models for polyno-

mial learnability. In Proc. of the 1988 Workshop

on Computational Learning Theory, pages 42–55.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1988.

D. Haussler, M. Kearns, N. Littlestone, and

M. Warmuth. Equivalence of models for polyno-

mial learnability. Technical report, University of
California, Santa Cruz, UCSC-CRL-88-06, 1988.

D. Haussler, N. Littlestone, and M. Warmuth.

Predicting {O, 1}-functions on randomly drawn

points. In Proc. 29th Symposium on Foundations

of Computer Science, pages 100–109. IEEE Com-
puter Society Press, 1988.

D. Haussler and L. Pitt, editors. Proceedings of

the 1988 Workshop on Computational Learning

Theory. Morgan Kaufmann Pubishers, Inc., San

Mateo, CA, Boston, MA, August 3-5, 1988.

[64] L. Hellerstein. On Characterizing and Learning

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Some Classes of Read-once Func;ons. PhD the:

sis, University of California, Berkeley, 1989.

L. Hellerstein and M. Karpinski. Computational

complexity of learning read-once formulas over

different bases. Technical report, International

Computer Science Institute, Berkeley, CA, TR-

91-014, 1991.

D. Helmbold and P. Long. Tracking drifting con-

cepts using random examples. In Proceedings of

the Fourth Annual Workshop on Computational

Learning Theory, pages 13–23. Morgan Kaufmann

Publishers, Inc., San Mateo, CA, 1991.

D. Helmbold, R. Sloan, and M. Warmuth. Learn-

ing integer lattices. In Proceedings of the Third

Annual Workshop on Computational Learning

Theory, pages 288–302. Morgan Kaufmann Pub-

lishers, Inc., San Mateo, CA, 1990.

D. Helmbold, R. Sloan, and M. Warmuth.

Learning nested differences of intersection-closed

classes. Machine Learning, 5:165–196, 1990.

0. Ibarra and T. Jiang. Learning regular lan-

guages from counterexamples. In Proc. of the

1988 Workshop on Computational Learning The-

ory, pages 371–385. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1988.

H. Ishizaka. Learning simple deterministic lan-

guages. In Proceedings of the Second Workshop on

Computational Learning Theory, pages 162-174.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1989.

M. Jerrum. Simple translation-invariant concepts

are hard to learn. Technical report, University

of Edinburgh, Department of Computer Science,

CSR-12-91, 1991.

T. Jiang and M. Li. On the complexity of learn-

ing strings and sequences. In Proceedings of

the Fourth Annual Workshop on Computational
Learning Theory, pages 367–371. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1991.

M. Kearns. The Computational Complexity of

Machine Learning. PhD thesis, Harvard Univer-

sity, 1989. To be published by MIT Press in the

ACM Distinguished Dissertation Series.

M. Kearns and M. Li. Learning in the presence of

malicious errors. In Proceedings of the Twentieth

Annual ACM Symposium on Theory of Comput-

ing, pages 267–280. ACM Press, 1988.

366

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

M. Kearns, M. Li, L. Pitt, and L. Valiant. On the

learnability of boolean formulae. In Proc. 19th

ACM Symposium on Theory of Computing, pages

285-295. ACM Press, 1987.

M. Kearns and L. Pitt. A polynomial-time al-

gorithm for learning k-variable pattern languages

from examples. In Proceedings of the Second An-

nual Workshop on Computational Learning The-

ory, pages 57–70. Morgan Kaufmann Publishers,

Inc., San Mateo, CA, 1989.

M. Kearns and R. Schapire. Efficient distribution-

free learning of probabilistic concepts. In Proceed-

ings of the 31st Annual Symposium on Founda-

tions of Computer Science, pages 382-391. IEEE

Computer Society Press, 1990.

M. Kearns and L. Valiant. Cryptographic limita-

tions on learning boolean formulae and finite au-

tomata. In Proc. 21si ACM Symposium on Theory

of Computing, pages 433–444. ACM Press, 1989.

