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Bigrams and trigrams are commonly used in statistical natural language processing; this
paper will describe techniques for working with much longer ngrams. Suffix arrays were
first introduced to compute the frequency and location of a substring (ngram) in a sequence
(corpus) of length N . To compute frequencies over all N(N+1)/2 substrings in a corpus,
the substrings are grouped into a manageable number of equivalence classes. In this way,
a prohibitive computation over substrings is reduced to a manageable computation over
classes. This paper presents both the algorithms and the code that were used to compute
term frequency (tf) and document frequency (df) for all ngrams in two large corpora, an
English corpus of 50 million words of Wall Street Journal and a Japanese corpus of 216
million characters of Mainichi Shimbun.

The second half of the paper uses these frequencies to find “interesting” substrings.
Lexicographers have been interested in ngrams with high Mutual Information (MI) where
the joint term frequency is higher than what would be expected by chance (composition-
ality). Residual Inverse Document Frequency (RIDF) compares document frequency to a
different notion of chance, highlighting technical terminology, names and good keywords
for information retrieval. The combination of both MI and RIDF is better than either by
itself in a Japanese word identification task.

1 Introduction

Suffix arrays will be used to compute a number of statistics of interest, including term fre-

quency and document frequency, for all ngrams in large corpora. Term frequency (tf ) and

document frequency (df ), and functions of these quantities such as mutual information

(MI) and inverse document frequency (IDF) have received considerable attention in the

corpus-based and information retrieval (IR) literatures (Charniak, 1993; Jelinek, 1997;

Sparck Jones, 1972). Term frequency is the standard notion of frequency in corpus-based
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natural language processing (NLP). Document frequency is the number of documents

that contain the term. Term frequency is an integer between 0 and N , the size of the

corpus. Document frequency is an integer between 0 and D, the number of documents

in the corpus. These statistics are usually computed over short ngrams such as bigrams

and trigrams (Charniak, 1993; Jelinek, 1997). This paper will show how to work with

much longer ngrams, including million-grams and even billion-grams.

In corpus-based NLP, term frequencies are often converted into probabilities, using

the maximum likelihood estimator (MLE), the Good-Turing method (Katz, 1987) or

Deleted Interpolation (Jelinek, 1997, Chapter 15). These probabilities are used in noisy

channel applications such as speech recognition to distinguish more likely sequences from

less likely sequences, reducing the search space (perplexity) for the acoustic recognizer.

In Information Retrieval, document frequencies are converted into inverse document fre-

quency (IDF), which plays an important role in term weighting (Sparck Jones, 1972).

IDF (t) = − log2
df (t)
D

IDF (t) can be interpreted as the number of bits of information the system is given if it

is told that the document in question contains the term t. Rare terms contribute more

bits than common terms.

Mutual Information (MI) and Residual IDF (RIDF) both compare tf and df to what

would be expected by chance, using two different notions of chance. MI compares the

frequency of the whole to the frequencies of the parts. A large MI indicates a large devia-

tion from compositionality. RIDF (Church and Gale, 1995) compares the distribution of a

term over documents to what would be expected by a random (meaningless) term. Good

keywords for information retrieval tend to pick out a relatively small number of docu-

ments, unlike random terms which are found in a relatively large number of documents
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according to a Poisson distribution.

MI (xYz ) = log
p(xY z)

p(xY )p(z|Y )

= log
tf (xYz)

N
tf (xY )

N
tf (Yz)
tf (Y )

= log
tf (xYz )tf (Y )
tf (xY )tf (Yz )

,

where x and z are tokens, and Y and xY z are ngrams (sequences of tokens).

Residual IDF = observed IDF − predicted IDF

= − log df
D
+ log{1− θ

0 exp(−θ)
0!

}

= − log df
D
+ log{1− exp(−N

D

tf

N
)}

= − log df
D
+ log{1− exp(− tf

D
)}

The rest of the paper is divided into two sections. Section 2 describes the algorithms

and the code that were used to compute term frequencies and document frequencies for

all substrings in two large corpora, an English corpus of 50 million words of the Wall

Street Journal, and a Japanese corpus of 216 million characters of the Mainichi Shimbun.

Section 3 uses these frequencies to find “interesting” substrings, where what counts

as “interesting” depends on the application. MI finds phrases of interest to lexicography,

general vocabulary whose distribution is far from compositional, whereas RIDF picks

out technical terminology, names and keywords that are useful for Information Retrieval,

whose distribution over documents is far from uniform or Poisson. These observations

may be particularly useful for Japanese morphology, segmenting Japanese characters into

words. Sequences of characters that are high in both MI and RIDF are more likely to

be words than sequences that are high in just one, which are more likely than sequences

that are high in neither.
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2 Computing tf and df for all substrings

2.1 Suffix arrays

This section will introduce an algorithm based on suffix arrays for computing tf and

df and many functions of these quantities for all substrings in a corpus in O(N logN)

time, even though there are N(N + 1)/2 such substrings in a corpus of size N . The

algorithm groups the N(N + 1)/2 substrings into at most 2N − 1 equivalence classes.

By grouping substrings in this way, many of the statistics of interest can be computed

over the relatively small number of classes, which is manageable, rather than over the

quadratic number of substrings, which would have been prohibitive.

The suffix array data structure (Manber and Myers, 1990) was introduced as a

database indexing technique. Suffix arrays can be viewed as a compact representation of

suffix trees (McCreight, 1976; Ukkonen, 1995), a data structure that has been extensively

studied over the last thirty years. See (Gusfield, 1997) for comprehensive introduction

to suffix trees. Hui (1992) shows how to compute df for all substrings using generalized

suffix trees. The major advantage of suffix arrays over suffix trees is space. The space

requirements for suffix trees (but not for suffix arrays) grow with alphabet size: O(N |Σ|)

space, where |Σ| is the alphabet size. The dependency on alphabet size is a serious is-

sue for Japanese. Manber and Myers (1990) reported that suffix arrays are an order of

magnitude more efficient in space than suffix trees even in the case of relatively small

alphabet size (|Σ| = 96). The advantages of suffix arrays over suffix trees becomes much

more significant for larger alphabets such as Japanese (and English words).

The suffix array data structure makes it convenient to compute the frequency and

location of a substring (ngram) in a long sequence (corpus). The early work was motivated

by biological applications such as matching of DNA sequences. Suffix arrays are closely

related to PAT arrays, which were motivated in part by a project at the University
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of Waterloo to distribute the Oxford English Dictionary with indexes on CD-ROM.

PAT arrays have also been motivated by applications in Information Retrieval (Gaston

H. Gonnet and Snider, 1992). A similar data structure was proposed by Nagao and Mori

(1994) for processing Japanese text.

The alphabet sizes vary considerably in each of these cases. DNA has a relatively

small alphabet of just 4 characters whereas Japanese has a relatively large alphabet of

more than 5000 characters. The methods scale naturally over alphabet size. In section

3, the data structure is applied to a large corpus of English text, where the alphabet is

assumed to be the set of all English words, an unbounded set. It is sometimes assumed

that larger alphabets are more challenging than smaller ones, but ironically, it can be

just the reverse because there is often an inverse relationship between the size of the

alphabet and the length of meaningful/interesting substrings.

This section starts by reviewing the construction of suffix arrays and how they have

been used to compute the frequency and locations of a substring in a sequence. We will

then show how these methods can be applied to find not only the frequency of a particular

substring but also the frequency of all substrings. Finally, the methods are generalized

to compute document frequencies as well as term frequencies.

A suffix array, s, is an array of all N suffixes, sorted alphabetically. A suffix, s[i],

also known as a semi-infinite string, is a string that starts at position i in the corpus and

continues to the end of the corpus. In practical implementations, it is typically denoted

by a 4-byte integer, i. In this way, a small (constant) amount of space is used to represent

a very long substring, which one might have thought would require N space.

The algorithm, suffix_array, presented below takes a corpus and its length N as

input, and outputs the suffix array, s.

suffix_array ← function(corpus, N){
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Let s be a vector of the integers from 0 to N − 1 which denote suffixes

starting from s[i] on the corpus.

Sort s in alphabetical order of suffixes denoted by each integer.

Return s. }

The C program below implements this algorithm.

char *corpus;

int suffix_compare(int *a, int *b){ return strcmp(corpus+*a, corpus+*b);}

int *suffix_array(int n){

int i, *s = (int *)malloc(n*sizeof(int));

for(i=0; i < n; i++) s[i] = i; /* initialize */

qsort(s, n, sizeof(int), suffix_compare); /* sort */

return s;}

Figures 1 and 2 illustrate a simple example where the corpus (“to be or not to be”)

consists of N = 18 (19 bytes): 13 alphabetic characters plus 5 spaces (and 1 null ter-

mination). The C program (above) starts by allocating memory for the suffix array (18

integers of 4-bytes each). The suffix array is initialized to the integers from 0 to 17. Fi-

nally, the suffix array is sorted by alphabetical order. The suffix array after initialization

is shown in Figure 1. The suffix array after sorting is shown in Figure 2.

