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Abstract: Effective relaxation processes for difficult systems like proteins or spin glasses require special simulation
techniques that permit barrier crossing to ensure ergodic sampling. Numerous adaptations of the venerable Metropolis
Monte Carlo (MMC) algorithm have been proposed to improve its sampling efficiency, including various hybrid Monte
Carlo (HMC) schemes, and methods designed specifically for overcoming quasi-ergodicity problems such as Jump
Walking (J-Walking), Smart Walking (S-Walking), Smart Darting, and Parallel Tempering. We present an alternative
to these approaches that we call Cool Walking, or C-Walking. In C-Walking two Markov chains are propagated in
tandem, one at a high (ergodic) temperature and the other at a low temperature. Nonlocal trial moves for the low
temperature walker are generated by first sampling from the high-temperature distribution, then performing a statistical
quenching process on the sampled configuration to generate a C-Walking jump move. C-Walking needs only one
high-temperature walker, satisfies detailed balance, and offers the important practical advantage that the high and
low-temperature walkers can be run in tandem with minimal degradation of sampling due to the presence of correlations.
To make the C-Walking approach more suitable to real problems we decrease the required number of cooling steps by
attempting to jump at intermediate temperatures during cooling. We further reduce the number of cooling steps by
utilizing “windows” of states when jumping, which improves acceptance ratios and lowers the average number of
cooling steps. We present C-Walking results with comparisons to J-Walking, S-Walking, Smart Darting, and Parallel
Tempering on a one-dimensional rugged potential energy surface in which the exact normalized probability distribution
is known. C-Walking shows superior sampling as judged by two ergodic measures.
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Introduction

In standard Metropolis Monte Carlo (MMC) simulations the ex-
ploration of configuration space occurs by proposing random sin-
gle-particle trial moves that advance the current configuration to
nearby (local) points in configuration space.1 Each new candidate
configuration is accepted with probability min[1, exp(���V)];
where � � 1/kBT and �V is the difference in potential energy
between the current and candidate configurations. Using this ac-
ceptance criterion, a long sequence of local updates will produce a
set of configurations that are weighted according to the Boltzmann
distribution. For this method to be efficient the system of interest
must be able to surmount potential energy barriers separating the
minima on the energy surface, thereby sampling configurations
that span a representative portion of thermally accessible states. In
situations where barrier heights can be large compared to thermal
energy, as in difficult systems like proteins or spin glasses, stan-
dard MMC sampling is inadequate and may result in time scales

for convergence of statistical averages that can exceed computa-
tional limitations. This inability of standard MMC to traverse
regions of low probability in configuration space leads to so-called
“quasi-ergodicity”.

To overcome the problem of quasi-ergodicity, it is necessary to
seek alternatives in generating trial moves. For a trial move to
realize a non-negligible possibility of crossing energy barriers in
the system, the candidate configurations must necessarily be sam-
pled from a larger surrounding region of configuration space, and
therefore trial moves must involve nonlocal updates such as the
collective displacement of all the atoms in the system. One way to
implement N-particle updates is to perform independent local
displacements for each individual atom; however, for a condensed
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phase system this procedure produces energy changes that are too
large, and it has been shown to result in prohibitively low accep-
tance rates.2

Many approaches seeking to enhance the rate of exploration of
configuration space have been proposed; of particular relevance to
this work are the methods of force-bias Monte Carlo,3 smart Monte
Carlo,4 and extensions of these methods such as Hybrid Monte
Carlo (HMC).5 HMC generates N-particle moves by using con-
stant energy Molecular Dynamics (MD). Starting from an initial
configuration, the momenta are sampled from a Maxwell distribu-
tion and the configuration is advanced forward in time for some
number of MD steps. The resulting candidate configuration is then
accepted or rejected based on a Metropolis criterion for the Ham-
iltonian of the system. In this way a small number of MD steps are
able to produce a trial move that involves collective displacement
of all the atoms in the system, while avoiding low acceptance rates.
HMC offers a substantial improvement over standard MMC sam-
pling; however, it has one drawback stemming from the fact that
resampling the momenta at the start of each HMC step is akin to
a diffusive exploration of phase space, the dynamics of which can
lead to a decrease in the rate of barrier crossing.6

One strategy for dealing with this is to combine HMC with the
method of Jump Walking (J-Walking).7 With J-Walking the se-
quence of HMC steps is periodically interrupted by attempts to
jump to configurations sampled from a higher temperature distri-
bution. This is implemented by running two separate “walkers” at
two different temperatures. One walker is run at the temperature of
interest, while the other walker is run at a sufficiently high tem-
perature such that barrier crossing is not problematic. The low-
temperature walker is periodically updated with a configuration
obtained from the high-temperature distribution that occupies a
much larger region of configuration space. This enhances the rate
of exploration of configuration space by facilitating moves be-
tween minima on the surface, which circumvents the problem of
quasi-ergodicity found at low temperatures. A potential problem
with J-Walking is that it does not strictly satisfy detailed balance,
as the jump transition probabilities do not (in general) generate a
true Markov process.8,11,17 This is not to say that results from
J-Walking simulations will necessarily be poor, particularly for
large configuration sets at the high temperature.

