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Text Analysis
• Text categorization: 

eg email filtering or 
assigning document to a taxonomy like Yahoo

• Text retrieval 
possibly multi-language, 
possibly using also link structure (hypertext)

• Clustering 
e.g., creating taxonomy

• Extracting semantics 
(e.g., partially automated extraction of a 
semantic net, 
or a bilingual dictionary, for other applications)
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Possible Types of Data
• Corpus of documents:

a set of documents, possibly labeled 
with one or more categories

• Hyperlinked corpus:
a set of documents with a link structure (directed edges) 

• Paired bi-lingual corpus: 
set of pairs of documents, each the translation of the 
other (or: two ‘aligned’ translations of the same corpus)

• Usually processed by removing punctuation, stop-words, 
inflection, capitalization, …
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Typical Tasks
• Classify elements of a corpus by topic

• Cluster them by topic

• Retrieve documents from database relevant to a 
given query

• Retrieve relevant documents with a query in 
another language
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Remark

• These tasks require to operate at the level of ‘topic’, the 
document’s semantic content

• Much less than full understanding, or translating 

• But more serious than just processing based on easier 
features  (eg categorize by language, by length, etc)

• We focus on problems involving the content of the 
document. Some level of semantic representation is 
required! 
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Overview of the Talk

• Short Review of Kernel Methods
• Vector Space Models

– Bag of Words
– Latent Semantic
– Semantic Diffusion
– Using Hypertext
– Bi-Lingual Corpora

• String Matching 
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Kernel Methods 
for Pattern Analysis

x x→φ( )

• Work by embedding data into 
a vector space

• Need to know the inner 
product between the images 
of the data items (the kernel)

• Defining a suitable kernel 
means finding a good 
representation

• In our case: semantically 
similar documents should be 
mapped to nearby positions 
in feature space

K x x x x( , ) ( ), ( )1 2 1 2= φ φ
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Primal and Dual
• An important property of kernel methods:

instead of using directly the coordinates of the 
data in the embedding space,
they represent data points by means of their 
inner product with the others

• If more features than documents: this is more 
efficient

• Dual representation: 

• This will be relevant in the next few slides…

f x w x b y x x bi i i( ) , ,= + = +∑α
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Kernel Methods
• Problem:

how to find a semantically meaningful 
kernel ?

• We can: 
define it, construct it, or learn it from 
data…

• Successive embeddings, each closer to 
the semantics, are possible
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Representations of Documents

• We will review two representations:

– Bags of words

– Symbol sequences
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Vector Space Representations 
of Text Documents

• x is a vector having one entry for each word in 
the lexicon (set of all possible words, dictionary)

• The entry xi is the number of occurrences of 
word i in the document d

• We call this vector a bag of words (BOW)
• Here φ(x) is the image of x in a feature space 

(eg after normalizing, scaling or other 
operations, to be discussed later)

d x xa a φ( )
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Bag of Words
• Notice that we map a document into a bag of 

words 
• Bag = set with repetitions allowed
• We loose all information about relative 

positions of words
• We need to define a kernel between bags
• Possibilities: 

basic inner product between vectors
further mappings, to improve quality of 
embedding d x xa a φ( )
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Bag of Words
• Bag of Words pioneered in Information 

Retrieval by Salton and his group since 
the ’70s

• Many alternative schemes developed to 
improve this first embedding, by weighting 
words based on their ‘relevance’, and by 
introducing some degree of ‘word 
similarity’ 

• All this forms the family of ‘vector space 
models’
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Linear Feature Mapping
• An important case is when the map φ is linear

– P=diag(idf(t1),…,idf(tn))
– P=diag(h(t1),…,h(tn))

•
This adjusts the weight of the different terms according 
to their information content 
(idf and h are some popular choices, not important here)

• More on this soon…

d x xa a φ( ) φ( )x Px=
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Nonlinear Mapping
• One could use polynomial kernels of degree d in 

order to map in the space of all possible d-ples
of terms

• Just replace K(x,z) by K(x,z)d

• In the same way, one can further map by means 
of gaussian kernels… 

• Can make a chain of many simple mappings, to 
construct a complex kernel …
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B.O.W. Kernels
• Thorsten Joachims 1998: 

use BOW representation to design kernels

• Significant improvement in classification 
performance over std approaches

• Discussion of SVM + BOW by Joachims:
how and why it worked …

• IR invented this and other representations 
…(salton responsible for the vector space)

K d d x x( , ) ( ), ( )1 2 1 2= φ φ
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Problems with BOW

• Although BOW works well, many well 
known problems: 
it only compares documents using the 
terms they have in common.
how to deal with semantically related 
terms ?