As mentioned above, suffix arrays were designed to make it easy to compute the

frequency (tf ) and locations of a substring (ngram/term) in a sequence (corpus). Given

a substring or term, t, a binary search is used to find the first and last suffix that start

with t. Let s[i] be the first such suffix and s[j] be the last such suffix. Then tf (t) = j−i+1

and the term is located at positions: {s[i], s[i+ 1], ..., s[j]}, and only these positions.
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Input corpus: "to be or not to be"

 s[0]
 s[1]
 s[2]
 s[3]
 
s[13]
s[14]
s[15]
s[16]
s[17]

t o _ b e _ o r _ n o t _ t o _ b e  
    Position:
Characters:

 0     1    2     3    4    5     6    7    8     9    10  11  12   13  14   15  16   17

 0
 1
 2
 3

13
14
15
15
17

......

to_be_or_not_to_be
o_be_or_not_to_be
_be_or_not_to_be
be_or_not_to_be

to_be
o_be
_be
be
e

Suffixes denoted by s[i]
Initialized
Suffix Array

null

Figure 1
Illustration of a suffix array, s, that has just been initialized and not yet sorted. Each element
in the suffix array, s[i], is an integer denoting a suffix or a semi-infinite string, starting at
position i in the corpus and extending to the end of the corpus.

Figure 2 shows how this procedure can be used to compute the frequency and loca-

tions of the term “to be” in the corpus “to be or not to be”. As illustrated in the Figure,

s[i = 16] is the first suffix to start with the term “to be” and s[j = 17] is the last suffix

to start with this term. Consequently, tf (“to be”) = 17 − 16 + 1 = 2. Moreover, the

term appears at positions(“to be”) = {s[16], s[17]} = {13, 0}, and only these positions.

Similarly, the substring “to” has the same tf and positions, as do the substrings, “to ”

and “to b.” Although there may be N(N + 1)/2 ways to pick i and j, it will turn out

that we need only consider 2N − 1 of them when computing tf for all substrings.

This procedure was used by Nagao and Mori (1994) who applied it quite successfully

to a large corpus of Japanese text. They report that it takes O(N logN) time, assuming

that the sort step performs O(N logN) comparisons, and that each comparison can be

done in O(1) time. While these are often reasonable assumptions, we have found that

if the corpus contains long repeated substrings (e.g., duplicated articles), as our English

corpus does (Paul and Baker, 1992), then the sort can consume quadratic time since each
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 s[0]
 s[1]
 s[2]
 s[3]
 s[4]
 s[5]
 s[6]
 s[7]
 s[8]
 s[9]
s[10]
s[11]
s[12]
s[13]
s[14]
s[15]
s[16]
s[17]

15
 2
 8
 5
12
16
 3
17
 4
 9
14
 1
 6
10
 7
11
13
 0

_be
_be_or_not_to_be
_not_to_be
_or_not_to_be
_to_be
be
be_or_not_to_be
e
e_or_not_to_be
not_to_be
o_be
o_be_or_not_to_be
or_not_to_be
ot_to_be
r_not_to_be
t_to_be
to_be
to_be_or_not_to_be

Suffix Array Suffixes denoted by s[i]

Figure 2
Illustration of the suffix array in Figure 1 after sorting. The integers in s are sorted so that the
semi-infinite strings are now in alphabetical order.

comparison can take N time. Like Nagao and Mori (1994), we were also able to apply

this procedure quite successfully to our Japanese corpus, but for the English corpus, after

50 hours of cpu time, we gave up and turned to Manber and Myers’ (1990) algorithm,1

which took only two hours. Manber and Myers’ algorithm uses some clever, but difficult

to describe techniques, to achieve O(N logN) time, even for a corpus with long repeated

substrings. For a corpus that would otherwise consume quadratic time, the Manber and

Myers’ algorithm is well worth the effort, but otherwise, the procedure described above

is simpler, and can even be a bit faster.

The “to be or not to be” example used the standard English alphabet (one byte per

character). As mentioned above, suffix arrays can be generalized in a straightforward

1 We used Doug McIlroy’s implementation: <http://cm.bell-labs.com/cm/cs/who/doug/ssort.c>.
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way to work with larger alphabets such as Japanese (typically two bytes per charac-

ter). In Section 3, we use the open-ended set of English words as the alphabet. Each

token (English word) is represented as a 4-byte pointer into a symbol table (dictionary).

The corpus, “to be or not to be,” for example, is tokenized into 6 tokens: “to”, “be”,

“or”, “not”, “to”, and “be”, where each token is represented as a 4-byte pointer into a

dictionary.

2.2 Longest Common Prefixes (LCPs)

The suffix array literature makes use of an auxiliary array for storing LCPs (longest

common prefixes). The lcp array contains N + 1 integers. Each element, lcp[i], indicates

the length of the common prefix between s[i − 1] and s[i]. We pad the lcp vector with

zeros (lcp[0] = lcp[N ] = 0) to simplify the code and definitions for some concepts in the

next section. The padding avoids the need to test for certain end conditions.

Figure 3 shows the lcp vector for the suffix array of “to be or not to be.” For exam-

ple, since s[10] and s[11] both start with the substring, “o be,” lcp[11] is set to 4, the

length of the longest common prefix. Manber and Myers (1990) use the lcp vector in

their O(P + logN) algorithm for computing the frequency and location of a substring of

length P in a sequence of length N . They showed that the lcp vector can be computed

in O(N logN) time. These algorithms are much faster than the obvious straightforward

implementation when the corpus contains long repeated substrings, though for many

corpora, the complications required to avoid quadratic behavior are unnecessary.

2.3 Classes of substrings

Thus far we have seen how to compute tf for a single ngram, but how do we compute tf

and df for all ngrams? As mentioned above, the N(N +1)/2 substrings will be clustered

into a relatively small number of classes, and then the statistics will be computed over the

classes rather than over the substrings, which would have been prohibitive. The reduction
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 s[0]
 s[1]
 s[2]
 s[3]
 s[4]
 s[5]
 s[6]
 s[7]
 s[8]
 s[9]
s[10]
s[11]
s[12]
s[13]
s[14]
s[15]
s[16]
s[17]

15
 2
 8
 5
12
16
 3
17
 4
 9
14
 1
 6
10
 7
11
13
 0

_be
_be_or_not_to_be
_not_to_be
_or_not_to_be
_to_be
be
be_or_not_to_be
e
e_or_not_to_be
not_to_be
o_be
o_be_or_not_to_be
or_not_to_be
ot_to_be
r_not_to_be
t_to_be
to_be
to_be_or_not_to_be

Suffix Array Suffix denoted by s[i]
 lcp[0]
 lcp[1]
 lcp[2]
 lcp[3]
 lcp[4]
 lcp[5]
 lcp[6]
 lcp[7]
 lcp[8]
 lcp[9]
lcp[10]
lcp[11]
lcp[12]
lcp[13]
lcp[14]
lcp[15]
lcp[16]
lcp[17]
lcp[18]

 0
 3
 1
 1
 1
 0
 2
 0
 1
 0
 0
 4
 1
 1
 0
 0
 1
 5
 0

Lcp vector

The doted lines denote lcp’s.

always 0

always 0

length = 4

Figure 3
The Longest Common Prefix is a vector of N + 1 integers. lcp[i] denotes the length of the
common prefix between the suffix s[i − 1] and the suffix s[i]. Thus, for example, s[10] and s[11]
share a common prefix of 4 characters, and therefore lcp[11] = 4. The common prefix is
highlighted by a dotted line in the suffix array. The suffix array is the same as in the previous
figure.

of the computation over substrings to a computation over classes is made possible by

four properties. The substrings in a class all share the same tf (property 1) and the

same df (property 2). Moreover, every substring is a member of some class (property

3b). Finally, the number of classes in manageable, much smaller than the number of

substrings (property 4).

Classes are defined in terms of intervals. Let 〈i, j〉 be an interval on the suffix array,

s[i], s[i+ 1], ..., s[j]. Classes are constructed so that the substrings in a class are equiv-

alent, at least with respect to tf (property 1) and df (property 2). Class(〈i, j〉) is the

set of substrings that start every suffix within the interval and no substring outside the

interval. Property 1 immediately follows from this construction. That is, every substring
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in class(〈i, j〉) has tf = j − i +1 , and consequently, if there are two substrings in a class,

they would both share the same term frequency.