An inherent difficulty with the two-stage J-Walking construc-
tion is that the likelihood of performing successful jumps is very
low due to the small overlap between the two distributions at the
high and low temperatures. To overcome this difficulty one can
implement multiple-stage J-Walking9 or Parallel Tempering,10,11

both of which use a number of walkers at temperatures interme-
diate between the high and low-temperature walkers. The inter-
mediate walkers are more closely spaced with regards to temper-
ature and so presumably possess a greater degree of overlap
between neighboring distributions, which is conducive to higher
jump-acceptance probabilities. This approach does result in sub-
stantially higher jump acceptance. However, it may be too de-
manding in terms of computational cost for any system with a
physically realistic level of complexity, although the method is
well suited and manageable on a parallel computing platform.

In Parallel Tempering jump moves involve the exchange of
configurations between neighboring temperatures. This swapping
of configurations couples the Markov chains at different temper-

atures, and it can be shown to rigorously produce a true Markov
chain process. Parallel Tempering is more desirable than multiple-
stage J-Walking, as its results can be more straightforwardly
analyzed since it can be rigorously shown to give the correct
limiting distribution.

Finally, we should mention here the sampling scheme known as
Simulated Tempering,12,13 from which the method of Parallel
Tempering originates. Simulated Tempering is similar to Parallel
Tempering in that a parameter space, that is, the temperature, is
explored in addition to configuration space. The difference with
Simulated Tempering is that the acceptance criterion for moves
between temperatures requires knowledge of normalizing factors.
These factors may require some initial trial and error estimation
during preliminary runs in order to achieve optimal swap accep-
tance between neighboring temperatures.

A different approach that attempts to circumvent the necessity
of using multiple walkers is Smart Walking (S-Walking).14 In
S-Walking a trial configuration is sampled from the high-temper-
ature distribution, and then steepest-decent is quenched before
evaluating any jump-acceptance criterion. The quenching process
lowers the potential energy of the trial configuration, bringing its
energy close to that of a local minimum. Consequently, the energy
of the quenched structure is more likely to be consistent with
typical energies of the structures present in the low temperature
distribution. The method is successful in that it does improve the
rate of sampling of configuration space. Additionally, S-Walking
significantly reduces the computational cost compared to that of
multiple-walker simulations; however, it does not formally satisfy
detailed balance, and therefore gives no guarantee that a Boltz-
mann distribution will be produced at the low temperature. To
obtain quantitative results from the S-Walking methodology it is
necessary to restrict the frequency of jump attempts in order to
minimize the error introduced by sampling from a non-Boltzmann
distribution. The reduction of jump frequency has the added effect
of slowing the convergence because this directly influences how
fast the walker is able to hop between basins.

S-Walking can be corrected to satisfy detailed balance using a
strategy called Smart Darting.15 In Smart Darting one catalogues
the positions of all minima of interest, and uses the positions to
create a set of “darts.” Each dart is a displacement vector between
minima, and thus for N minima one has N(N � 1) darts. Jump
moves between minima are only attempted when the current
low-temperature configuration lies within a small region surround-
ing one of the (cataloged) minima. Smart Darting corrects the
acceptance probability for S-Walking type moves such that micro-
scopic reversibility is restored, although for highly complicated
surfaces the management of a comprehensive catalogue of a very
large number of minima may become prohibitive.

In this article we present a new approach to the sampling of
rough energy surfaces that we call Cool Walking (C-Walking),
which pools the best features among the methods of J-Walking,
S-Walking, and Parallel Tempering. In C-Walking, simulations are
performed with two walkers run in tandem. One walker is run at a
high temperature and the other walker at a low temperature. The
high-temperature walker is used to generate nonlocal candidate
moves for the low-temperature walker. These nonlocal moves are
constructed by first sampling a configuration from the high-tem-
perature walker and then performing a statistical quenching pro-
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cess on the sampled configuration. This is similar in spirit to the
quenching step in S-Walking, yet it satisfies a detailed balance
equation. As is done in Parallel Tempering, we attempt configu-
ration swapping moves between states at the cooled and low
temperatures. To improve the efficiency of this process we attempt
to perform these swaps during the cooling process. Further im-
provement on efficiency can be realized by performing these
jumps between “windows” of states.

C-Walking has greater jump-acceptance probabilities, rigor-
ously satisfies detailed balance, and, in terms of computational
efficiency, is at least several times more efficient in sampling
configuration space than J-Walking, S-Walking, Smart Darting, or
Parallel Tempering for the simple but fully characterized model we
investigate.

In the Methods section we present the details of the types of
jump moves used in J-Walking, S-Walking, Smart Darting, Paral-
lel Tempering, and C-Walking. Then in the Results section we
present a comparison of the five methods with data obtained from
simulations on a one-dimensional (1-D) potential energy surface.
As we can use exact ergodic measures for this surface, the simu-
lations provide a clear measure of the relative performance of each
method. In the final section we conclude with a summary of these
results and a discussion of future directions.