• Ideally, two documents could be similar 
even with no terms in common …
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More Linear Mappings
• Problem: standard bag-of-words fails to 

capture semantic relations between words
(and hence to recognize similarity between 
documents that contain synonyms)

• One solution: design a map P that 
encodes such relation, I.e. if z and x share 
no terms, but some of them are 
synonymous, K(x,z)>0

• Try to achieve
if x and z are semantically similar 

Pz Px≈



10

www.support-vector.net/nello.html

Vector Space Representations
• General form: 

• Different P will give different methods.
• Vector d: one entry for each possible term, 

weighted according to its importance.
• Standard in I.R., they can all be used to 

build kernels (and hence for 
categorization, and other tasks).

K d d d PP d( , ) ' '1 2 1 2=
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Basic Vector Space Model

• (Salton et al) In this framework, the Basic 
Model used with kernel algorithms by 
Joachims98, has a diagonal P 
(either I or containing term weights). 

• P=I K d d d PP d d d( , ) ' ' '1 2 1 2 1 2= =
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Semantic Mapping
• Problem: 

how to design (or learn) a matrix P 
that contains meaningful terms-similarity

• How to use it efficiently

• Notice: using P is like ‘expanding’ the two 
documents, augmenting them with synonyms of 
their terms, increasing chances of a match

www.support-vector.net/nello.html

Inserting Semantic Knowledge

• One would like to ‘expand’ the 
representation of a document to include all 
synonyms of terms in the document

• The term by document matrix would be 
much less sparse
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Example

111100000D2
000001111D1

Cosmo
naut

Astro
naut

D2
D1

111100001
001001111

Cosmo
naut

Astro
naut
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A first attempt:
Generalised Vector Space 

Model
• (Wang et al): P=D, where D is the data matrix 

• This represents a term by the set of documents 
that contain it. Two terms with similar occurrence 
pattern are considered as related

• Not very strong results… 
– but interesting perspective. 
We will see more on this soon

• (Computationally: just square the K matrix up …)

K d d d DD d( , ) ' '1 2 1 2=
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Terms and Documents 
• Term by term matrix 
TxT
entries: level of similarity between terms

• Term by document matrix 
TxD
(each document represented by row of features, 
each term by column of documents)

• Document by document matrix 
DxD (analogous to kernel matrix)
entries: level of similarity between documents

www.support-vector.net/nello.html

Primal / Dual

• Primal and Dual in kernel methods 
correspond to 
term-based and document-based
representation in the vector space model



14

www.support-vector.net/nello.html

The Kernel Matrix

• The central structure in kernel machines

K(m,m)…K(m,3)K(m,2)K(m,1)

……………

K(2,m)…K(2,3)K(2,2)K(2,1)

K(1,m)…K(1,3)K(1,2)K(1,1)

K=
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Semantic Smoothing of VSM
• Solias & d’Alche-Buc, 2000:
P is hand-built with a semantic network (WordNet).
• (if 2 terms ti and tj have graph distance d, the 

matrix will have entry P(ij)=1/d
Then a gaussian kernel is also applied:

• Improvements reported

Pd Pd d d PP d d1 2 1 2 1 2− = − −( ) ' ( )'
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Latent Semantic Indexing
• Compare two documents in a semantic space
• Capture semantic correlations by detecting co-

occurrences
• Assumption: two documents are semantically 

related if they co-occur frequently in same 
documents

• Used in Retrieval, better performance than VS, 
introduced by Deerwester et al.