The set of substrings in a class can be constructed from the lcp vector:

class(〈i, j〉) = {s[i]m|max(lcp[i], lcp[j + 1]) < m ≤ min(lcp[i+ 1], lcp[i+ 2], ..., lcp[j])},

where s[i]m denotes the first m characters of the suffix s[i]. We will refer to lcp[i] and

lcp[j+1] as bounding lcps and lcp[i+1], lcp[i+2], ..., lcp[j] as interior lcps. The equation

above can be rewritten as

class(〈i, j〉) = {s[i]m|LBL(〈i, j〉) < m ≤ SIL(〈i, j〉)},

where LBL (longest bounding lcp) is

LBL(〈i, j〉) = max(lcp[i], lcp[j + 1]),

and SIL (shortest interior lcp) is

SIL(〈i, j〉) = min(lcp[i+ 1], lcp[i+ 2], ..., lcp[j]).

By contruction, the class will be empty unless there is some room between the LBL

and SIL. We say that an interval is lcp-delimited when LBL < SIL. Except for trivial

intervals (see below), Classes are non-empty iff the interval is lcp-delimited and the

number of substrings in a class depends on the gap between the LBL and the SIL. That

is, |class(〈i, j〉)| = SIL(〈i, j〉)− LBL(〈i, j〉).

Figure 4 shows eight examples of lcp-delimited intervals. The top part of the figure

highlights the interval, 〈10, 11〉. The solid vertical lines denote the bounding lcp’s, and

the thin vertical lines denote the interior lcp’s. The interval 〈10, 11〉 is lcp-delimited

because the bounding lcps, lcp[10] = 0 and lcp[12] = 1, are smaller than the interior lcp,

lcp[11] = 4. That is, the LBL (=1) is less than the SIL (=4). Thus there is room for m

between the LBL and the SIL, and the class is non-empty: class(〈10, 11〉) = {s[10]m|1 <
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 n o t _ to_be
 o _ b e
 o _ b e _or_not_to_be
 o r _ n ot_to_be
 o t _ t o_be
 r _ n o t_to_be

Bounding lcps,   LBL,   SIL,     Interior lcp of <10,11>

Vertical lines denote lcps. Gray area denotes
endpoints of substrings in class(<10,11>).

LCP-delimited
      interval Class

<10,11>            {"o_", "o_b", "o_be"}
<10,13>                         {"o"}
  <9,9>              {"n", "no", "not", ...}
<10,10>                           { }
<11,11>          {"o_be_", "o_be_o", ...}
<12,12>          {"or", "or_", "or_n", ...}
<13,13>           {"ot", "ot_", "ot_t", ...}
<14,14>              {"r", "r_", "r_n", ...}

LBL     SIL         tf

1          4           2
0          1           4
0     infinity     1
4     infinity     1
4     infinity     1
1     infinity     1
1     infinity     1
0     infinity     1

<10,11>

<10,13>

Boundaries
of <10,11>

 s[9]
s[10]
s[11]
s[12]
s[13]
s[14]

Figure 4
Six suffixes in Figure 3, s[9]-s[14], are shown again with the lcp’s. Two non-trivial lcp-delimited
intervals and six trivial lcp-delimited intervals are shown along with their longest bounding
LCP (LBL) and shortest interior LCP (SIL). Intervals are associated with sets of strings, which
we call classes. These substrings are common prefixes of all of the suffixes within the interval,
and by no suffix outside the interval. All of the strings in a class have the same term frequency.

m ≤ 4} = {“o ”, “o b”, “o be”}. The endpoints m between LBL and SIL are highlighted

in gray. Every suffix within the interval 〈10, 11〉 starts with all of these substrings and no

suffix outside 〈10, 11〉 starts with any of these substrings. In particular, the substring “o”

is excluded from the class, because it is shared by suffixes outside the interval, namely

s[12] and s[13]. The longer substring, “o be ,” is excluded from the class because it is

not shared by s[10], a suffix within the interval.

We call an interval trivial if the interval starts and ends at the same place: 〈i, i〉.

Trivial intervals typically have quite large classes. After all, there are only N trivial

intervals but they cover all (and only) the substrings with tf = 1, typically most of

the N(N + 1)/2 substrings in a corpus. Therefore, trivial classes have to be quite large
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because there are only N such classes but they account for order N2 substrings. We

define the class of a trivial interval, class(〈i, i〉), to be {s[i]m|LBL < m}. The SIL of

a trivial interval is defined to be infinite. Note that there are empty classes of trivial

intervals such as 〈10, 10〉 in Figure 4. The LBL of 〈10, 10〉 plus the posintion of the suffix,

s[10], is the end of the corpus.

It is possible for lcp-delimited intervals to be nested, as in the case of 〈10, 11〉 and

〈10, 13〉. We say that one interval 〈i, j〉 is nested within another 〈u, v〉 if i ≤ u ≤ v ≤

j (and 〈i, j〉 	= 〈u, v〉). Nested intervals have disjoint classes and different SILs.2 The

substrings in the class of the nested interval are longer than the substrings in the class

of the outer interval.

Although it is possible for lcp-delimited intervals to be nested, it is not possible for

lcp-delimited intervals to overlap. We say that one non-trivial interval 〈a, b〉 overlaps

another non-trivial interval 〈c, d〉 if a < c ≤ b < d. If two intervals overlap, then at

least one of the intervals is not lcp-delimited and has an empty class. The fact that

lcp-delimited intervals are nested and do not overlap will turn out to be convenient for

enumerating lcp-delimited intervals.

The remaining six intervals mentioned in Figure 4 are trivial intervals. That is, they

all start and end at the same place. As mentioned above, trivial intervals tend to have

large classes. They contain all substrings s[i]m such thatm > LBL. All of these substrings

have a term frequency of 1.

Not every interval is lcp-delimited. The interval, 〈11, 12〉, for example, is not lcp-

delimited because there is no room between the LBL (=4) and the SIL (=1). When the

interval is not lcp-delimited, the class is empty. There are no substrings starting all the

suffixes within the interval 〈11, 12〉, and not starting any suffix outside the interval.

2 Because 〈u, v〉 is lcp-delimited, there must be a bounding lcp of 〈u, v〉 that is smaller than any lcp
within 〈u, v〉. This bounding lcp must be within 〈i, j〉, and as a result, class(〈i, j〉) and class(〈u, v〉)
must be disjoint.
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2.4 Four Properties

As mentioned above, classes are constructed so that it is practical to reduce the compu-

tation of various statistics over substrings to a computation over classes. This subsection

will discuss four properties of classes that help make this reduction feasible.

The first two properties are convenient because they allow us to associate tf and

df with classes rather than with substrings. The substrings in a class all have the same

tf value (property 1) and the same df value (property 2). That is, if s1 and s2 are two

substrings in class(〈i, j〉) then

Property 1: tf (s1 ) = tf (s2 ) = j − i + 1

Property 2: df(s1) = df(s2).

Both of these properties follow straightforwardly from the construction of intervals. The

value of tf is a simple function of the endpoints; the calculation of df is more complicated

and will be discussed in section 2.6. While tf and df treat each member of a class

as equivalent, not all statistics do. Mutual information (MI) is an important counter

example; in most cases, MI(s1) 	=MI(s2).

The third property is convenient because it allows us to iterate over classes rather

than substrings, without worrying about missing any of the substrings.

Property 3: The classes partition the set of all substrings.

There are two parts to this argument: every substring belongs to at most one class

(property 3a), and every substring belongs to at least one class (property 3b).

Demonstration of property 3a (proof by contradiction): Suppose there is a sub-

string, s, that is a member of two distinct classes: class(〈i, j〉) and class(〈u, v〉). There

are three possibilities: one interval precedes the other, they are properly nested or they

overlap. In all three cases, s cannot be a member of both classes. If one interval precedes

14
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the other, then there must be a bounding lcp between the two intervals which is shorter

than s. And therefore, s cannot be in both classes. The nesting case was mentioned previ-

ously where it was noted that nested intervals have disjoint classes. The overlapping case

was also discussed previously where it was noted that two overlapping intervals cannot

both be lcp-delimited, and therefore at least one of the classes would have to be empty.

Demonstration of property 3b (constructive argument): Let s be an arbitrary

substring in the corpus. There will be at least one suffix in the suffix array that starts

with s. Let i be the first such suffix and let j be the last such suffix. By construction,

the interval 〈i, j〉 is lcp-delimited (LBL(〈i , j 〉) < |s | and SIL(〈i , j 〉) ≥ |s |), and therefore,

s is an element of class(〈i, j〉).

Finally, as mentioned above, computing over classes is much more efficient than

computing over the substrings themselves because there are many fewer classes (at most

2N − 1) than substrings (N(N + 1)/2).

Property 4: There are N classes with tf = 1 and at most N − 1 classes with tf > 1 .

The first clause is relatively straightforward. There are N trivial intervals 〈i, i〉. These

are all and only the intervals with tf = 1 . By construction, these intervals are lcp-

delimited.