Methods

We wish to compare the rates at which J-Walking, S-Walking,
Smart Darting, Parallel Tempering, and C-Walking sample con-
figuration space. As was done previously,14 we perform our com-
parison between the methods by sampling from a 1-D potential.
Although more complex systems provide better tests for a meth-
od’s ability to sample ergodically, they also pose a greater diffi-
culty in analyzing the sampling efficiency. On a 1-D rough poten-
tial energy surface we can define exact ergodic measures, while on
a high-dimensional rough energy surface we can only postulate
measures of ergodicity. Thus it makes sense to perform initial trials
on a simple, well-characterized system.

The potential energy function used for the 1-D system is

V� x� � �
n�1

20

Cnsin�2n�x

L � (11)

where the coefficients {Cn} are chosen on the interval [�1, 1], and
the length of the simulation box in reduced units is L � 10 (note
that the units for energy are arbitrary). The coefficients used here
are given in Table I. A plot of the potential energy function is
shown in Figure 1, along with the exact probability distribution
functions at the reduced temperatures of the high- and low-tem-
perature walkers, T* � 3.0 and 0.1, respectively. The exact dis-
tribution functions are calculated explicitly from the expression
�exact(x) � exp(�� V(x))/Z; where Z is the configuration integral.
We use 1000 data points for collecting �(x) and for comparing to
�exact(x).

We note that in both the original J-Walking7 and S-Walking14

articles the 1-D surfaces used were rather smooth, having only a

single dominant minimum. The surface used here has four minima
with significant population at the low temperature. While the high
temperature sees the four lowest minima roughly equally popu-
lated, at the low temperature we find that the relative weighting
becomes distinctly unequal. This provides a sensitive test as to the
quality of sampling with each method. On several occasions we
were able to identify subtle flaws in our algorithm based solely on
its performance on this surface. The ability to reproduce the
relative weighting for the populated minima at T* � 0.1 is fairly
nontrivial for this surface.

Markov Chain Monte Carlo (MCMC) refers to a class of
methods for generating a set of configurations with weighting
proportional to a chosen probability function. To guarantee that the
desired limiting distribution is approached, it is sufficient to en-
force the condition of detailed balance:

P� x�T� x 3 y� � P� y�T� y 3 x� (1)

where T(x 3 y) is the transition probability of reaching state y
from state x, and P(x) is the probability of realizing state x. If a new
state y is generated from a proposal distribution function T( � ), then
the acceptance criteria for the new state is given by

acc�x 3 y� � min�1,
P�y�T�y 3 x�

P�x�T�x 3 y�� (2)

The specific form of the jump transition probability TJ ( � ) is what
serves to differentiate the sampling techniques in J-Walking, S-
Walking, Smart Darting, Parallel Tempering, and C-Walking. In
our implementation of these methods we use HMC moves to
regularly update configurations, but occasionally the HMC se-
quence is interrupted by jump attempts that are drawn from dif-
ferent distributions depending on the particular method. The rate at
which jump attempts occur is controlled by a jump probability
parameter, PJ. PJ is set equal to 3% for our comparison between
the methods. For Parallel Tempering we set PJ � 3% for each
walker, independent of the total number of walkers. The compu-
tational cost of J-Walking and Parallel Tempering is roughly
constant with PJ, but S-Walking, Smart Darting, and C-Walking
have costs that depend on PJ when the two walkers are run in
tandem. Thus for the higher jump rates, the methods of S-Walking,

Table 1. Coefficients for the One-Dimensional
Potential Energy Function.

C1 �0.466516 C11 0.891462
C2 �0.834376 C12 �0.665239
C3 �0.714529 C13 0.810546
C4 �0.0245586 C14 0.198216
C5 0.238837 C15 �0.816637
C6 0.0143649 C16 �0.195351
C7 0.271003 C17 �0.573181
C8 �0.374538 C18 0.251745
C9 0.873564 C19 0.647615
C10 �0.370258 C20 0.201654
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Smart Darting, and C-Walking have an increased computational
cost.

For the J-Walking, S-Walking, Smart Darting, and C-Walking
methods two walkers are required, one at a high temperature and

another at a lower temperature (the temperature of interest). The
purpose of the high-temperature walker is to produce configura-
tions for use in jump moves that provide updates to configurations
at the low temperature. Parallel Tempering is distinguished by

Figure 1. One-dimensional potential energy V(x) versus position x for
box length L � 10. Also shown in the plot is the ideal distribution
function �exact(x) for temperatures of T* � 0.1 and 3.0. The units for
the potential energy are arbitrary. At T* � 0.1 the distribution is
sharply peaked about the four lowest minima, whereas at T* � 3.0 the
peak heights for these minima are roughly equal.

Figure 2. �exact(x) and �(x) for T* � 0.1 versus position x for
J-Walking, S-Walking, Smart Darting, Parallel Tempering, and C-
Walking. All simulations were performed with jump probability PJ �
3%. Only the peaks for the four populated minima at T* � 0.1 are
shown. The Parallel Tempering results shown are for one intermediate
walker.

Figure 3. Ergodicity measure �(t) versus t (in units of the number of
MD steps performed by the low-temperature walker) for J-Walking,
S-Walking, Smart Darting, Parallel Tempering, and C-Walking. All
simulations were performed with PJ � 3%. The Parallel Tempering
results shown are for one intermediate walker.