J. Kivinen. Reliable and useful learning. In Pro-

ceedings of the Second Workshop on Computa-

tional Learning Theory, pages 365–380. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1989.

R. Klette and R. Wiehagen. Research in the the-

ory of inductive inference by GDR mathemati-

cians – a survey. Information Sciences, 22:149-

169, 1980.

E. Kushilevitz and Y. Mansour. Learning decision

trees using the Fourier spectrum. In Proceedings

of the Twenty Third Annual ACM Symposium on

Theory of Computing, pages 455-464. ACM Press,

1991.

P. Laird. Learning From Good Data and Bad.

PhD thesis, Yale University, 1987. Published by

Kluwer Academic Publishers, 1988.

P. Laird. A survey of computational learning the-

ory. In R. Banerji, editor, Formal Techniques in

Artificial Intelligence: A Sourcebook, pages 173-

215. Elsevier Science Publishers, 1990.

M. Li. Towards a DNA sequencing theory: learn-

ing a string. In Proceedings of the 31st Annual

Symposium on Foundations of Computer Science,

pages 125–134. IEEE Computer Society Press,

1990.

M. Li and P. Vitanyi. A theory of learning sim-
ple concepts under simple distributions and aver-

age case complexity for the universal distribution.

In Proceedings of the 90th Annual Symposium on

Foundations of Computer Science, pages 34-39.

IEEE Computer Society Press, 1989.

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

N. Linial, Y. Mansour, and N, Nisan. Constant

depth circuits, Fourier transform, and learnability.

In Proceedings of the Thartieth Annual Symposium

on Foundations of Computer Science, pages 574–

579. IEEE Computer Society Press, 1989.

N. Littlestone. Learning quickly when irrelevant

attributes abound: a new linear-threshold algo-

rithm. Machine Learning, 2:285–318, 1988.

N. Littlestone. Redundant noisy attributes, at-

tribute errors, and linear-threshold learning us-

ing Winnow. In Proceedings of the Fourth An-

nual Workshop on Computational Learning The-

ory, pages 147–156. Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1991.

N. Littlestone, P. Long, and M. Warmuth. On-

line learning of linear functions. In Proceedings

of the Twenty Third Annual ACM Symposium on

Theory of Computing, pages 465-475. ACM Press,

1991.

N. Littlestone and M. Warmuth. The weighted

majority algorithm. In Proceedings of the 30th

Annual Symposium on Foundations of Computer
Science, pages 256–261. IEEE Computer Society

Press, 1989.

P. Long and M. Warmuth. Composite geometric

concepts and polynomial predict ability. In Pro-

ceedings of the Third Annual Workshop on Com-

putational Learning Theory, pages 273–287. Mor-

gan Kaufmann Publishers, Inc., San Mateo, CA,

1990.

W. Maass. On-line learning with an oblivious en-

vironment and the power of randomization. In

Proceedings of the Fourth Annual Workshop on

Computational Learning Theory, pages 167-175.

Morgan Kaufmann Publishersj Inc., San Mateo,

CA, 1991.

W. Maass and G. Turan. On the complexity of

learning from counterexamples. In Proceedings

of the 30th Annual Symposium on Foundations

of Computer Science, pages 262–267. IEEE Com-

puter Society Press, 1989.

W. Maass and G. Turan. On the complexity of

learning from counterexamples and membership

queries. In Proceedings of the 31st Annual Sympo-

sium on Foundations of Computer Science, pages

203-210. IEEE Computer Society Press, 1990.

0. Maler and A. Pnueli. On the learnabil-

ity of infinitary regular sets. In Proceedings oj

the Fourth Annual Workshop on Computational

Learning Theory, pages 128–136. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1991.

3f3/

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

S. Miyano, A. Shinohara, and T. Shinohara.

Which classes of elementary formal systems are

polynomial-time learnable? In Proceedings of the

Second Workshop on Algorithmic Learning The-

ory, pages 139–150. Japanese Society for Artificial

Intelligence, 1991.