To argue the second clause, we make use of a uniqueness property: an lcp-delimited

interval 〈i, j〉 can be uniquely determined by its SIL and a representative element k,

where i < k ≤ j. Suppose there were two distinct intervals, 〈i, j〉 and 〈u, v〉, with the

same SIL, SIL(〈i , j 〉) = SIL(〈u, v〉), and the same representative k, where i < k ≤ j and

u < k ≤ v. Since they share a common representative, k, one interval must be nested

inside the other. But nested intervals have disjoint classes and different SILs.

Given this uniqueness property, we can determine the N − 1 upper bound on the

number of lcp-delimited intervals by considering the N − 1 elements in the lcp vector.
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Each of these elements, lcp[k], has the opportunity to become the SIL of an lcp-delimited

interval 〈i, j〉 with a representative k. Thus there could be as many as N−1 lcp-delimited

intervals (though there could be fewer if some of the opportunities don’t work out).

Moreover, there cannot be any more intervals with tf > 1 , because if there were one, its

SIL should have been in the lcp vector. (Note that this lcp counting argument does not

count trivial intervals because their SILs (= infinity) are not in the lcp vector; the lcp

vector contains integers less than N .)

From property 4, it follows that there are at most N distinct values of RIDF. The N

trivial intervals 〈i, i〉 have just one RIDF value since tf = df = 1 for these intervals. The

otherN−1 intervals could have as many as anotherN−1 RIDF values. Similar arguments

hold for many other statistics that make use of tf and df , and treat all members of a

class as equivalent.

In summary, the four properties taken collectively make it practical to compute tf,

df and RIDF over a relatively small number of classes; it would have been prohibitively

expensive to compute these quantities directly over the N(N + 1)/2 substrings.

2.5 Computing all classes using suffix arrays

This subsection describes a single-pass procedure, print_LDIs, for computing tf for

all LDIs (lcp-delimited intervals). Since lcp-delimited intervals are properly nested, the

procedure is based on a push-down stack. The procedure outputs four quantities for each

lcp-delimited interval, 〈i, j〉. The four quantities are the two endpoints (i and j), the term

frequency (tf ) and a representative (k), such that i < k ≤ j and lcp[k] = SIL(〈i, j〉). This

procedure will be described twice. The first implementation is expressed in a recursive

form; the second implementation avoids recursion by implementing the stack explicitly.

C code is provided in the appendices.

The recursive implementation is presented first, because it is simpler. The function
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print_LDIs is initially called with print_LDIs(0,0), which will cause the function to

be called once for each value of k between 0 and N−1. k is a representative in the range:

i < k ≤ j, where i and j are the endpoints of an interval. For each of the N values of

k, a trivial LDI is reported at 〈k, k〉. In addition, there could be up to N − 1 non-trivial

intervals, where k is the representative and lcp[k] is the SIL. Recall that lcp-delimited

intervals are uniquely determined by a representative k such that i < k ≤ j and a SIL.

Not all of these candidates will produce LDIs. The recursion searches for j’s such that

LBL(〈i, j〉) ≤ SIL(〈i, j〉), but reports intervals at 〈i, j〉 only when the inequality is a

strict inequality, that is, LBL(〈i, j〉) < SIL(〈i, j〉). The program stack keeps track of

the left and right edges of these intervals. While lcp[k] is monotonically increasing, the

left edge is remembered on the stack, as print_LDIs is called recursively. The recursion

unwinds as lcp[j] < lcp[k]. Figure 5 illustrates the flow.

print_LDIs ← function(i, k) {

j ← k.

Output a trivial lcp-delimited interval 〈k, k〉 with tf = 1 .

While lcp[k] ≤ lcp[j + 1] and j + 1 < N , do j ← print_LDIs(k, j + 1).

Output an interval 〈i, j〉 with tf = j − i + 1 and rep = k, if it is lcp-delimited.

Return j. }

The second implementation (below) introduces its own explicit stack, a complication

that turns out to be important in practice, especially for large corpora. C code is provided

in the appendices.

print_LDIs_stack ← function(N){

stack i ← an integer array for the stack of the left edges, i.

stack k ← an integer array for the stack of the representatives, k.

stack i[0]← 0.

17
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(1) i=23, k=23
s[22]
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s[24]

s[25]
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s[27]

s[28]

s[29]

Suffix Array

(2) i=24, k=24

(3) i=25, k=25(4) return: j=26      output: <25,26>

(5) return: j=26
      output: <24, 26>(6) i=24, k=26

(7) i=27, k=27
(8) return: j=28     output: <27,28>
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 (10) return: j=28
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Vertical lines denote lcps.   Gray area denotes endpoints
of substrings in classes of the lcp-delimited interval with tf > 1.

Figure 5
Argument and returned values of print LDIs.

stack k[0]← 0.

sp← 1 (a stack pointer).

For j ← 0, 1, 2, ..., N − 1 do

Output an lcp-delimited interval 〈j, j〉 with tf = 1.

While lcp[j + 1] < lcp[stack k[sp− 1]] do

Output an interval 〈i, j〉 with tf = j − i+ 1, if it is lcp-delimited.

sp← sp− 1.

stack i[sp]← stack k[sp− 1]].

stack k[sp]← j + 1.

sp← sp+ 1. }

2.6 Computing df for all classes

Thus far we have seen how to compute term frequency for all substrings (ngrams) in a

sequence (corpus). This section will extend the solution to compute document frequency,

df, as well as term frequency, tf. The solution runs in O(N logN) time and O(N) space.
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C code is provided in appendix C.

This section will use the running example shown in Figure 6, where the corpus is:

“to be$or$not to be$”. The corpus consists of three documents, “to be$”, “or$” and

“not to be$”. The special character ‘$’ is used to denote the end of a document. The

procedure outputs a sequence of intervals with their term frequencies and document

frequencies. These results are also presented for the non-trivial intervals.

The suffix array is computed using the same procedures discussed above. In addition

to the suffix array and the lcp vector, Figure 6 introduces a new third table that is

used to map from suffixes to document ids. This table of document id’s will be used by

the function get docnum to map from suffixes to document ids. Suffixes are terminated

in Figure 6 after the first end of document symbol, unlike before, where suffixes were

terminated with the end of corpus symbol.

A straightforward method for computing df for an interval is to enumerate the suf-

fixes within the interval and then compute their document ids, remove duplicates and

return the number of distinct documents. Thus, for example, df(“o”) in Figure 6, can be

computed by finding corresponding interval, 〈11, 14〉, where every suffix within the inter-

val starts with “o” and no suffix outside the interval starts with “o”. Then we enumerate

the suffixes within the interval {s[11], s[12], s[13], s[14]} and compute their document ids,

{0, 2, 1, 2}, and remove duplicates. In the end we discover that df(“o”) = 3. That is, “o”

appears in all three documents.

Unfortunately, this straightforward approach is almost certainly too slow. Some doc-

ument ids will be computed multiple times, especially when suffixes appear in nested

intervals. We take advantage of the nesting property of lcp-delimited intervals to com-

pute all df ’s efficiently. The df of an lcp-delimited interval can be computed recursively in

terms of its constituents (nested subintervals), thus avoiding unnecessary recomputation.

The procedure print_LDIs_with_df presented below is similar to print_LDIs_stack
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 s[0]
 s[1]
 s[2]
 s[3]
 s[4]
 s[5]
 s[6]
 s[7]
 s[8]
 s[9]
s[10]
s[11]
s[12]
s[13]
s[14]
s[15]
s[16]
s[17]
s[18]

 2
15
12
 5
 8
18
 3
16
 4
17
 9
 1
14
 6
10
 7
11
 0
13

0
4
1
0
1
1
0
3
0
2
0
0
5
1
1
0
0
1
6
0

_be$
_be$
_to_be$
$
$
$
be$
be$
e$
e$
not_to_be$
o_be$
o_be$
or$
ot_to_be$
r$
t_to_be$
to_be$
to_be$

Suffix Array
Suffixes denoted
         by s[i]

Input documents:  d0 = "to_be$"
                                 d1 = "or$"
                                 d2 = "not_to_be$"

Corpus = d0 + d1 + d2 = "to_be$or$not_to_be$"

lcp[i]

0
2
2
0
1
2
0
2
0
2
2
0
2
1
2
1
2
0
2

Document id’s
     of s[i]

Resulting non-trivial lcp-delimited intervals:
〈0, 1〉, rep= 1, tf=2, df=2
〈0, 2〉, rep= 2, tf=3, df=2
〈3, 5〉, rep= 4, tf=3, df=3
〈6, 7〉, rep= 7, tf=2, df=2
〈8, 9〉, rep= 9, tf=2, df=2
〈11, 12〉, rep=12, tf=2, df=2
〈11, 14〉, rep=13, tf=4, df=3
〈17, 18〉, rep=18, tf=2, df=2
〈16, 18〉, rep=17, tf=3, df=2

Figure 6
A suffix array for a corpus consisting of three documents. The special character ‘$’ denotes the
end of a document. The procedure outputs a sequence of intervals with their term frequencies
and document frequencies. These results are also presented for the non-trivial intervals.

but modified to compute df as well as tf. The stack keeps track of i and k, as before, but

now the stack also keeps track of df .

i , the left edge of an interval,

k , the representative (SIL = lcp[k]),

df , partial results for df , counting documents seen thus far, minus
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duplicates.

print_LDIs_with_df ← function(N){

stack i ← an integer array for the stack of the left edges, i.

stack k ← an integer array for the stack of the representatives, k.

stack df ← an integer array for the stack of the df counter.

doclink [0..D] : an integer array for the document link initialized with -1.