Figure 4. Ergodicity measure �(t) versus t (in units of the number of
MD steps performed by the low-temperature walker) for Parallel
Tempering showing the effects of an increasing number of walkers at
intermediate temperatures. All runs have PJ � 3% between pairs of
walkers.
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having additional walkers at temperatures intermediate between
the target (low) and ergodic (high) temperatures.

The most convenient way to implement the methods involving
two walkers at different temperatures is to simultaneously perform
all simulations, updating the high- and low-temperature configu-
rations independently and concurrently for each HMC cycle. A
potential drawback to running the walkers in tandem is the pres-
ence of correlations between successive configurations in the high-
temperature walker, which can introduce systematic error into
calculated averages at the low temperature. The typical solution
(on a single processor platform) is to run the high-temperature
walker beforehand and write out configurations to an external file.
These configurations can then be randomly chosen from the file
during a run of the low-temperature walker. The trade off with this
is that storage requirements for the high-temperature configura-
tions will become exceedingly large, cumbersome, and impractical
for any complex system with a large number of degrees of free-
dom. For Smart Darting it is a requirement to run the high-
temperature walker beforehand, as only then will one be able to
create the required set of darts between the quenched structures at
the cataloged minima.

In all the simulations reported here, we run the walkers in
tandem, even in the case of Smart Darting. The main reason for
doing this is because for any real system of interest, running
walkers in tandem is the only practical solution. Furthermore, the
organization of the C-Walking scheme lends itself to naturally
breaking up correlations in the high-temperature walker, although
like the other methods we can write out high-temperature config-
urations and sample them randomly for C-walking. Thus, propa-
gating the walkers in tandem for all methods allows us to better
compare results, as well as allowing us to emphasize an important
advantage of C-Walking. To deal with correlations in the J-Walk-
ing, S-Walking, and Smart Darting simulations we perform an
extra 100 HMC steps (500 MD steps) on the high-temperature
walker for each HMC cycle of the low-temperature walker. As
jumping is attempted infrequently, we have confirmed that this is
equivalent to writing out configurations and sampling them ran-
domly to ensure that configurations between jumps are sufficiently
uncorrelated. In Parallel Tempering we do not perform any addi-
tional HMC moves.

J-Walking, S-Walking, Smart Darting,
and Parallel Tempering

In J-Walking the jump moves occur by sampling a high-temper-
ature configuration and attempting to use it as the next update in
the low-temperature Markov chain. Therefore the trial sampling
distribution TJ is the probability of finding any particular config-
uration in the high-temperature walker, namely TJ(x 3 y) �
exp[��V(y)]/ZJ; where V(y) is the potential energy of the high-
temperature state y and ZJ is the configuration integral at the high
temperature. Jump moves are accepted with probability

acc�x 3 y� � min�1, exp���� � �J��V�y� � V�x���� (3)

As stated previously, this process does not rigorously satisfy
detailed balance. For finite Markov chains, not every state sampled
from the high-temperature walker is guaranteed to be present in the

low-temperature Markov chain, and vice versa. For example, if we
sample a low-temperature state x (not present in the Markov chain
at the high temperature) and then sample y from the high-temper-
ature distribution, the probability of choosing x and jumping to y,
T(x 3 y), is finite, but not equal to the probability of choosing y
and jumping to x, T(y3 x), which is identical to zero because x is
not a member of the high-temperature set. Rigorously speaking,
only for infinite Markov chains will detailed balance be satisfied
for all x and y in the J-Walking scheme.8,11,17

In the case of S-Walking the jumps occur by taking the selected
configuration from the high- temperature walker, and subsequently
performing an approximate steepest-decent quench to a local min-
imum. The quenching process relaxes the structures, bringing their
energies to values more likely to be representative of the low
temperature distribution. The quenched configuration is used as the
next trial move at the low temperature. Moves are accepted with
probability

acc�x 3 y� � min�1, exp����V�y� � V�x���� (4)

S-Walking increases the probability for successful jumps with
minimal increase in computational cost (about 50% more compu-
tation is required relative to two-stage J-Walking14); however, as
previously stated, S-Walking only approximately satisfies detailed
balance. To reduce the error from this, one must select a suffi-
ciently low jump rate such that there is ample time for the low-
temperature walker to relax within its local basin prior to attempt-
ing subsequent jumps. The time required for this is in the order of
the time scale for the decay of energy correlations within the
system. In low-temperature systems with rough energy surfaces,
these correlations may persist for very long times. To deal with this
in systems with slowly decaying energy correlations, it may be
necessary to implement extremely low jump rates. It has been
shown that the approximate nature of the S-Walking algorithm can
lead to substantially skewed results under certain conditions.15

