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Abstract

Intelligent agents must function in an uncertain world,
containing multiple objects and relations that change
over time. Unfortunately, no representation is currently
available that can handle all these issues, while allowing
for principled and efficient inference. This paper ad-
dresses this need by introducing dynamic probabilistic
relational models (DPRMs). DPRMs are an extension
of dynamic Bayesian networks (DBNs) where each time
slice (and its dependences on previous slices) is repre-
sented by a probabilistic relational model (PRM). Parti-
cle filtering, the standard method for inference in DBNs,
has severe limitations when applied to DPRMs, but we
are able to greatly improve its performance through a
form of relational Rao-Blackwellisation. Further gains
in efficiency are obtained through the use of abstrac-
tion trees, a novel data structure. We successfully apply
DPRMs to execution monitoring and fault diagnosis of
an assembly plan, in which a complex product is gradu-
ally constructed from subparts.

1 Introduction
Sequential phenomena abound in the world, and uncertainty
is a common feature of them. Currently the most power-
ful representation available for such phenomena is dynamic
Bayesian networks, or DBNs[Dean and Kanazawa, 1989].
DBNs represent the state of the world as a set of variables, and
model the probabilistic dependencies of the variables within
and between time steps. While a major advance over previ-
ous approaches, DBNs are still unable to compactly represent
many real-world domains. In particular, domains can contain
multiple objects and classes of objects, as well as multiple
kinds of relations among them; and objects and relations can
appear and disappear over time. For example, manufactur-
ing plants assemble complex artifacts (e.g., cars, computers,
aircraft) from large numbers of component parts, using mul-
tiple kinds of machines and operations. Capturing such a do-
main in a DBN would require exhaustively representing all
possible objects and relations among them. This raises two
problems. The first one is that the computational cost of us-
ing such a DBN would likely be prohibitive. The second is
that reducing the rich structure of the domain to a very large,
“flat” DBN would render it essentially incomprehensible to

human beings. This paper addresses these two problems by
introducing an extension of DBNs that exposes the domain’s
relational structure, and by developing methods for efficient
inference in this representation.

Formalisms that can represent objects and relations, as op-
posed to just variables, have a long history in AI. Recently,
significant progress has been made in combining them with a
principled treatment of uncertainty. In particular, probabilis-
tic relational models or PRMs[Friedmanet al., 1999] are an
extension of Bayesian networks that allows reasoning with
classes, objects and relations. The representation we intro-
duce in this paper extends PRMs to sequential problems in
the same way that DBNs extend Bayesian networks. We thus
call it dynamic probabilistic relational models, or DPRMs.
We develop an efficient inference procedure for DPRMs by
adapting Rao-Blackwellised particle filtering, a state-of-the-
art inference method for DBNs[Murphy and Russell, 2001].
We introduceabstraction treesas a data structure to reduce
the computational cost of inference in DPRMs.

Early fault detection in complex manufacturing processes
can greatly reduce their cost. In this paper we apply DPRMs
to monitoring the execution of assembly plans, and show that
our inference methods scale to problems with over a thou-
sand objects and thousands of steps. Other domains where
we envisage DPRMs being useful include robot control, vi-
sion in motion, language processing, computational modeling
of markets, battlefield management, cell biology, ecosystem
modeling, and the Web.

The rest of the paper is structured as follows. The next two
sections briefly review DBNs and PRMs. We then introduce
DPRMs and methods for inference in them. The following
section reports on our experimental study in assembly plan
monitoring. The paper concludes with a discussion of related
and future work.

2 Dynamic Bayesian Networks
A Bayesian networkencodes the joint probability distribu-
tion of a set of variables,{Z1, . . . , Zd}, as a directed acyclic
graph and a set of conditional probability models. Each node
corresponds to a variable, and the model associated with it
allows us to compute the probability of a state of the vari-
able given the state of its parents. The set of parents of
Zi, denotedPa(Zi), is the set of nodes with an arc toZi

in the graph. The structure of the network encodes the as-



sertion that each node is conditionally independent of its
non-descendants given its parents. The probability of an ar-
bitrary eventZ = (Z1, . . . , Zd) can then be computed as
P (Z) =

∏d
i=1 P (Zi|Pa(Zi)).