D = the number of documents.

stack i[0]← 0.

stack k[0]← 0.

stack df[0]← 1.

sp← 1 (a stack pointer).

(1) For j ← 0, 1, 2,..., N − 1 do

(2) (Output a trivial lcp-delimited interval 〈j, j〉 with tf = 1 and df = 1.)

(3) doc← get docnum(s[j])

(4) if doclink[doc] 	= −1, do

(5) let x be the largest x such that doclink[doc] ≥ stack i[x].

(6) stack df [x]← stack df [x]− 1.

(7) doclink[doc]← j.

(8) df ← 1.

(9) While lcp[j + 1] < lcp[stack k[sp− 1]] do

(10) df ← stack df [sp− 1] + df .

(11) Output a non-trivial interval 〈i, j〉 with tf = j − i+ 1 and df ,

if it is lcp-delimited.

(12) sp← sp− 1.

(13) stack i[sp]← stack k[sp− 1].
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(14) stack k[sp]← j + 1.

(15) stack df [sp]← df .

(16) sp← sp+ 1. }

Lines 5-6 take care of duplicate documents. The duplication processing makes use

of doclink, an array of length D, the number of documents in the collection, that keeps

track of which suffixes have been seen in which document. doclink is initialized with

−1 indicating that no suffixes have been seen yet. As suffixes are processed, doclink

is updated (on line 7) so that doclink[d] contains the most recently processed suffix in

document d. As illustrated in Figure 7, when j = 16 (snapshot A), the most recently

processed suffix in document 0 is s[11] (“o be$”), the most recently processed suffix in

document 1 is s[15] (“r$”), and the most recently processed suffix in document 2 is s[16]

(“t to be$”). Thus, doclink[0]=11, doclink[1]=15 and doclink[2]=16. After processing

s[17] (“to be$”), which is in document 0, doclink[0] is updated from 11 to 17, as shown

in snapshot B of Figure 7.

Stack df keeps track of document frequencies as suffixes are processed. The invariant

is: stack df [x] contains the document frequency for suffixes seen thus far starting at

i = stack i[x]. (x is a stack offset.) When a new suffix is processed, line 5 checks for

double counting by searching for intervals on the stack (still being processed) that have

suffixes in the same document as the current suffix. If there is any double counting,

stack df is decremented appropriately on line 6.

There is an example of this decrementing in snapshot C of Figure 7, highlighted by

the circle around the binding of df to 0 on the stack element: [i=0, k=17, df=0]. Note

that df was previously bound to 1 in snapshot B. The binding of df was decremented

when processing s[18] because s[18] is in the same document as s[16]. This duplication

was identified by line 5. The decrementing was performed by line 6.
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Intervals are processed in depth first order so that more deeply nested intervals are

processed before less deeply nested intervals. In this way, double counting is only an issue

for intervals higher on the stack. The most deeply nested intervals are trivial intervals.

They are processed first. They have a df of 1 (line 8). For the remaining non-trivial

intervals, stack df contains the partial results for intervals in process. As the stack is

popped, the df values are aggregated up to compute the df value for the outer intervals.

The aggregation occurs on line 10 and the popping of the stack occurs on line 12. The

aggregation step is illustrated in snapshots C and D of Figure 7 by the two arrows with

the ‘+’ combination symbol pointing at a value of df in an output statement.

2.7 Class arrays

The classes identified by the previous calculation are stored in a data structure we call

a class array, to make it relatively easy to look up the term frequency and document

frequency for an arbitrary substring. The class array is a stored list of 5-tuples: 〈SIL,

LBL, tf, df, longest suffix 〉. The fifth element of the 5-tuple is a canonical member of the

class (the longest suffix). The 5-tuples are sorted by the the alphabetical order of the

canonical members. In our C code implementation, classes are represented by 5 integers,

one for each element in the 5-tuple. Since there are N trivial classes and at most N − 1

non-trivial classes, the class array will require at most 10N − 5 integers. However, for

many practical applications, the trivial classes can be omitted.

Figure 8 shows an example of the non-trivial class array for the corpus: “to be$or$not to be$”.

The class array makes it relatively easy to determine that the substring “o” appears in

all three documents. That is, df(“o”) = 3. We use a binary search to find that tuple

c[5] is the relevant 5-tuple for “o”. Having found the relevant tuple, it requires a simple

record access to return the document frequency field.
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Doclink
 doclink[0]=11
 doclink[1]=15
 doclink[2]=16

Local variables
  j = 16    df = 1

Stack

i=15, k=16, df=1

lines 13-16: push(i=16, k=17, df=1)
line  1: j        j+1

 doclink[0]=11
 doclink[1]=15
 doclink[2]=16

  j = 17    df = 1

i=15, k=16, df=1

lines 3-6: x
line  7: doclink[doc(j=17)=0]        j=17
lines 13-16: push(i=17, k=18, df=1)

j+1

i=16, k=17, df=1

 doclink[0]=17
 doclink[1]=15
 doclink[2]=16

  j = 17    df = 1

i=15, k=16, df=1

lines 1-6: x
line 7: 
lines 8-11: output LDI=<17,18>, tf=2, df=2
line 12: pop()

lines 9-11: output LDI=<16,18>, tf=3, df=2
line 12: pop()

i=16, k=17, df=1
i=17, k=18, df=1

 doclink[0]=17
 doclink[1]=15
 doclink[2]=18

  j = 18    df = 2

i=15, k=16, df=1
i=16, k=17, df=0

 doclink[0]=17
 doclink[1]=15
 doclink[2]=18

  j = 18    df = 2

i=15, k=16, df=1

lcp[k=17] > lcp[j+1=18]
1                  6

lcp[k=17] > lcp[j+1=18]
5                  0

lcp[k=16] > lcp[j+1=18]
1                  0

+

+

(C)

(B)

(A)

(D)

Figure 7
Snapshots of the doclink array and the stack during the processing of print LDIs with df on
the corpus: “to be$or$not to be$”. The four snapshots A-D illustrate the state as j progresses
from 16 to 18. Two non-trival intervals are emitted while j is in this range: 〈17, 18〉 and
〈16, 18〉. The more deeply nested interval is emitted before the less deeply nested interval.
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c[0]
c[1]
c[2]
c[3]
c[4]
c[5]
c[6]
c[7]
c[8]

1
4
1
3
2
1
5
1
6

 0
 0
 5
 3
 4
 1
 1
11
 0

0
1
0
0
0
0
1
0
1

3
2
3
2
2
4
2
3
2

2
2
3
2
2
3
2
2
2

_
_be$
$
be$
e$
o
o_be$
t
to_be$

SIL     LBL     tf      df
The longest suffix
denoted by c[i]

      Class array
(Pointer to corpus)

Figure 8
An example of the class array for the corpus: “to be$or$not to be$”.
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Table 1
Statistics of the English and Japanese corpora.

Statistic Wall Street Journal Mainichi Shimbun
N (corpus size in tokens) 49,810,697 words 215,789,699 characters
V (vocabulary in types) 410,957 5509

# articles 112,915 435,859
# non-trivial classes 16,519,064 82,442,441

# substrings in non-trivial classes 2,548,140,677 1,388,049,631
substrings per class (in non-trivial classes) 154.3 16.8

3 Experimental results

3.1 RIDF and MI for English and Japanese

We used the methods described above to compute df, tf and RIDF for all substrings

in two corpora of newspapers summarized in Table 1. MI was computed for the longest

substring in each class. The entire computation took a few hours. The processing time

was dominated by the calculation of the suffix array.

The English collection consists of 50 million words (113 thousand articles) of Wall

Street Journal (distributed by the ACL/DCI) and the Japanese collection consists of

216 million characters (436 thousand articles) of CD-Mainichi Shimbun from 1991-1995

(which are distributed in CD-ROM format). The English corpus was tokenized into words

delimited by white space, whereas the Japanese corpus was tokenized into characters

(typically 2-bytes each).

Table 1 indicates that there are a large number of non-trivial classes in both corpora.