Smart Darting modifies the S-Walking procedure by regulating
the jumps to trial (quenched) configurations. Before a jump move
is allowed additional checks are performed. The current low-
temperature configuration is checked to see whether it is near one
of a previously cataloged set of potential energy minima. Because
the walkers are run in tandem, the next check we perform is to see
if the quenched high-temperature configuration also lies near one
of the cataloged minima. The usual prescription for Smart Darting
is to run the high temperature walker beforehand to obtain a set of
quenched structures, {R}, but for the 1-D surface investigated here
we know the locations of all the minima and this is not necessary.
We take the known positions of all the minima and form a set of
“darts” (vector displacements between the minima). To do a Smart
Darting jump move we then first check to see if both the current
low-temperature configuration, rl, and the current quenched con-
figuration, rq, lie within a small distance, � � 0.02, of any
minimum on the surface. If there exist minima i and j in the set
{R} such that �rl � Ri� � � and �rq � Rj� � � (i � j) then the jump
occurs with the usual Boltzmann probability. If rl or rq lies outside
all the cataloged �-spheres then the current jump move is rejected.
Note that for the Smart Darting simulations performed here rq will
always lie within � of one of the minima. Thus the quenching

72 Brown and Head-Gordon • Vol. 24, No. 1 • Journal of Computational Chemistry



process is simply a way of selecting a particular dart move. The
reason for selecting the dart moves in this way is that we wish to
compare the methods to C-Walking, and part of the design of
C-Walking is geared towards running the walkers in tandem.

For Parallel Tempering, the jump moves occur by randomly
choosing a pair of walkers at neighboring temperatures, and at-
tempting to swap the current configurations between the two
temperatures as the next update in each other’s Markov chain. The
trial sampling distribution for drawing a particular configuration is
T( �3 xj) � exp[��jV(xj)]/Zj, where V(xj) is the potential energy
of state xj at the jth temperature, and Zj is the configuration integral
at that temperature. Swap moves between temperatures i and j are
accepted with probability

acc�xi 3 xj� � min�1, exp����i � �j��V�xj� � V�xi���� (5)

which is similar to the J-Walking acceptance probability. How-
ever, unlike canonical J-Walking, Parallel Tempering rigorously
satisfies detailed balance due to the exchange of configurations that
couple the temperatures to form a continuous Markov chain. The
drawback with having a large number of walkers at intermediate
temperatures is that past a certain point there is minimal gain for
the added expense of the intermediate walkers, as will be shown in
the Results section.

C-Walking Method

C-Walking, like J-Walking and S-Walking, uses walkers at two
temperatures. In contrast to the previous methods, C-Walking
takes the high-temperature candidate configuration and begins
cooling it by a statistical quenching process based on simulated
annealing. The purpose of cooling the candidate high-temperature
configuration is to attempt to bring its distribution more into
“alignment” with the low-temperature one. Ideally one would cool
the high-temperature configuration down to a temperature for
which there is a significant increase in overlap; however, there are
several problems that must be addressed in order to make this
approach viable.

The first problem arises due to the finite length of any practical
simulated annealing run. Even with an astutely chosen cooling
schedule, successive configurations can become stuck in metasta-
ble minima, and one cannot be certain of arriving at the target
temperature with properly distributed configurations. A method
called annealed, or quenched, importance sampling developed by
Neal16 and Opps and Schofield17 defines an importance sampler
for the cooled configurations, allowing for meaningful averaging
over quenched configurations. We briefly describe here our imple-
mentation of their method in the context of C-Walking, and refer
the reader to the original sources for a more rigorous development.

Suppose we have decided to attempt a C-Walk jump move. We
record the current high- and low-temperature configurations xn and
x1, respectively, and then commence a cooling process from xn,
which generates a set of states at intermediate temperatures {xn�1,
xn�2, . . .}. For each state xi we have a transition probability Ti that
is assumed to produce the limiting distribution Pi. It is not a
requirement for each Ti to produce ergodic sampling, and so we are
free to use any of the usual MCMC methods. For our purposes it
is convenient to use HMC updating.

The annealed importance sampling protocol begins by taking
state xn and updating it according to transition probability Tn�1.
From this we produce a state with limiting distribution Pn�1,
which we label xn�1. xn�1 is then updated according to Tn�2 to
give a new state xn�2, and so on. After j cooling steps we arrive at
C-Walker configuration xn�j, which we obtain as a result of the
sequence {xn, xn�1, . . ., xn�j	1, xn�j}.

In the end we wish to evaluate the transition probability T(x13
xn�j). In order to do this we need to first ascertain the appropriate
weight for state xn�j, that is, we need to calculate the probability
associated with cooling from xn to xn�j. Following ref. 17 we
assign a probability Tcw to the cooling process, given by

Tcw�xn 3 xn�j� 

Pn�j�xn�j	1�

Pn�j	1�xn�j	1�
· · ·

Pn�1�xn�

Pn�xn�
(6)

This weighting essentially captures the “history” of steps in the
cooling sequence. Trajectories that have become trapped in high-
energy states receive appropriate low weighting. Note that this
procedure obeys an equation of detailed balance, and produces
properly weighted configurations that can be used to obtain equi-
librium averages at the target temperature. The rate of convergence
of averages produced in this way is dependent upon the variability
of the weightings Tcw.