Dynamic Bayesian Networks (DBNs)are an extension of
Bayesian networks for modeling dynamic systems. In a DBN,
the state at timet is represented by a set of random variables
Zt = {Z1,t, . . . , Zd,t}. The state at timet is dependent on
the states at previous time steps. Typically, we assume that
each state only depends on the immediately preceding state
(i.e., the system is first-order Markovian), and thus we need
to represent the transition distributionP (Zt+1|Zt). This can
be done using a two-time-slice Bayesian network fragment
(2TBN) Bt+1, which contains variables fromZt+1 whose
parents are variables fromZt and/orZt+1, and variables from
Zt without any parents. Typically, we also assume that the
process is stationary, i.e., the transition models for all time
slices are identical:B1 = B2 = . . . = Bt = B→. Thus a
DBN is defined to be a pair of Bayesian networks (B0, B→),
whereB0 represents the initial distributionP (Z0), andB→ is
a two-time-slice Bayesian network, which as discussed above
defines the transition distributionP (Zt+1|Zt).

The setZt is commonly divided into two sets: the unob-
served state variablesXt and the observed variablesYt. The
observed variablesYt are assumed to depend only on the cur-
rent state variablesXt. The joint distribution represented by
a DBN can then be obtained by unrolling the 2TBN:

P (X0, X1, ..., XT , Y0, Y1, ..., YT )

= P (X0)P (Y0|X0)
T∏

t=1

P (Xt|Xt−1)P (Yt|Xt)

Various types of inference in DBNs are possible. One of
the most useful is state monitoring (also known as filtering or
tracking), where the goal is to estimate the current state of the
world given the observations made up to the present, i.e., to
compute the distributionP (XT |Y0, Y1, ..., YT ). Proper state
monitoring is a necessary precondition for rational decision-
making in dynamic domains. Inference in DBNs is NP-
complete, and thus we must resort to approximate meth-
ods, of which the most widely used one isparticle filter-
ing [Doucet et al., 2001]. Particle filtering is a stochas-
tic algorithm which maintains a set of particles (samples)
x1

t , x
2
t , . . . , x

N
t to approximately represent the distribution of

possible states at timet given the observations. Each parti-
clexi

t contains a complete instance of the current state, i.e., a
sampled value for each state variable. The current distribution
is then approximated by

P (XT = x|Y0, Y1, ..., YT ) =
1
N

N∑
i=1

δ(xi
T = x)

whereδ(xi
T = x) is 1 if the state represented byxi

T is same as
x, and 0 otherwise. The particle filter starts by generatingN
particles according to the initial distributionP (X0). Then, at
each step, it first generates the next statexi

t+1 for each parti-
cle i by sampling fromP (Xi

t+1|Xi
t). It then weights these

samples according to the likelihood they assign to the ob-
servations,P (Yt+1|Xi

t+1), and resamplesN particles from

this weighted distribution. The particles will thus tend to stay
clustered in the more probable regions of the state space, ac-
cording to the observations.

Although particle filtering has scored impressive successes
in many practical applications, it also has some significant
limitations. One that is of particular concern to us here is that
it tends to perform poorly in high-dimensional state spaces.
This is because the number of particles required to main-
tain a good approximation to the state distribution grows very
rapidly with the dimensionality. This problem can be greatly
attenuated by analytically marginalizing out some of the vari-
ables, a technique known asRao-Blackwellisation[Murphy
and Russell, 2001]. Suppose the state spaceXt can be divided
into two subspacesUt andVt such thatP (Vt|Ut, Y1, . . . , Yt)
can be computed analytically and efficiently. Then we only
need to sample from the smaller spaceUt, requiring far fewer
particles to obtain the same degree of approximation. Each
particle is now composed of a sample fromP (Ut|Y1, . . . , Yt)
plus a parametric representation ofP (Vt|Ut, Y1, . . . , Yt). For
example, if the variables inVt are discrete and independent of
each other givenUt, we can store for each variable the vector
of parameters of the corresponding multinomial distribution
(i.e., the probability of each value).

3 Probabilistic Relational Models
A relational schemais a set of classesC = {C1, C2, . . . , Ck},
where each classC is associated with a set ofpropositional
attributesA(C) and a set ofrelational attributesor refer-
ence slotsR(C). The propositional attributeA of classC
is denotedC.A, and its domain (assumed finite) is denoted
V (C.A). The relational attributeR of C is denotedC.R,
and its domain is the power set2C′

of a target classC ′ ∈ C.
In other words,C.R is a set of objects belonging to some
classC ′.1 For example, theAircraft schema might be used
to represent partially or completely assembled aircraft, with
classes corresponding to different types of parts like metal
sheets, nuts and bolts. The propositional attributes of a bolt
might include its color, weight, and dimensions, and its rela-
tional attributes might include the nut it is attached to and the
two metal sheets it is bolting. Aninstantiationof a schema is
a set of objects, each object belonging to some classC ∈ C,
with all propositional and relational attributes of each object
specified. For example, an instantiation of the aircraft schema
might be a particular airplane, with all parts, their properties
and their arrangement specified.