The English corpus has more substrings per non-trivial class than the Japanese corpus. It

has been noted elsewhere that the English corpus contains quite a few duplicated articles

(Paul and Baker, 1992). The duplicated articles could explain why there are so many

substrings per non-trivial class in the English corpus when compared with the Japanese

corpus.

For subsequent processing, we excluded substrings with tf < 10 to avoid noise,
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Figure 9
The left panel plots MI as a function of the length of the ngram; the right panel plots RIDF as
a function of the length of the ngram. Both panels were computed from the Japanese corpus.
Note that while there is more dynamic range for shorter ngrams than for longer ngrams, there
is plenty of dynamic range for ngrams well beyond bigrams and trigrams.

resulting in about 1.4 million classes (1.6 million substrings) for English and 10 million

classes (15 million substrings) for Japanese. We computed RIDF and MI values for the

longest substring in each of these 1.4 million English classes and 10 million Japanese

classes. These values can be applied to the other substrings in these classes for RIDF,

but not for MI. (As mentioned above, two substrings in the same class need not have the

same MI value.)

Figure 9 plots RIDF and MI values of random samples as a function of string length.

In both cases, shorter substrings have more dynamic range. That is, RIDF and MI vary

more for bigrams than million-grams. But there is considerable dynamic range for ngrams

well beyond bigrams and trigrams.

3.2 Little correlation between RIDF and MI

We are interested in comparing and contrasting RIDF and MI. Figure 10 shows that

RIDF and MI are largely independent. There is little if any correlation between the

RIDF of a string and MI of the same string. Panel (a) compares RIDF and MI for a

sample of English word sequences from the WSJ corpus (excluding unigrams); panel (b)

makes the same comparison but for Japanese phrases identified as keywords on the CD-

ROM. In both cases, there are many substrings with a large RIDF value and a small MI,
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(a) English strings         (b) Japanese strings
    (word sequences)           (character sequences)

Figure 10
Both panels plot RIDF versus MI. Panel (a) plots RIDF and MI for a sample of English
ngrams; panel (b) plots RIDF and MI for Japanese phrases identified as keywords on the
CD-ROM. The right panel highlights the 10% highest RIDF and 10% lowest MI with a box, as
well as the 10% lowest RIDF and the 10% highest MI. The arrows pointing to the box add
extra emphases.

and vice versa.

We believe the two statistics are both useful but in different ways. Both pick out

interesting ngrams, but ngrams with large MI are interesting in different ways from

ngrams with large RIDF. Consider the English word sequences in Table 2, which all

contain the word /having/. These sequences have large MI values and small RIDF values.

In our collaboration with lexicographers, especially those working on dictionaries for

learners, we have found considerable interest in statistics such as MI that pick out these

kinds of phrases. Collocations can be quite challenging for non-native speakers of the

language. On the other hand, these kinds of phrases are not very good keywords for

information retrieval.

Table 3 shows MI and RIDF values for a random sample of word sequences containing
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Table 2
English phrases containing the word “having”. Note that these phrases have large MI and low
RIDF. They tend to be more interesting for lexicography than information retrieval. The table
is sorted by MI.

tf df RIDF MI Phrase
18 18 -0.00 10.5 admits to having
14 14 -0.00 9.7 admit to having
25 23 0.12 8.9 diagnosed as having
20 20 -0.00 7.4 suspected of having

301 293 0.04 7.3 without having
15 13 0.21 7.0 denies having
59 59 -0.00 6.8 avoid having
18 18 -0.00 6.0 without ever having
12 12 -0.00 5.9 Besides having
26 26 -0.00 5.8 denied having
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Table 3
English phrases containing the word “Mr.” (sorted by RIDF). The word sequences near the
top of the list are better keywords than the sequences near the bottom of the list. None of
them are of much interest to lexicography.

tf df RIDF MI Phrase
11 3 1.9 0.6 . Mr. Hinz
18 5 1.8 6.6 Mr. Bradbury
51 16 1.7 6.7 Mr. Roemer
67 25 1.4 6.8 Mr. Melamed
54 27 1.0 5.8 Mr. Burnett
11 8 0.5 1.1 Mr. Eiszner said
53 40 0.4 0.3 Mr. Johnson .
21 16 0.4 0.2 Mr. Nichols said .
13 10 0.4 0.4 . Mr. Shulman

176 138 0.3 0.5 Mr. Bush has
13 11 0.2 1.5 to Mr. Trump’s
13 11 0.2 -0.9 Mr. Bowman ,
35 32 0.1 1.2 wrote Mr.
12 11 0.1 1.7 Mr. Lee to
22 21 0.1 1.4 facing Mr.
11 11 -0.0 0.7 Mr. Poehl also
13 13 -0.0 1.4 inadequate . ” Mr.
16 16 -0.0 1.6 The 41-year-old Mr.
19 19 -0.0 0.5 14 . Mr.
26 26 -0.0 0.0 in November . Mr.
27 27 -0.0 -0.0 ” For his part , Mr.
38 38 -0.0 1.4 . AMR ,
39 39 -0.0 -0.3 for instance , Mr.

the word “Mr.” The table is sorted by RIDF. The sequences near the top of the list are

better keywords than the sequences further down. None of these sequences would be

of much interest to a lexicographer (unless he/she were studying names). Many of the

sequences have rather small MI values.

Table 4 shows a few word sequences starting with the word “the” with large MI

values. All of these sequences have high MI (by construction), but some are high in RIDF

as well (labeled B), and some are not (labeled A). Most of the sequences are interesting

in one way or another, but the A sequences are different from the B sequences. The

A sequences would be of more interest to someone studying the grammar in the WSJ

subdomain, whereas the B sequences would be of more interest to someone studying the

terminology in this subdomain. The B sequences in Table 4 tend to pick out specific

events in the news, if not specific stories. The phrase, “the Basic Law,” for example,
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Table 4
Selected English phrases containing “the.” All of these phrases have high MI. Some have high
RIDF, and some do not.

(A): Low RIDF (poor keywords)
tf df RIDF MI Phrase
11 11 -0.0 11.1 the up side
73 66 0.1 9.3 the will of
16 16 -0.0 8.6 the sell side
17 16 0.1 8.5 the Stock Exchange of
16 15 0.1 8.5 the buy side
20 20 -0.0 8.4 the down side
55 54 0.0 8.3 the will to
14 14 -0.0 8.1 the saying goes
15 15 -0.0 7.6 the going gets

(B): High RIDF (better keywords)
tf df RIDF MI Phrase
37 3 3.6243 2.2561 the joint commission
66 8 3.0440 3.5640 the SSC
55 7 2.9737 2.0317 the Delaware &
37 5 2.8873 3.6492 the NHS
22 3 2.8743 3.3670 the kibbutz
22 3 2.8743 4.1142 the NSA’s
29 4 2.8578 4.1502 the DeBartolos
36 5 2.8478 2.3061 the Basic Law
21 3 2.8072 2.2983 the national output
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Table 5
Concordance of the phrase “the Basic Law”. Note that most of the instances of “the Basic
Law” appear in just two stories, as indicated by the doc-id (the token-id of the first word in
the document).

token-id left context right context doc-id
2229521: line in the drafting of the Basic Law that will determine how Hon 2228648
2229902: s policy as expressed in the Basic Law – as Gov. Wilson’s debut s 2228648
9746758: he U.S. Constitution and the Basic Law of the Federal Republic of 9746014

11824764: any changes must follow the Basic Law , Hong Kong’s miniconstitut 11824269
33007637: sts a tentative draft of the Basic Law , and although this may be 33007425
33007720: the relationship between the Basic Law and the Chinese Constitutio 33007425
33007729: onstitution . Originally the Basic Law was to deal with this topic 33007425
33007945: wer of interpretation of the Basic Law shall be vested in the NPC 33007425
33007975: tation of a provision of the Basic Law , the courts of the HKSAR { 33007425
33008031: interpret provisions of the Basic Law . If a case involves the in 33007425
33008045: tation of a provision of the Basic Law concerning defense , foreig 33007425
33008115: etation of an article of the Basic Law regarding ” defense , forei 33007425
33008205: nland representatives of the Basic Law Drafting Committee fear tha 33007425
33008398: e : Mainland drafters of the Basic Law simply do not appreciate th 33007425
33008488: pret all the articles of the Basic Law . While recognizing that th 33007425
33008506: y and power to interpret the Basic Law , it should irrevocably del 33007425
33008521: pret those provisions of the Basic Law within the scope of Hong Ko 33007425
33008545: r the tentative draft of the Basic Law , I cannot help but conclud 33007425
33008690: d of being guaranteed by the Basic Law , are being redefined out o 33007425
33008712: uncilor , is a member of the Basic Law Drafting Committee . 33007425
39020313: sts a tentative draft of the Basic Law , and although this may be 39020101
39020396: the relationship between the Basic Law and the Chinese Constitutio 39020101
39020405: onstitution . Originally the Basic Law was to deal with this topic 39020101
39020621: wer of interpretation of the Basic Law shall be vested in the NPC 39020101
39020651: tation of a provision of the Basic Law , the courts of the HKSAR { 39020101
39020707: interpret provisions of the Basic Law . If a case involves the in 39020101
39020721: tation of a provision of the Basic Law concerning defense , foreig 39020101
39020791: etation of an article of the Basic Law regarding ” defense , forei 39020101
39020881: nland representatives of the Basic Law Drafting Committee fear tha 39020101
39021074: e : Mainland drafters of the Basic Law simply do not appreciate th 39020101
39021164: pret all the articles of the Basic Law . While recognizing that th 39020101
39021182: y and power to interpret the Basic Law , it should irrevocably del 39020101
39021197: pret those provisions of the Basic Law within the scope of Hong Ko 39020101
39021221: r the tentative draft of the Basic Law , I cannot help but conclud 39020101
39021366: d of being guaranteed by the Basic Law , are being redefined out o 39020101
39021388: uncilor , is a member of the Basic Law Drafting Committee . 39020101