In order to maintain detailed balance, we need to determine a
probability for the reverse process, that is, heating from x�n�j to x�n.
For the reverse step we set x�n�j � x1 and determine the weight for
the heating process of going from state x�n�j to state x�n, or equiv-
alently, cooling from x�n to x�n�j

Tcw�x�n 3 x�n�j� 

Pn�j�x�n�j	1�

Pn�j	1�x�n�j	1�
· · ·

Pn�1�x�n�

Pn�x�n�
(7)

A potential problem we would like to minimize is the necessity of
performing an exorbitant number of cooling steps in order to
generate trial configurations. We can reduce the number of cooling
steps required by attempting to “jump out” of the cooling schedule
early. Because we can assign a meaningful weight to the current
C-Walker configuration at any point during the cooling process,
we can define an acceptance criterion that maintains detailed
balance for jumping out of the cooling cycle before it reaches the
target temperature. Attempting to jump during the cooling process
reduces the most costly aspect of the C-Walking approach, that is,
the large number of cooling steps required to bring the trial
configuration from the high temperature to a temperature (closer to
the low temperature) for which there is a significant increase in
jump-move acceptance. A successful jump during cooling termi-
nates the cooling schedule and completes the C-Walk move.

Another way in which we lower the number of cooling steps is
by utilizing “windows” of states during the attempt to jump to the
current C-Walker configuration. The idea here is analogous to the
orientational bias approach of Frenkel and Smit,18 as well as the
work of Neal,19 and more recently Qin and Liu,20 all of which
demonstrate the potential for improved efficiency achieved in
HMC by moving between windows of states. In C-Walking, col-
lecting windows of states is an attempt to try to “wash-out” the
fluctuations in potential energy present at the high temperature.
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This is useful when attempting to exit the cooling cycle early
because typically the jump will span a fairly large temperature
difference. By using windows the number of necessary cooling
steps is reduced by roughly 25%. On average the number of steps
involved for C-Walking in this model is �ncool � 70 steps.

Putting all the pieces together, the exact C-Walking procedure
is as follows. For a given HMC step, we decide whether or not to
attempt a C-Walk jump by comparing a random deviate 	 to the
jump probability. For 	 � PJ a jump attempt is made, and we begin
cooling the current high-temperature configuration while also con-
tinuing to propagate this same configuration at the high tempera-
ture. At each step in the cooling process we compare another
random deviate to a probability for completing the C-Walk, that is,
	 � P�J; a reasonable range of values for P�J is roughly 3–20%.
After some number of cooling steps j we attempt to complete the
C-Walk move by halting the cooling process and sampling the
current C-Walker configuration xn�j.

At this point we have two configurations, x1 and xn�j. We set
x�n�j � x1 and calculate Tcw( x�n�j3 x�n) by heating up x�n�j using
the annealed importance sampling protocol. Then starting from
x�n�j � x�n�j

(1) we generate a set { x�n�j
(2), x�n�j

(3), . . ., x�n�j
(nw)} at the

C-Walker temperature, and we also generate a corresponding set
starting from xn�j to give { xn�j

(1) , xn�j
(2) , . . ., xn�j

(nw)}; here nw is a
simulation parameter specifying the number of states to collect in
the windows. From the window of states {xn�j

(1) , xn�j
(2) , . . ., xn�j

(nw)} we
select a configuration xn�j

(i) with probability exp[��n�jV(xn�j
(i) )].

The jump x1 3 xn�j
(i) is now accepted with probability

acc�x1 3 xn�j
�i� �

� min�1,
Pn�j�x1�P1�xn�j

�i� �Tcw�xn 3 xn�j�

P1�x1�Pn�j�xn�j
�i� �Tcw�x�n 3 x�n�j�

W�xn�j�

W�x1�
� (8)

where

W� x1� � exp���n�jV�x1�� 
 �
k�2

nw

exp���n�jV�x�1
�k��� (9a)

and

W� xn�j� � �
k�1

nw

exp���n�jV�xn�j
�k� �� (9b)

If the jump is accepted, the low-temperature configuration is
updated, and regular HMC updates are resumed; otherwise we
continue the cooling from the current C-Walker configuration.

Note that for the full duration of the cooling procedure we
continue to propagate the high-temperature walker. When the
C-Walk move is completed we stop propagation of the high-
temperature walker and record its final configuration, which is
stored away until the next C-Walk attempt. If we reach the low
temperature without any successful jump we simply save the last
high-temperature configuration and return to propagating the low-
temperature walker by itself via HMC. Because the jump proba-
bility is typically set to be fairly low, we end up propagating two
walkers in tandem for only a fraction of the total run time;

however, the actual number of total steps for the high-temperature
walker is essentially the same as in J-Walking and S-Walking. The
advantage here is that the high-temperature steps performed are
concentrated solely on breaking up the correlations at the high
temperature in between jumps.