Joint work 
with 

Shawe-Taylor
and Lodhi
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Latent Semantic Indexing
• Do this automatically: consider SVD of term-doc 

matrix:

• Remove small singular values
• This realizes another bottleneck mapping.
• Property: co-occurring terms will be merged into 

a unique direction (semantically related terms).
• Known from IR to capture synonymy information 

(LSI)

D U V= Σ '
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Latent Semantic Indexing
• Semantic information given by co-occurrence 

analysis
• Co-occurrence information given by SVD of 

term-by-doc matrix

• LSI introduced by (Deervester et al, 90) for IR
• Projects data into lower dimensional space. New 

coordinates are groups of related terms 
(concepts)
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Latent Semantic Kernels

P Uk=D U V= Σ '

Can be computed directly on the kernel matrix, no need for 
term-vectors to be processed (and can be done AFTER a 
first kernel mapping).

Algorithmically same as  kernel-PCA (Schoelkopf et al)
find directions corresponding to correlated terms, 
map documents in that subspace …
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Another Interpretation
• Building semantic networks
• Consider the graph having one node per 

term, connection between nodes given by 
co-occurrence in same document of 
corpus
(simple semantic network)

• The spectrum of a graph: eigenvectors of 
higher order used for graph partitioning.

• LSK finds regions of the semantic network. 

www.support-vector.net/nello.html

• Define precision, recall, F1 measure … !!
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Speed Up Techniques

• Gram-Schmidt approximation of SVD
(iteratively choose vector with largest 

projection on subspace orthogonal to 
current set of vectors)

• Other low rank approximations are 
possible

• (see Smola et al for kernel-GS)
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Three Directions to Explore…
• The GVSM: 

just a first approximation of term similarity. 
How can we extend it to longer range 
correlations?

• The terms-graph idea: can we push it further ?

• LSK was unsupervised … can we find BETTER 
directions by using supervision ???
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Semantics 
from Equilibrium Conditions

• Two documents are similar 
if they contain similar terms

• Two terms are similar 
if  they appear in similar documents

Joint work 
with 

Shawe-Taylor
and Kandola
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Semantics 
from Equilibrium Conditions

• We can write the resulting 
system as follows:

• K is doc/doc matrix
G is term/term matrix

• Its solution yields:

GXKXG

KXGXK
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+=
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Semantic Proximity
• And we can regard the 

new kernel matrix    as 
defined by a semantic 
proximity matrix as 
follows:

• parameter λ controls 
decay rate of influence 
between correlated 
documents…

IKPPS +== ˆ' λ

'''ˆ PXXPXSXG ==
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Some experiments…

Parameter λ tuned automatically using only training set information
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Semantic Diffusion Kernels
• Consider the graph whose nodes are terms, and 

edges exist between terms that co-occur in the 
corpus

• We can consider the diffusion process from one 
node to the other, in order to refine the similarity 
notion given by co-occurrence analysis 

• Kondor et al.-2002 studied diffusion kernels

www.support-vector.net/nello.html

The idea…
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The idea
• Similarity between two nodes determined by all 

possible paths connecting them 
(weighted to reduce long range effects).

• From a local measure (co-occurrence) to a 
global measure (hopefully closer to semantic 
similarity).

• Trying to capture the idea that the meaning 
depends on the way a word is used, and hence 
on global usage patterns…
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The Kernel

)exp(
!

)(ˆ
1

KK
i
KKK

i

ii

λλλ == ∑∞

=

Somewhat similar to case before, but if we add a much faster decay rate, 
we obtain … (an extreme version of the generalized vector space model)
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Some results…
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Exploiting Bilingual Corpora

• Both for cross-language analysis, and as a 
way to learn a semantic mapping for 1 
language …

• Given a bilingual aligned corpus 
(e.g., english and french, from canadian
parliament)

Joint work 
with 

Shawe-Taylor
and Vinokurov
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aligned text

E1
E2

EN

Ei

..

..

F1
F2

FN

Fi

..