picks out a pair of stories that discuss the event of the handover of Hong Kong to China,

as illustrated in the concordance shown in Table 5.

Table 6 shows a number of word sequences with high MI containing common prepo-

sitions. The high MI indicates an interesting association, but again most have low RIDF

and are not particularly good keywords, though there are a few exceptions (“Just for

Men,” a well-known brand name, has a high RIDF and is a good keyword).

The Japanese substrings are similar to the English substrings. Substrings with high
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Table 6
English phrases containing common prepositions. All have high MI (by construction); most do
not have high RIDF (though there are a few exceptions such as “Just for Men,” a well-known
brand name).

tf df RIDF MI Preposition = “for”
14 14 -0.0001 14.5587 feedlots for fattening
15 15 -0.0001 14.4294 error for subgroups
12 12 -0.0001 14.1123 Voice for Food
10 5 0.9999 13.7514 Quest for Value
12 4 1.5849 13.7514 Friends for Education
13 13 -0.0001 13.6803 Commissioner for Refugees
23 21 0.1311 13.6676 meteorologist for Weather
10 2 2.3219 13.4009 Just for Men
10 9 0.1519 13.3591 Witness for Peace
19 16 0.2478 12.9440 priced for reoffering

tf df RIDF MI Preposition = “on”
11 5 1.1374 14.3393 Terrorist on Trial
11 10 0.1374 13.1068 War on Poverty
13 12 0.1154 12.6849 Institute on Drug
16 16 -0.0001 12.5599 dead on arrival
12 12 -0.0001 11.5885 from on high
12 12 -0.0001 11.5694 knocking on doors
22 18 0.2894 11.3317 warnings on cigarette
11 11 -0.0001 11.2137 Subcommittee on Oversight
17 12 0.5024 11.1847 Group on Health
22 20 0.1374 11.1421 free on bail

tf df RIDF MI Preposition = “by”
11 11 -0.0001 12.8665 piece by piece
13 13 -0.0001 12.5731 guilt by association
13 13 -0.0001 12.4577 step by step
15 15 -0.0001 12.4349 bit by bit
16 16 -0.0001 11.8276 engineer by training
61 59 0.0477 11.5281 side by side
17 17 -0.0001 11.4577 each by Korea’s
12 12 -0.0001 11.3059 hemmed in by
11 11 -0.0001 10.8176 dictated by formula
20 20 -0.0001 10.6641 70%-owned by Exxon

tf df RIDF MI Preposition = “of”
11 10 0.1374 16.7880 Joan of Arc
12 5 1.2630 16.2177 Ports of Call
16 16 -0.0001 16.0725 Articles of Confederation
14 13 0.1068 16.0604 writ of mandamus
10 9 0.1519 15.8551 Oil of Olay
11 11 -0.0001 15.8365 shortness of breath
10 9 0.1519 15.6210 Archbishop of Canterbury
10 8 0.3219 15.3454 Secret of My
12 12 -0.0001 15.2030 Lukman of Nigeria
16 4 1.9999 15.1600 Days of Rage
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RIDF pick out specific documents (and/or events) and therefore tend to be relatively

good keywords. Substrings with high MI have non-compositional distributions (if not se-

mantics), and are therefore likely to be interesting to a lexicographer/linguist. Substrings

that are high in both are more likely to be meaningful units (words/phrases) than sub-

strings that are high in just one or the other. Meaningless fragments tend to be low in

both MI and RIDF.

We grouped the Japanese classes into nine cells depending on whether the RIDF was

in the top 10%, the bottom 10%, or in between and whether the MI was in the top 10%,

the bottom 10% or in between. Substrings in the top 10% in both RIDF and MI tend

to be meaningful words such as “merger,” “stock certificate,” “dictionary,” “wireless” in

English sense and so on. Substrings in the bottom 10% in both RIDF and MI tend to

be meaningless fragments, or straightforward compositional combinations of words such

as “current regular-season game.” Table 7 shows examples where MI and RIDF point in

opposite directions (see highlighted rectangles in panel b of Figure 10).

We have observed previously that MI is high for general vocabulary (words found

in dictionary) and RIDF is high for names, technical terminology and good keywords

for information retrieval. Table 7 suggests an intriguing pattern. Japanese uses different

character sets for general vocabulary and loan words. Words that are high in MI tend

to use the general vocabulary character sets (Hiragana and Kanji) whereas words that

are high in RIDF tend to use the loan word character sets (Katakana and English).

(There is an important exception, though, for names, which will be discussed in the next

subsection.)

The character sets largely reflect the history of the langauge. Japanese uses four

character sets (Shibatani, 1990). Typically, functional words of Japanese origin are writ-

ten in Hiragana. Words that were borrowed from Chinese many hundreds of years ago

are written in Kanji. Loan words borrowed more recently from Western languages are
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Table 7
Examples of keywords with extreme values of RIDF and MI that point in opposite directions.
The top half (high RIDF and low MI) tends to have more loan words, largely written in
Katakana and English. The bottom half (low RIDF and high MI) tends to have more general
vocabulary, largely written in Chinese Kanji.

RIDF        MI                   Substrings                                Features

High        Low
10%        10%

Low         High
10%         10%

Kanji character
English character
Katakana character
Hiragana character
Loan word, Katakana

General vocabulary
General vocab., Kanji
General vocabulary
Kanji character
Kanji character
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(a) English names (b) Japanese names
Figure 11
MI and RIDF of people’s names.

written in Katakana. Truly foreign words are written in the English character set (also

known as Romaji). We were pleasantly surprised to discover that MI and RIDF were

distinguishing substrings on the basis of these character set distinctions.
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3.3 Names

As mentioned above, names are an important exception to the rule that Chinese Kanji

are used for general vocabulary (words found in the dictionary) which were borrowed

hundreds of years ago and Katakana characters are used for more recent loan words

(such as technical terminology). As illustrated in Table 7, Kanji are also used for Japanese

names and Katakana are used for foreign names.

Names are quite different in English and Japanese. Figure 11 shows a striking contrast

in the distributions of MI and RIDF values. MI has a more compact distribution in

English than Japanese. RIDF is bimodal in Japanese, but not in English.

The names shown in Figure 11 were collected using a simple set of heuristics. For En-

glish, we selected substrings starting with the titles: “Mr.,” “Ms” or “Dr.” For Japanese,

we selected keywords (as identified by the CD-ROM) ending with the special character

(-shi), which is roughly the equivalent of the English titles “Mr.” and “Ms.” In both

cases, phrases were required to have tf ≥ 10.3

The English names have a sharp cutoff around MI = 7 due in large part of the

title “Mr.” MI(‘Mr.’, x) = log2
N

tf (‘Mr.’) − log2
tf (x)

tf (‘Mr.’,x)
= 7.4 − log2 tf (x)

tf (‘Mr.’,x )
. Since

log2
tf (x)

tf (‘Mr.’,x )
is a small positive number, typically 0-3, MI(‘Mr’, x) < 7.4.

Names generally have RIDF values ranging from practically nothing (for common

names like “Jones”) to extremely large values for excellent keywords. The Japanese

names, however, cluster into two groups, those with RIDF above 0.5, and those with

RIDF below 0.5. The separation above and below RIDF=0.5, we believe, is a reflection

of the well-known distinction between new information and given information in discourse

structure. It is common in both English and Japanese, for the first mention of a name

in a news article to describe the name in more detail than subsequent uses. In English,

3 This procedure produced the interesting substring, “Mr. From,” where both words would normally
appear on a stop list. This name has a large RIDF. (The MI, though, is small because the parts are
so high in frequency.)
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for example, terms like “spokesman” and apositives are quite common for the first use

of a name, and less so, for subsequent uses. In Japanese, the pattern appears to be even

more rigid than in English. The first use will very often list the full name (first name

plus last name), unlike subsequence uses which almost always omit the first name. As a

consequence, the last name exhibits a large range of RIDF values, as in English, but the

full name will usually (90%) fall below the RIDF=0.5 threshold. The MI values have a

broader range as well, depending on the compositionality of the name.