A probabilistic relational model (PRM)encodes a proba-
bility distribution over the set of all possible instantiationsI
of a schema[Friedmanet al., 1999]. Theobject skeletonof
an instantiation is the set of objects in it, with all attributes
unspecified. Therelational skeletonof an instantiation is the
set of objects in it, with all relational attributes specified, and
all propositional attributes unspecified. In the simplest case,
the relational skeleton is assumed known, and the PRM spec-
ifies a probability distribution for each attributeA of each
classC. The parents of each attribute (i.e., the variables
it depends on) can be other attributes ofC, or attributes of

1C.R can also be defined as a function fromC to 2C′
, but we

choose the simpler convention here.



classes that are related toC by some slot chain. A slot chain
is a composition of relational attributes. In general, it must
be used together with anaggregation functionthat reduces a
variable number of values to a single value. For example, a
parent of an attribute of a bolt in the aircraft schema might be
avg(bolt.plate.nut.weight), the average weight of all the nuts
on the metal plates that the bolt is attached to.

Definition 1 A probabilistic relational model (PRM)Π for a
relational schemaS is defined as follows. For each classC
and each propositional attributeA ∈ A(C), we have:

• A set ofparentsPa(C.A) = {Pa1, Pa2, ..., Pal}, where
eachPai has the formC.B or γ(C.τ.B), whereτ is a slot
chain andγ() is an aggregation function.

• A conditional probability modelfor P (C.A|Pa(C.A)). 2

Let O be the set of objects in the relational skeleton. The
probability distribution over instantiationsI of S represented
by the PRM is then

P (I) =
∏

obj∈O

∏
A∈A(obj)

P (obj.A|Pa(obj.A))

A PRM and relational skeleton can thus be unrolled into a
large Bayesian network with one variable for each attribute
of each object in the skeleton.2 Only PRMs that correspond
to Bayesian networks without cycles are valid.

More generally, only the object skeleton might be known,
in which case the PRM also needs to specify a distribution
over the relational attributes[Getooret al., 2001]. In the air-
craft domain, a PRM might specify a distribution over the
state of assembly of an airplane, with probabilities for differ-
ent faults (e.g., a bolt is loose, the wrong plates have been
bolted, etc.).

4 Dynamic Probabilistic Relational Models
In this section we extend PRMs to modeling dynamic sys-
tems, the same way that DBNs extend Bayesian networks.
We begin with the observation that a DBN can be viewed as a
special case of a PRM, whose schema contains only one class
Z with propositional attributesZ1, . . . , Zd and a single rela-
tional attributeprevious. There is one objectZt for each time
slice, and thepreviousattribute connects it to the object in
the previous time slice. Given a relational schemaS, we first
extend each classC with the relational attributeC.previous,
with domainC. As before, we initially assume that the re-
lational skeleton at each time slice is known. We can then
define two-time-slice PRMs and dynamic PRMs as follows.

Definition 2 A two-time-slice PRM (2TPRM)for a relational
schemaS is defined as follows. For each classC and each
propositional attributeA ∈ A(C), we have:

• A set of parentsPa(C.A) = {Pa1, Pa2, ..., Pal}, where
eachPai has the formC.B or f(C.τ.B), whereτ is a slot
chain containing the attributepreviousat most once, and
f() is an aggregation function.

• A conditional probability modelfor P (C.A|Pa(C.A)). 2

2Plus auxiliary (deterministic) variables for the required aggre-
gations, which we omit from the formula for simplicity.

Definition 3 A dynamic probabilistic relational model
(DPRM)for a relational schemaS is a pair(M0,M→), where
M0 is a PRM overI0, representing the distributionP0 over
the initial instantiation ofS, andM→ is a 2TPRM represent-
ing the transition distributionP (It|It−1) connecting succes-
sive instantiations ofS. 2

For anyT , the distribution overI0, . . . , IT is then given by

P (I0, . . . , IT ) = P0(I0)
T∏

t=1

P (It|It−1)

DPRMs are extended to the case where only the object
skeleton for each time slice is known in the same way that
PRMs are, by adding to Definition 2 a set of parents and con-
ditional probability model for each relational attribute, where
the parents can be in the same or the previous time slice.
When the object skeleton is not known (e.g., if objects can
appear and disappear over time), the 2TPRM includes in ad-
dition a Boolean existence variable for each possible object,
again with parents from the same or the previous time slice.3