..
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(CCA) Canonical Correlation 
Analysis

• 1- correlation between 2 
random variables:
(assume observations 1…m performed)

• 2- here: random variable 
is projection of data 
point x onto a given 
direction w

bbaa

ba
C(a,b)

bbbb
aaaa

m

m

,,

,

1 mean, zero
),...,,(
),...,,(

21

21

=

=
=
=

σ
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CCA

• Given 2 sets of points in bijection
(or a set of pairs of points, generally in 
different spaces X1 and X2)

• Find a direction w1 in X1 and w2 in X2, 
such that the projection of the datasets 
onto the respective directions is 
maximally correlated
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Formally…

• Maximize correlation of random variables 
<w1,x1> and  <w2,x2> over choice of w1 and 
w2

• This leads to a generalized eigenvalue
problem

),,,(max 2211, 21

ii

ww
xwxwC
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Generalized eigen-problem
• This leads to a generalized eigenvalue

problem, both in the primal and in the dual…
• Av=λBv

• We skip all the details, we give directly the dual 
problem (leading to the α coefficients for the 
directions w1 and w2)
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CCA
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Skipping some steps…
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kCCA
• This can be kernelized,

(by replacement w=Kα) 
and the dual is:

• At least 4 authors have done this 
independendly in the last year or so!
(I used Bach & Jordan)
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kCCA

• Very promising method, when used in 
conjunction with kernels

• Tomorrow we will see an application of 
this to cross-language analysis

• Work in progress in bioinformatics
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kCCA
• Important to understand its ‘overfitting’ 

behaviour (to avoid it). 

• Usually B B+λI

• This constrains the norm of vectors w, making 
the system less flexible …
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Some artificial examples…
• 50 random points in 10 dimensions
• Correlated with itself
• And with randomized version of self

• We expect only 10 positive eigenvalues
• If full freedom is given, they will be =1
• We can reduce their freedom …
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Regularization of kCCA…

www.support-vector.net/nello.html

cross-lingual kernel canonical 
correlation analysis

input “English” space input “French” space

α1

α2

α1

α2

Φ(x)

feature “English” space feature “French” space
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• Two ways to look at it:
– either french documents as sophisticated 

labels for the english ones, in supervised 
feature extraction task

– Or: ‘unsupervised’ task from a paired 
corpus…

www.support-vector.net/nello.html

Comparing with random pairings …

The correlation between E and F is higher than between E and rand(E)
And lower than between E and E, or F and F
As expected
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kCCA components
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Details…
• we compute the product <alphas>*<training examples> 
• we get d vectors (d- number of alpha vectors) 
• which we treat as documents and extract from them 30 most 

"frequent" words 
• ("frequency" is a component in the vectors)
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Hypertext Kernels
• Document = bag of links
• The adjacency matrix A is analogous to the 

term-document matrix
• Inspired on Kleinberg’s HITS algorithm (and 

PageRank)
• Represent documents by their connectivity 

pattern (similar documents have similar 
connections).

• Same operations as before are possible:
Can also be merged with text information Joint work 

with 
Joachims

and 
Shawe-Taylor
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Hypertext

• Typical example: hypertext.
• Two different representations of web 

pages (by words and by links). Both 
known to be informative, expected to be 
independent

• Combination of them should improve 
performance
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Co-citation

• THE COCITATION MATRIX: 
introduced in bibliometrics. Two documents 
have positive score if cited by same document

• The co-link matrix: obvious extension. Positive 
score if pointed to by same webpage.

• The cocitation kernel: this matrix is also a Gram 
matrix. 
Feature space dimensionality = corpus size.

www.support-vector.net/nello.html

Kernel Combination

• If K1 and K2 are kernels, and a>0, b>0, then 
Kcomb=aK1+bK2 is also a kernel

• When is Kcomb better than K1 and K2 ?
• Answer: if they are both ‘good’ and ‘different'
• Boosting type of idea: combine independent 

‘experts’ …

• Analysis of this kind of kernel combination is 
possible (eg based on the concept of 
alignment, or others), we will not do it here
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Data
• 4 Universities WebKB dataset as compiled by 

Sean Slattery for ICML00
• http://www.cs.cmu.edu/~WebKB/ICML2000-

data.html
• 4168 examples
• 623 words selected by frequency (done by Sean 

Slattery)
• three binary tasks (student homepages, faculty 

homepages, and course homepages)

www.support-vector.net/nello.html

Hypertext Results
• Tried several kernels, and combination of inlink

+ VSM.
• inlink: Binary representation of all links pointing 

to the page. Examples normalized to unit length
• combination: VSM+inlink kernel added with 

equal weight.
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Fisher Kernels
• Fisher Kernel: 

given a generative model, it sees what 
parameters of the model need to be adapted to 
accommodate a given new data point  (Introduced 
by Jaakkola and Haussler)