To summarize, RIDF and MI can be used to identify a number of interesting similar-

ities and differences in the use of names. Names are interestingly different from general

vocabulary. Many names are very good keywords and have large RIDF. Names are bring

up some interesting differences between English and Japanese such as the tendency for

Japanese names to fall into two groups separated by the RIDF=0.5 threshold.

3.4 Word extraction

RIDF and MI may be useful for word extraction, a key issue when processing texts

in many languages such as Chinese, Japanese and Thai. Unlike Engish, many of these

languages do not use delimiters between words. There is a large literature on morphology

and word extraction methods. Nagao and Mori (1994) and Nagata (1996) proposed ngram

methods for Japanese. Sproat and Shih (1990) found MI to be useful for word extraction

in Chinese.

We performed the following simple experiment to see if both MI and RIDF could

be useful for word extraction in Japanese. We extracted four random samples of 100

substrings each. The four samples cover all four combinations of high and low RIDF and

high and low MI, where high is defined to be in the top decile and low is defined to

be in the bottom decile. Then we manually scored each sample substring using our own

subjective judgment. Substrings were labeled “good” (the substring is a word), “bad”
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Table 8
The combination of RIDF and MI is better in a word extraction task than either by itself,
which is better than neither. Each cell reports performance over a sample of 100 substrings.
Substrings were subjectively judged to be “good” (the substring is a word), “bad” (the
substring is not a word) or “gray” (the judge is not sure). Two performance values are
reported indicating how much of the 100 substrings are words. The larger performance values
count the “gray” substrings as words; the smaller performance values count the “gray”
substrings as non-words.

All MI MI(high 10%) MI(low 10%)
all RIDF — 20-44% 2-11%

RIDF(high 10%) 29-51% 38-55% 11-35%
RIDF(low 10%) 3-18% 4-13% 0-8%

(the substring is not a word) or “gray” (the judge is not sure). The results are presented

in Table 8, which shows that substrings with high scores in both dimensions are more

likely to be words than substrings that score high in just one dimension. Substrings with

low scores in both dimensions are very unlikely to be words. These results demonstrate

plausibility for the use of multiple statistics. The approach could be combined with other

methods in the literature such as (Kita et al., 1994) to produce a more practical system.

In any case, the automatic word extraction is not an easy task for Japanese (Nagata,

1996).

4 Conclusion

Bigrams and trigrams are commonly used in statistical natural language processing;

this paper described techniques for working with much longer ngrams, including million-

grams and even billion-grams. We presented algorithms (and C code) for computing term

frequency (tf ) and document frequency (df ) for all ngrams (substrings) in a corpus (se-

quence). The method took only a few hours to compute tf and df for all the ngrams in two

large corpora, an English corpus of 50 million words of Wall Street Journal news articles

and a Japanese corpus of 216 million characters of Mainichi Shimbun news articles.

The method works by grouping substrings into classes so that the computation of tf

and df over order N2 substrings can be reduced to a computation over order N classes.
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The reduction makes use of four properties:

properties 1-2 : all substrings in a class have the same statistics

(at least for the statistics of interest, namely tf and df ),

property 3 : the set of all substrings are partitioned by the classes,

and

property 4 : there are many fewer classes (order N) than sub-

strings (order N2)

The second half of the paper used the results of computing tf and df for all ngrams

in the two large corpora mentioned above. We compared and contrasted RIDF and MI,

statistics that are motivated by work in lexicography and information retrieval. Both

statistics use distributional evidence as a surrogate for meaning. We would prefer to use

meaning, if we could, but distributional evidence is available. Both statistics compare the

frequency of an ngram to chance, but they use different notions of chance. RIDF looks

for ngrams whose distributions over documents cannot be attributed to random (Pois-

sion). These ngrams tend to be good keywords for information retrieval such as technical

terms and names. MI looks for ngrams whose internal structure cannot be attributed

to compositionality. MI tends to pick out general vocabulary, words and phrases that

appear in dictionaries. We believe that both statistics are useful, but in different and

complementary ways. In a Japanese word extraction task, the combination of MI and

RIDF performed better than either by itself.
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Appendix: Implimentations of the algorithms in C language

All codes in this appendix and the demonsration versions can be found at

<http://www.milab.is.tsukuba.ac.jp/˜myama/tfdf>.

A : C code to print all lcp-delimited intervals using C language’s stack

The function output (below) is called 2N − 1 times. It will output an interval if the

interval is lcp-delimited (LBL < SIL). Trivial intervals are always lcp-delimited. Non-

trivial intervals are lcp-delimited if the bounding lcps are smaller than the SIL=lcp[k],

where k is the representative.

void output(int i, int j, int k){

int LBL = (lcp[i] > lcp[j+1]) ? lcp[i] : lcp[j+1];

int SIL = lcp[k];

if(i==j) printf("trivial <%d,%d>, tf=1\n", i, j);

else if(LBL < SIL) printf("nontrival <%d, %d>, rep=%d, tf=%d\n",

i, j, k, j-i+1);

}

int print_LDIs(int i, int k){

int j = k;

output(k,k,0); /* trivial intervals */

while(lcp[k] <= lcp[j+1] && j+1 < N) j = print_LDIs(k, j+1);

output(i,j,k); /* non-trivial intervals */

return j;}
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B : C code to print all lcp-delimited intervals using the own stack

print LDIs stack is similar to print LDIs, but uses its own stack. It takes the corpus

size, N, as an argument.

#define STACK_SIZE 100000

#define Top_i (stack[sp-1].i)

#define Top_k (stack[sp-1].k)

struct STACK {int i; int k;} stack[STACK_SIZE];

int sp = 0; /* stack pointer */

void push(int i, int k) {

if(sp >= STACK_SIZE) {

fprintf(stderr, "stack overflow\n");

exit(2);}

stack[sp].i = i;

stack[sp++].k = k;}

void pop() {sp--;}

void print_LDIs_stack(int N) {

int j;

push(0,0);

for(j = 0; j < N; j++) {

output(j, j, 0);

while(lcp[j+1] < lcp[Top_k]) {
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output(Top_i, j, Top_k);

pop();}

push(Top_k, j+1);}}

C : C code to print all lcp-delimited intervals with tf and df

The steps 5 and 6 of the algorithm in Section 2.6 are implimented as the function dec_df

using the binary search.

#define STACK_SIZE 100000

#define Top_i (stack[sp-1].i)

#define Top_k (stack[sp-1].k)

#define Top_df (stack[sp-1].df)

struct STACK {int i; int k; int df;} stack[STACK_SIZE];

int sp = 0; /* stack pointer */

void push(int i, int k, int df) {

if(sp >= STACK_SIZE){

fprintf(stderr, "stack overflow\n");

exit(2);}

stack[sp].i = i;

stack[sp].k = k;

stack[sp++].df = df;}

void pop() {sp--;}
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void output(int i, int j, int k, int df) {

int LBL;

if(lcp[i] > lcp[j+1]) LBL = lcp[i];

else LBL = lcp[j+1];

if(i==j) printf("trivial <%d,%d>, tf=1\n", i, j);

else if(LBL < lcp[k])

printf("nontrivial <%d, %d>, rep=%d, tf=%d, df=%d\n",

i, j, k, j-i+1, df);

}

/*

* Print_LDIs_with_df does not only print tf, but also df.

* It takes the corpus size, N, and the number of documents, D.

* doc() returns the document number of the suffix array’s index.

* dec_df() decrease a df-counter in the stack when duplicate

* counting occurs.

*/

void dec_df(int docid) {

int beg=0, end=sp, mid=sp/2;

while(beg != mid) {

if(doclink[docid] >= stack[mid].i) beg = mid;

else end = mid;

mid = (beg + end) / 2;

}

stack[mid].df--;
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}

print_LDIs_with_df(int N, int D) {

int i, j, df;

doclink = (int *)malloc(sizeof(int) * D);

for(i = 0; i < D; i++) doclink[i] = -1;

push(0,0,1);

for(j = 0; j < N; j++) {

output(j,j,0,1);

if(doclink[doc(j)] != -1) dec_df(doc(j));

doclink[doc(j)] = j;

df = 1;

while (lcp[j+1] < lcp[Top_k]) {

df = Top_df + df;

output(Top_i,j,Top_k,df);

pop();

}

push(Top_k, j+1, df);

}

}
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