As with DBNs, we may wish to distinguish between observed
and unobserved attributes of objects. In addition, we can con-
sider anActionclass with a single attribute whose domain is
the set of actions that can be performed by some agent (e.g.,
painting a metal plate, or bolting two plates together). The
distribution over instantiations in a time slice can then de-
pend on the action performed in that time slice. For example,
the actionBolt(Part1, Part2)may with high probability pro-
ducePart1.mate= {Part2}, and with lower probability set
Part1.mateto some other object ofPart2’s class (i.e., be im-
properly performed, resulting in a fault).

Just as a PRM can be unrolled into a Bayesian network, so
can a DPRM be unrolled into a DBN. (Note, however, that
this DBN may in general contain different variables in dif-
ferent time slices.) In principle, we can perform inference
on this DBN using particle filtering. However, the filter is
likely to perform poorly, because for non-trivial DPRMs its
state space will be huge. Not only will it contain one variable
for each attribute of each object of each class, but relational
attributes will in general have very large domains. We over-
come this by adapting Rao-Blackwellisation to the relational
setting. We make the following (strong) assumptions:

1. Relational attributes with unknown values do not appear
anywhere in the DPRM as parents of unobserved at-
tributes, or in their slot chains.

2. Each reference slot can be occupied by at most one object.

Proposition 1 Assumptions 1 and 2 imply that, given the
propositional attributes and known relational attributes at
times t and t − 1, the joint distribution of the unobserved
relational attributes at timet is a product of multinomials,
one for each attribute.

Notice also that, by Assumption 1, unobserved proposi-
tional attributes can be sampled without regard to unobserved
relational ones. Rao-Blackwellisation can now be applied

3Notice that the attributes of nonexistent objects need not be
specified, because by definition no attributes of any other objects
can depend on them[Getooret al., 2001].



with Ut as the propositional attributes of all objects andVt

as their relational attributes. A Rao-Blackwellised particle is
composed of sampled values for all propositional attributes
of all objects, plus a probability vector for each relational at-
tribute of each object. The vector element corresponding to
obj.R[i] is the probability that relationR holds betweenobj
and theith object of the target class, conditioned on the values
of the propositional attributes in the particle, etc.

Rao-Blackwellising the relational attributes can vastly re-
duce the size of the state space which particle filtering needs
to sample. However, if the relational skeleton contains a
large number of objects and relations, storing and updating
all the requisite probabilities can still become quite expen-
sive. This can be ameliorated if context-specific independen-
cies exist, i.e., if a relational attribute is independent of some
propositional attributes given assignments of values to oth-
ers [Boutilier et al., 1996]. We can then replace the vector
of probabilities with a tree structure whose leaves represent
probabilities for entire sets of objects. More precisely, we de-
fine theabstraction treedata structure for a relational attribute
obj.R with target classC ′ as follows. A nodeν of the tree is
composed of a probabilityp and a logical expressionφ over
the propositional attributes of the schema. LetOν(C ′) be the
set of objects inC ′ that satisfy theφ’s of ν and all ofν’s an-

cestors. Thenp
def=

∑
obj′∈Oν(C′) P (obj′ ∈ (obj.R)t | Ut).

The root of an abstraction tree containsφ = true. The chil-
dren νi of a nodeν contain expressionsφi such that the
Oνi

(C ′) form a partition ofOν(C ′). Each leaf of the tree
stores a parametric distribution giving the probability that
each object in the leaf is a member ofobj.R, as a function
of the object’s propositional attributes. The probability that
an arbitrary objectobj′ ∈ C ′ is a member ofobj.R is found
by starting at the root of the abstraction tree forobj.R, going
to the child whose condition is satisfied byobj′, and so on
recursively until a leaf is reached and the object’s probability
is read from the leaf distribution.