M. Naor and M. Yung. Public-key cryptosystems

provably secure against chosen ciphertext attacks.

In Proceedings of the Twenty Second Annual ACM

Symposium on Theory of Computing, pages 427–

437. Association for Computing Machinery, 1990,

B. Natarajan. On learning from exercises. In

Proceedings of the Second Workshop on C’ompu-

iational Learning Theory, pages 72–87. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1989.

B. Natarajan. On learning sets and functions. Ma-

chine Learning, 4:67–97, 1989.

B. K. Natarajan. On learning boolean functions.

In Proc. 19th ACM Symposium on Theory of

Computing, pages 296-304. ACM Press, 1987.

B. K. Natarajan. Machine Learning: a Theoreti-

cal Approach. Morgan Kaufmann Publishers, Inc.,

San Mateo, CA, 1991.

D. Osherson, M. Stob, and S. Weinstein. Systems

Thai Learn. MIT Press, Cambridge, MA, 1986.

G. Pagallo and D. Haussler. A greedy method

for learning p-DNF functions under the uniforn

distribution. Technical report, University of Cal-

ifornia at Santa Cruz, UCSC-CRL-89-12, 1989.

L. Pitt and R. Board. On the necessity of Occam

algorithms. In Proceedings of the Twenty Second

Annual ACM Symposium on Theory of Comput-

ing, pages 54–63. ACM Press, 1990.

L. Pitt and L. Valiant. Computational limitations

on learning from examples. J. ACM, 35:965–984,

1988.

L. Pitt and M. Warmuth. The minimum consis-

tent DFA problem cannot be approximated within

any polynomial. In Proceedings of the Twenty-jirst
Annual ACM Symposium on Theory of Comput-

ing, pages 421–432. ACM Press, 1989.

L. Pitt and M. Warmuth. Prediction-preserving

reducibility. J. of Computer and System Sciences,

41:430-467, 1990.

S. Porat and J. Feldman. Learning automata from

ordered examples. In Proc. of the 1988 Workshop

on Computational Learning Theory, pages 386–

396. Morgan Kaufmann Publishers, Inc., San Ma-

teo, CA, 1988.

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

V. Raghavan and S. Schach. Learning switch con-

figurations. In Proceedings of Third Annual Work-

shop on Computational Learning Theory, pages

38–51. Morgan Kaufmann Publishers, Inc., San

Mateo, CA, 1990.

R. Rivest, D. Haussler, and M. Warmuth, edi-

tors. Proceedings of the Second Annual Work-

shop on Computational Learning Theory. Morgan

Kaufmann Pubishers, Inc., San Mateo, CA, Santa

Cruz, CA, July 31- August 2, 1989.

R. Rivest and R. Schapire. Diversity-based in-

ference of finite automata. In Proc. 28th IEEE

Symposium on Foundations of Computer Science,

pages 78-87. IEEE Computer Society Press, 1987.

R. Rivest and R. Schapire. A new approach to

unsupervised learning in deterministic environ-

ments. In Proc. of the dth International Work-

shop on Machine Learning, pages 364–375. Mor-

gan Kaufmann Publishers, Inc., San Mateo, CA,

1987.

R. Rivest and R. Schapire. Inference of finite au-

tomata using homing sequences. In Proc. 21s1

ACM Symposium on Theory of Computing, pages

411–420. ACM Press, 1989.

R. Rivest and R. Sloan. Learning complicated

concepts reliably and usefully. In Proc. of the

1988 Workshop on Computational Learning The-

ory, pages 69–79. Morgan Kaufmann Publishers,

Inc., San Mateo, CA, 1988.

R. Rivest and R. Sloan. A new model for inductive

inference. In Proceedings of the Second Conference

on Theoretical Aspects of Reasoning About Knowl-

edge, pages 13–27. Morgan Kaufmann Publishers,

Inc., San Mateo, CA, 1988.