• Two points are similar if they ‘stretch the model’ 
in the same way

• Hoffmann’s probabilistic model of text: latent 
variables (~topics) generate the documents…

• Trained the model to fit a corpus, a kernel can 
now be defined…

• Probabilistic LSI …
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• END OF VSM
• NOW WE DO STRING MATCHING …
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String Representations

• Documents as symbol sequences 
(symbols can be: letters, syllables, words, 
etc)

• “Soft” matching functions can reveal the 
degree of similarity of two sequences 
(developed for bioinformatics by …)

• Map sequence into feature space formed 
by all sub-strings of … 

www.support-vector.net/nello.html

• START WITH A SIMPLE EXAMPLE, 
THEN WE COMPLICATE IT …
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A simple kernel for sequences
Consider a space with dimensions indexed by all possible 

finite substrings from alphabet A. 

Embedding: if a certain substring i is present once in 
sequence s, then φi(s)=1

Inner product: counts common substrings

Exponentially many coordinates, but can compute the inner 
product in such space in LINEAR time by using a 
recursive relation

www.support-vector.net/nello.html

Sequence-Kernel-recursion

∑ =−+=

=Ω

i
i atitsKtsKtsaK

sK
]])[1:1[,(),(),(

1),(

• Where s,t are generic sequences, a is a generic symbol, 
Ω is the empty sequence, …

• Analogous relation for K(s,ta) by symmetry…
• Dynamic programming techniques evaluate this in linear 

time ! 

It starts by computing kernels of small prefixes, 
then uses them for larger prefixes, etc
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Example

∑ =−+=

=Ω

i
i atitsKtsKtsaK

sK
]])[1:1[,(),(),(

1),(

S=ABBCBBCA

T=BBABBCAB

Dynamic programming:
stored in table all the kernels for all smaller prefixes
The computation of the sum is just a matter of looking them up
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More advanced sequence 
kernels…

• Compare substrings of length k, and tolerate 
insertions … 

• Similar (but more complicated) recursions…

• Demonstrated on sets of strings (generated by 2 
different markov sources)
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    ’LOXYOGEHHTVRDNYWNZSIQ’
    ’LIQWOZVKNTNYRULOSFPNI’
    ’FZUFPNJSGANTNBPLSBPCG’
    ’DDJJFJPRULOUQWNMTHIXK’
    ’WONMTVKAVFANMERHPCZIO’
    ’DDJDJEWOUQWDFAVRDJNTO’
    ’OGVKNMNNTOSDFRUFCVSZB’
    ’SGIXLLCYCTOULRHTOZIKN’
    ’AOUWBCGIXZBPLLIXRNNMU’ 

Plot of first two principal components

www.support-vector.net/nello.html

Example

λ3λ200λ2000Bar

000λ3λ2λ200Bat

0λ2λ30000λ2car

00000λ2λ3λ2Cat

B-RA-RC-RB-TB-AA-TC-TC-A
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Example

• Unnormalized: K(cat,car)= λ4

• K(bat, bar)= λ4

• K(car, car)= 2λ4 +λ6

• Normalized: K(cat,car)= 1/(2+λ2)

www.support-vector.net/nello.html

String Alignment Kernels
• Recursive procedure to compute the kernel

• A recursion can give this in time linear in the 
length of the sequences

K s t s tn u u

u

l i l j

j u t ji u s iu

n

( , ) ( ), ( )

( ) ( )

: [ ]: [ ]

=

=
∈

+

==

∑

∑∑∑

φ φ

λ
Σ

Joint work 
with 

Lodhi, Watkins,
Saunders, JST
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Results

• Comparable (but not better than) bags of 
words…

• Interesting that no prior knowledge was 
inserted here
(space just another symbol, no stemming 
or preprocessing …)

www.support-vector.net/nello.html

CONCLUSIONS

• Vector Space models natural match with 
kernel methods

• Many ways to iteratively improve the 
embedding, inserting semantic information

• Cross-linguistic correlation analysis very 
promising

• Hyperlinks can help
• String matching works for text (but slowly)
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