Finally, a few words should be said about the HMC protocol. In
HMC one moves from an initial point in phase space (x, p) by
resampling the momenta p from a Maxwell distribution, and then
propagating the system forward in time for nMD time steps to
arrive at a final point (x�, p�). The new configuration, x�, is then
used as the candidate configuration for the next state in the Markov
chain. Because energy conservation is not required, one is free to
choose MD time steps that are substantially larger than normal.
The size of the time step, and the number of MD steps per HMC
cycle, are parameters that are dependent on the particular system
being investigated. Given initial configuration x with Hamiltonian
H(x,p), and candidate configuration y with Hamiltonian H(y, p�),
the Metropolis criterion for x 3 y is

acc�x 3 y� � min�1, exp����H�y, p�� � H�x, p���� (10)

Provided the integration algorithm used in the MD steps is time
reversible and area conserving, this procedure produces a Boltz-
mann distributed Markov chain. In our implementation we use the
velocity version21 of the classic Verlet algorithm for the integra-
tion steps in the MD updates. We use a time step for the MD steps
that is four times larger than the necessary time step to perform
constant energy molecular dynamics. nMD is set equal to five for
all HMC cycles. It is worth pointing out here that a nice benefit to
using HMC with C-Walking is that it has been demonstrated to be
an effective method for performing simulated annealing, as it
results in more efficient thermalization of the degrees of freedom
in the system per HMC cycle.22

Results

A plot of the potential energy function is shown in Figure 1, along
with the exact probability distribution functions at the reduced
temperatures of the high- and low-temperature walkers, T* � 3.0
and 0.1, respectively. The exact distribution functions are calcu-
lated explicitly from the expression �exact(x) � exp(�� V(x))/Z,
where Z is the configuration integral.

Being able to calculate the exact distribution allows us to
construct two excellent measures for the sampling accuracy and
efficiency of each method. During every simulation run we keep a
running tab of the developing normalized probability distribution
as calculated by simply binning the position of the particle as it
moves across the surface. By comparing the probability distribu-
tion �(x) to the exact distribution �exact(x) we are able to gauge the
sensitivity and accuracy of each method.

Shown in Figure 2 is �(x) averaged over multiple independent
runs for the four methods. For the most part all methods appear to
do equally well except for S-Walking. The discrepancy becomes
apparent on inspection of the two smallest peaks, where S-Walking
shows an expected over-weighting of configurations near the min-
imum.
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To investigate the rate at which configurations are sampled, we
evaluate the time scale of the approach of �(x, t) to the exact
distribution. As in ref. 14 we calculate the following quantity
during each simulation run:

�2�t� � �
0

L

dx��� x, t� � �exact�x��2 (12)

As a trajectory moves over the surface, it samples configurations
that, if properly weighted, produce a distribution function �(x; t)
with asymptotic limit �exact(x). �(t) provides a measure of the rate
at which a method’s sampling approaches the exact distribution.
Obviously to capture the full distribution on this surface a walker
will require some minimum number of jumps. For an ergodic
system, �(t) eventually decays to zero.

Shown in Figure 3 are plots of �(t) for all methods with jump
probability PJ � 3%. The time axis used is the number of MD
steps executed by the low-temperature walker. This choice of time
scale allows for easy comparison between the different methods.
The jump acceptance probabilities, rjump, for the low-temperature
walker are shown in Table II for the different methods. The
Parallel Tempering data shown are for one intermediate walker. It
can be seen that J-Walking has a much slower initial decay than
S-Walking, Smart Darting, or C-Walking. The rate of initial decay
in �(t) for Parallel Tempering is similar to J-Walking; however, at
the longer times it can be seen that Parallel Tempering appears to
have decayed further and has a steeper slope. The C-Walking data
decays faster and to lower values than those of any of the other
methods.

The inferior sampling of J-Walking is due to the much lower
acceptance probability for jump moves between the widely sepa-
rated high and low temperatures. At short times, S-Walking shows
a relaxation on par with Smart Darting and C-Walking due to the
efficiency with which it performs hopping between basins. The
high plateau in �(t) for S-Walking at longer times shows the
consequence of not weighting the basins appropriately at the target
temperature.

While the sampling in C-Walking clearly outperforms Smart
Darting in its initial rate of decay, the decay at longer times is close
between the two methods. The performance of Smart Darting is
very sensitive on having a complete set of darts for the surface at
hand. On this 1-D surface the results of Smart Darting are altered
if only a single dart is removed from the set. One could argue that
in practice if Smart Darting were to miss a particular minimum,

then any of the other methods could also be expected to miss that
minimum. However, this points to another advantage of C-Walk-
ing that is tied to running the two walkers in tandem. In Smart
Darting, if the high-temperature walker is run insufficiently long
such that an important region of configuration space is neglected,
one is forced to stop the low-temperature simulation, rerun the
high-temperature trajectory to find more states from which to
construct the missing darts, and then restart the low-temperature
run. For C-Walking one can simply continue to run the simulation
until sufficient convergence is achieved, as the high-temperature
propagation is done concurrently.

The rate of sampling in Parallel Tempering is inferior to all the
methods considered here except J-Walking. Most likely this is due
to the increased diffusiveness of the exploration of parameter
space induced by the presence of intermediate walkers. We illus-
trate this in Figure 4 by showing �(t) for an increasing number of
walkers. It can be seen that increasing the number of walkers does
not result in an enhanced rate of convergence for �(t), despite the
sharp increase in jump acceptances in going from 30% (one
walker) to 82% (nine walkers).