Initially, the abstraction tree consists only of the root, and
as inference progresses it is gradually refined as dictated by
the attributes thatC.R depends on. For example, suppose
the first action to be performed isBolt(Part1, Part2), and
with probabilitypf the action is performed incorrectly. The
faulty action consists of attachingPart1 to some other object
of Part2’s classC ′, with uniform probability overC ′. Then
two childrenν1 andν2 of the root ofPart1.mate’s abstraction
tree are created, withφ1 specifying the singleton set{Part2}
and φ2 its complement inC ′, and withp1 = 1 − pf and
p2 = pf . The uniform distribution in leafν2 has a single pa-
rameter, the probabilityp = pf/(|C ′|−1) that a given object
in it is attached toPart1. This takesO(1) space to store and
O(1) time to update, as opposed toO(|C ′|). If objects with
different attributes have different probabilities of being bolted
to Part1, a node for each relevant combination of attributes is
created. Thus, ifnc is the number of such combinations, the
storage and update time required forPart1.mateareO(nc) in-
stead ofO(|C ′|). By design,nc ≤ (|C ′|); in the worst case,
the tree will have one leaf per element ofC ′. As we will see
in the next section, the use of abstraction trees can greatly
reduce the computational cost of Rao-Blackwellised particle
filtering in DPRMs.

5 Experiments
In this section we study the application of DPRMs to fault
detection in complex assembly plans. We use a modified ver-
sion of theSchedule Worlddomain from the AIPS-2000 Plan-
ning Competition.4 The problem consists of generating a plan
for assembly of objects with operations such as painting, pol-
ishing, etc. Each object has attributes such as surface type,
color, hole size, etc. We add two relational operations to the
domain: bolting and welding. We assume that actions may
be faulty, with fault model described below. In our experi-
ments, we first generate a plan using the FF planner[Hoff-
mann and Nebel, 2001]. We then monitor the plan’s execu-
tion using particle filtering (PF), Rao-Blackwellised particle
filtering (RBPF) and RBPF with abstraction trees.

We consider three classes of objects:Plate, Bracketand
Bolt. PlateandBrackethave propositional attributes such as
weight, shape, color, surface type, hole size and hole type,
and relational attributes for the parts they are welded to and
the bolts bolting them to other parts (e.g.,Plate73.bolt4corre-
sponds to the fourth bolt hole on plate 73). TheBolt class has
propositional attributes such as size, type and weight. Propo-
sitional actions include painting, drilling and polishing, and
change the propositional attributes of an object. The rela-
tional actionBolt sets abolt attribute of aPlate or Bracket
object to aBolt object. TheWeldaction sets awelded-toat-
tribute of aPlateor Bracketobject to anotherPlateor Bracket
object.

The fault model has a global parameter, thefault proba-
bility pf . With probability 1 − pf , an action produces the
intended effect. With probabilitypf , one of several possible
faults occurs. Propositional faults include a painting oper-
ation not being completed, the wrong color being used, the
polish of an object being ruined, etc. The probability of dif-
ferent propositional faults depends on the properties of the
object being acted on. Relational faults include bolting the
wrong objects and welding the wrong objects. The proba-
bility of choosing a particular wrong object depends on its
similarity to the intended object. Similarity depends on dif-
ferent propositional attributes for different actions and differ-
ent classes of objects. Thus the probability of a particular
wrong object being chosen is uniform across all objects with
the same relevant attribute values.

The DPRM also includes the following observation model.
There are two instances of each attribute: the true one, which
is never observed, and the observed one, which is observed
at selected time steps. Specifically, when an action is per-
formed, all attributes of the objects involved in it are ob-
served, and no others. Observations are noisy: with proba-
bility 1 − po the true value of the attribute is observed, and
with probabilitypo an incorrect value is observed. Incorrect
values for propositional observations are chosen uniformly.
Incorrect values for relational observations are chosen with
a probability that depends on the similarity of the incorrect
object to the intended one.

Notice that, if the domain consisted exclusively of the
propositional attributes and actions on them, exact inference
might be possible; however, the dependence of relational at-
tributes and their observations on the propositional attributes

4URL: http://www.cs.toronto.edu/aips2000



creates complex dependencies between these, making ap-
proximate inference necessary.

A natural measure of the accuracy of an approximate infer-
ence procedure is the K-L divergence between the distribu-
tion it predicts and the actual one[Cover and Thomas, 2001].
However, computing it requires performing exact inference,
which for non-trivial DPRMs is infeasible. Thus we estimate
the K-L divergence by sampling, as follows. LetD(p||p̂) be
the K-L divergence between the true distributionp and its
approximationp̂, and letX be the domain over which the
distribution is defined. Then

D(p||p̂) def=
∑
x∈X

p(x) log
p(x)
p̂(x)

=
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log p̂(x)

The first term is simply the entropy ofX, H(X), and is a
constant independent of the approximation method. Since
we are mainly interested in measuring differences in perfor-
mance between approximation methods, this term can be ne-
glected. The K-L divergence can now be approximated in the
usual way by takingS samples from the true distribution:

D̂H(p||p̂) = − 1
S

S∑
i=1

log p̂(xi)

where p̂(xi) is the probability of theith sample according
to the approximation procedure, and theH subscript indi-
cates that the estimate ofD(p||p̂) is offset byH(X). We
thus evaluate the accuracy of PF and RBPF on a DPRM by
generatingS = 10, 000 sequences of states and observations
from the DPRM, passing the observations to the particle fil-
ter, inferring the marginal probability of the sampled value
of each state variable at each step, plugging these values into
the above formula, and averaging over all variables. Notice
that D̂H(p||p̂) = ∞ whenever a sampled value is not rep-
resented in any particle. The empirical estimates of the K-L
divergence we obtain will be optimistic in the sense that the
true K-L divergence may be infinity, but the estimated one
will still be finite unless one of the values with zero predicted
probability is sampled. This does not preclude a meaningful
comparison between approximation methods, however, since
on average the worse method should produceD̂H(p||p̂) = ∞
earlier in the time sequence. We thus report both the average
K-L divergence before it becomes infinity and the time step
at which it becomes infinity, if any.

Figures 1 and 2 show the results of the experiments per-
formed. The observation noise parameterpo was set to the
same value as the fault probabilitypf throughout. One action
is performed in each time step; thus the number of time steps
is the length of the plan. The graphs show the K-L divergence
of PF and RBPF at every 100th step (it is the same for RBPF
with and without abstraction trees). Graphs are interrupted
at the first point where the K-L divergence became infinite
in any of the runs (once infinite, the K-L divergence never
went back to being finite in any of the runs), and that point is
labeled with the average time step at which the blow-up oc-
curred. As can be seen, PF tends to diverge rapidly, while the
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Figure 1: Comparison of RBPF (5000 particles) and PF
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K-L divergence of RBPF increases only very slowly, for all
combinations of parameters tried. Abstraction trees reduced
RBPF’s time and memory by a factor of 30 to 70, and took
on average six times longer and 11 times the memory of PF,
per particle. However, note that we ran PF with 40 times
more particles than RBPF. Thus, RBPF is using less time and
memory than PF, and performing far better in accuracy.

We also ran all the experiments while measuring the K-L
divergence of the full joint distribution of the state (as op-
posed to just the marginals). RBPF performed even better
compared to PF in this case; the latter tends to blow up much
sooner (e.g., from around step 4000 to less than 1000 for
pf = 1% and 1000 objects), while RBPF continues to de-
grade only very slowly.

6 Related Work
Dynamic object-oriented Bayesian networks (DOOBNs)
[Friedmanet al., 1998] combine DBNs with OOBNs, a pre-
decessor of PRMs. Unfortunately, no efficient inference



methods were proposed for DOOBNs, and they have not been
evaluated experimentally. DPRMs can also be viewed as ex-
tending relational Markov models (RMMs)[Andersonet al.,
2002] and logical hidden Markov models (LOHMMs)[Ker-
stinget al., 2003] in the same way that DBNs extend HMMs.
Downstream, DPRMs should be relevant to research on re-
lational Markov decision processes (e.g.,[Boutilier et al.,
2001]).

Particle filtering is currently a very active area of research
[Doucetet al., 2001]. In particular, the FastSLAM algorithm
uses a tree structure to speed up RBPF with Gaussian vari-
ables[Montemerloet al., 2002]. Abstraction trees are also
related to the abstraction hierarchies in RMMs[Andersonet
al., 2002] and to AD-trees[Moore and Lee, 1997]. An alter-
nate method for efficient inference in DBNs that may also be
useful in DPRMs was proposed by Boyen and Koller [1998]
and combined with particle filtering by Ng et al. [2002]. Ef-
ficient inference in relational probabilistic models has been
studied by Pasula and Russell [2001].

7 Conclusions and Future Work
This paper introduces dynamic probabilistic relational mod-
els (DPRMs), a representation that handles time-changing
phenomena, relational structure and uncertainty in a prin-
cipled manner. We develop efficient approximate inference
methods for DPRMs, based on Rao-Blackwellisation of rela-
tional attributes and abstraction trees. The power of DPRMs
and the scalability of these inference methods are illustrated
by their application to monitoring assembly processes for
fault detection.

Directions for future work include relaxing the assump-
tions made, further scaling up inference, formally studying
the properties of abstraction trees, handling continuous vari-
ables, learning DPRMs, using them as a basis for relational
MDPs, and applying them to increasingly complex real-world
problems.
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