R. L. Rivest. Learning decision lists. Machine

Learning, 2:229-246, 1987.

Y. Sakakibara. On learning from queries and
counterexamples in the presence noise. Informa-

tion Processing Letters, to appear.

Y. Sakakibara. Learning context-free grammars

from structural data in polynomial time. Theo-

retical Computer Science, pages 223–242, 1990.

R. Schapire. Pattern languages are not learnable.

In Proceedings of the Third Annual Workshop on

Computational Learning Theory, pages 122-129.

Morgan Kaufmann Publishers, Inc., San Mateo,

CA, 1990.

368

[120] R. Schapire. Learning probabilistic read-once for-

mulas on product distributions. In Proceedings of

the Fourth Annual Workshop on Computational

Learning Theory, pages 184–198. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1991.

[121] R. E. Schapire. The strength of weak learnability.

In Proceedings of the 30th Annual Symposium on

Foundations of Computer Science, pages 28-33.

IEEE Computer Society Press, 1989.

[122] R. E. Schapire. The Design and Analysis of Ef-

ficient Learning Algorithms. PhD thesis, MIT,

1991. Issued as MIT/LCS/TR-493.

[123] G. Shackelford and D. Volper. Learning k-DNF

with noise in the attributes. In Proceedings of the

1988 Workshop on Computational Learning The-

ory, pages 97–103. Morgan Kaufmann Publishersl

Inc., San Mateo, CA, 1988.

[124] A. Shinohara and S. Miyano. Teachability in com-

putational learning. New Generation Computing,

8:337-347, 1991.

[125] R. Sloan. Types of noise in data for concept learn-

ing. In Proceedings of the 1988 Workshop on Com-
putational Learning Theory, pages 91–96. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[126] R. H. Sloan. Computational Learning Theory:

New Models and Algorithms. PhD thesis, MIT,

1989. Issued aa MIT/LCS/TR-448.

[127] L. Valiant. Deductive learning. Phil. l%ms, Roy.

SOc. Lend. A, 312:441-446,1984.

[128] L. Valiant. Learning disjunctions of conjunctions.

In Proc. 9th IJCAI, pages 560-566. IJCAI, 1985.

[129] L. Valiant. A view of computational learning the-

ory. In C. W. Gear, editor, Computation & Cogni-

tion: Proceedings of the First NEC Research Sym-

posium, pages 32-51. SIAM, 1991.

[130] L. Valiant and M. Warmuth, editors. Proceedings

of the Fourth Annual Workshop on Computational

Learning Theory. Morgan Kaufmann Pubishers,

Inc., San Mateo, CA, Santa Cruz, CA, August

5-7, 1991.

[131] L. G. Valiant. A theory of the learnable. C. ACM,

27:1134-1142,1984.

[133] K. Verbeurgt. Learning DNF under the uniform

distribution in quasi-polynomial time. In Proceed-

ings of the Third Annual Workshop on Compu-

tational Learning Theory, pages 314-326. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[134] J. Vitter and J.-H. Lin. Learning in parallel. in-

formation and Computation, pages 179-202,1992.

[135] V. Vovk. Aggregating strategies. In Proceedings

of the Third Annual Workshop on Computational

Learning Theory, pages 371-383. Morgan Kauf-

mann Publishers, Inc., San Mateo, CA, 1990.

[136] K. Yamanishi. A learning criterion for stochastic

rules. In Proceedings of the Third Annual Work-

shop on Computational Learning Theory, pages

67-81. Morgan Kaufmann Publishers, Inc., San

Mateo, CA, 1990.

[137] T. Yokomori. Polynomial-time learning of very

simple grammars from positive data. In Proceed-

ings of the Fourth Annual Workshop on Compu-

tational Learning Theory, pages 213–227. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1991.

[132] L. G. Valiant. Functionality in neural nets. In Pro-

ceedings of the 1988 Workshop on Computational

Learning Theory, pages 28–39. Morgan Kaufmann

Publishers, Inc., San Mateo, CA, 1988.

369