Conclusions

We have presented a new method, called C-Walking, for over-
coming quasi-ergodicity problems with simulations on rough en-
ergy surfaces. C-Walking uses one high-temperature walker run in
tandem with the low-temperature walker, and offers a practical
advantage in that it provides the low-temperature walker with
uncorrelated trial moves sampled from the high temperature
walker. By defining a transition probability Tcw that captures the
correct weighting of the cooling stage, as well as the corresponding
transition probability defined similarly for the reverse heating
process, C-Walking correctly weights the exchange between any
intermediate (cooled) configuration and the configuration at the
low temperature. This allows us to define an arbitrarily large
internal jump rate for exiting the cooling cycle early, thereby
saving significant computational expense. We further reduce the
number cooling steps by jumping between windows of states to
improve jump-acceptance probabilities.

The advantage of C-Walking over J-Walking is that it is able to
achieve larger jump acceptance while continuing to implement
only two walkers. Thus it realizes a greater degree of basin-
hopping and therefore has superior ergodic sampling compared to
J-Walking. Unlike S-Walking, C-Walking satisfies detailed bal-

Table 2. Comparison of Ergodic Sampling Methods for PJ � 3%.

J-walking S-walking Smart darting Parallel tempering C-walking

�x 2.7 2.7 2.7 2.8 2.8
�V �3.6 �3.6 �3.6 �3.6 �3.6
rjump 5% 29% 17% 30% 54%

Exact averages for position and potential energy are �x � 2.8 and �V � �3.6, respectively. rjump is the percent of
successful jump moves for the low-temperature walker. The parallel tempering results are for the case of one
intermediate walker.
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ance, and so weights corresponding basins appropriately for bring-
ing configurations from the high temperature to the low tempera-
ture. In addition, C-Walking also realizes much more efficient
ergodic sampling than either J-Walking or S-Walking as measured
by the ergodicity factor �(t).

In comparison to Smart Darting, C-Walking realizes faster
decay in �(t) at short times as well as convergence to a lower value
at longer times. Smart Darting is a way to correct for detailed
balance in S-Walking, and has a place as a potentially powerful
technique for overcoming quasi-ergodicity. The drawback with
Smart Darting has to do with the fact that its effectiveness as a
method depends upon having a representative set of dart vectors
for the given surface of interest. For systems with large numbers of
minima, this may become problematic as the management of a
comprehensive catalogue of all pertinent darts becomes a daunting
task. Exceedingly large sets of darts in systems with many degrees
of freedom might require special techniques for searching through
the dart matrix.

The reason C-Walking outperforms Parallel Tempering, which
does not have problems with detailed balance, has to do with the
increase in the diffusiveness of the exploration of parameter space
as the number of walkers increases. If we add a single additional
walker at a temperature intermediate between the high and low
temperatures, the number of successful configuration swaps be-
tween the low and intermediate temperatures and the high and
intermediate temperatures will increase. This makes sense as the
walkers at adjacent temperatures are now closer in temperature and
should possess greater overlap between their distributions. It might
seem that this situation should enhance the rate of exploration of
configuration space, but in actuality this is not always the case. The
intermediate walker retards the movement of high-temperature
configurations to the low temperature. In effect the increased jump
acceptance achieved with a larger number of walkers is off-set by
an increase in the time required for configurations from the high-
temperature walker to reach the low temperature. The lag induced
by mediated swapping through the intermediate walkers becomes
larger as the number of walkers increases. In the limit of walkers
at a continuum of temperatures the swap acceptance probability
would be 1, but exploration through parameter space would be-
come a random walk.

In light of this, another important advantage of C-Walking
compared to Parallel Tempering is that it is able to realize very
closely spaced intervals in temperature while not losing the afore-
mentioned benefit of having only two walkers. This stems from the
fact that C-Walking cools slowly, and to a certain degree executes
walkers at a continuum of temperatures, which more sensitively
and quickly find the optimal overlap with the distribution at the
target temperature.

Additionally, unlike most of the other methods discussed here
where one must “fine-tune” multiple parameters before production
runs can occur, in C-Walking there is much less need to fine-tune
the protocol for the system of interest. It is naturally built into the
C-Walking method, as it explores just enough of a cooling trajec-
tory to find the best overlap. Note that some tinkering may be
necessary with the cooling schedule for any chosen system, al-
though a conservative cooling schedule will always be an unam-

biguous choice. Unlike C-walking, many of the methods suffer
from correlations between temperature walkers when run in tan-
dem. Although this can be improved by running the high-temper-
ature walker as an independent simulation and saving configura-
tions, which are then sampled randomly during the low-
temperature simulation, this will certainly be untenable for any
realistic system of interest.

In regards to the computational cost, as noted previously both
J-Walking and Parallel Tempering have essentially a constant
computational cost with increasing jump rate. On the other hand,
S-Walking, Smart Darting, and C-Walking have costs that scale
with jump rate when the walkers are run in tandem. For instance,
at PJ � 1% C-Walking is roughly 30% more expensive than
S-Walking, whereas for PJ � 3% the computational cost is
roughly four times that of S-Walking. However, when combined
with the fact that C-Walking converges at least 10 times more
rapidly than S-Walking at PJ � 3%, it is clear that C-Walking
provides a much more efficient sampling for the cost.

As a final comment we note that although the C-walking
method does very well on a 1-D surface, the real test of course
comes from simulation of systems with much more realistic levels
of complexity. Work on implementing C-Walking in simulations
with greater complexity is currently underway, and initial inves-
tigations indicate that it is indeed viable for more complicated
systems.
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