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Abstract

In many domains, data now arrives faster than we are able to mine it. To avoid
wasting this data, we must switch from the traditional “one-shot” data mining approach
to systems that are able to mine continuous, high-volume, open-ended data streams as
they arrive. In this extended abstract we identify some desiderata for such systems,
and outline our framework for realizing them. A key property of our approach is that it
minimizes the time required to build a model on a stream, while guaranteeing (as long
as the data is i.i.d.) that the model learned is effectively indistinguishable from the one
that would be obtained using infinite data. Using this framework, we have successfully
adapted several learning algorithms to massive data streams, including decision tree
induction, Bayesian network learning, k-means clustering, and the EM algorithm for
mixtures of Gaussians. These algorithms are able to process on the order of billions
of examples per day using off-the-shelf hardware. Building on this, we are currently
developing software primitives for scaling arbitrary learning algorithms to massive data
streams with minimal effort.

1 The Problem

Many (or most) organizations today produce an electronic record of essentially every trans-
action they are involved in. When the organization is large, this results in tens or hundreds
of millions of records being produced every day. For example, in a single day WalMart
records 20 million sales transactions, Google handles 150 million searches, and AT&T pro-
duces 275 million call records. Scientific data collection (e.g., by earth sensing satellites or
astronomical observatories) routinely produces gigabytes of data per day. Data rates of this
level have significant consequences for data mining. For one, a few months’ worth of data
can easily add up to billions of records, and the entire history of transactions or observations
can be in the hundreds of billions. Current algorithms for mining complex models from data
(e.g., decision trees, sets of rules) cannot mine even a fraction of this data in useful time.
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Further, mining a day’s worth of data can take more than a day of CPU time, and so data
accumulates faster than it can be mined. As a result, despite all our efforts in scaling up
mining algorithms, in many areas the fraction of the available data that we are able to mine
in useful time is rapidly dwindling towards zero. Overcoming this state of affairs requires a
shift in our frame of mind from mining databases to mining data streams. In the traditional
data mining process, the data to be mined is assumed to have been loaded into a stable,
infrequently-updated database, and mining it can then take weeks or months, after which
the results are deployed and a new cycle begins. In a process better suited to mining the
high-volume, open-ended data streams we see today, the data mining system should be con-
tinuously on, processing records at the speed they arrive, incorporating them into the model
it is building even if it never sees them again. A system capable of doing this needs to meet
a number of stringent design criteria:

• It must require small constant time per record, otherwise it will inevitably fall behind
the data, sooner or later.

• It must use only a fixed amount of main memory, irrespective of the total number of
records it has seen.

• It must be able to build a model using at most one scan of the data, since it may
not have time to revisit old records, and the data may not even all be available in
secondary storage at a future point in time.

• It must make a usable model available at any point in time, as opposed to only when
it is done processing the data, since it may never be done processing.

• Ideally, it should produce a model that is equivalent (or nearly identical) to the one
that would be obtained by the corresponding ordinary database mining algorithm,
operating without the above constraints.

• When the data-generating phenomenon is changing over time (i.e., when concept drift
is present), the model at any time should be up-to-date, but also include all information
from the past that has not become outdated.

At first sight, it may seem unlikely that all these constraints can be satisfied simultane-
ously. However, we have developed a general framework for mining massive data streams
that satisfies all six [5]. Within this framework, we have designed and implemented massive-
stream versions of decision tree induction [1, 6], Bayesian network learning [5], k-means
clustering [2] and the EM algorithm for mixtures of Gaussians [3]. For example, our decision
tree learner, called VFDT, is able to mine on the order of a billion examples per day using
off-the-shelf hardware, while providing strong guarantees that its output is very similar to
that of a “batch” decision tree learner with access to unlimited resources. We are currently
developing a toolkit to allow implementation of arbitrary stream mining algorithms with no
more effort than would be required to implement ordinary learners. The goal is to automat-
ically achieve the six desiderata above by using the primitives we provide and following a
few simple guidelines. More specifically, our framework helps to answer two key questions:
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• How much data is enough? Even if we have (conceptually) infinite data available, it
may be the case that we do not need all of it to obtain the best possible model of the
type being mined. Assuming the data-generating process is stationary, is there some
point at which we can “turn off” the stream and know that we will not lose predictive
performance by ignoring further data? More precisely, how much data do we need at
each step of the mining algorithm before we can go on to the next one?

• If the data-generating process is not stationary, how do we make the trade-off between
being up-to-date and not losing past information that is still relevant? In the traditional
method of mining a sliding window of data, a large window leads to slow adaptation,
but a small one leads to loss of relevant information and overly-simple models. Can
we overcome this trade-off?

In the remainder of this extended abstract we describe how our framework addresses
these questions. Further aspects of the framework are described in Hulten and Domingos
(2002).

2 The Framework

A number of well-known results in statistics provide probabilistic bounds on the difference
between the true value of a parameter and its empirical estimate from finite data. For
example, consider a real-valued random variable x whose range is R. Suppose we have made
n independent observations of this variable, and computed their mean x̄. The Hoeffding
bound [4] (also known as additive Chernoff bound) states that, with probability at least
1 − δ, and irrespective of the true distribution of x, the true mean of the variable is within
ε of x̄, where

ε =

√

R2 ln(2/δ)

2n

Put another way, this result says that, if we only care about determining x to within ε of
its true value, and are willing to accept a probability of δ of failing to do so, we need gather
only n = 1

2
(R/ε)2 log(2/δ) samples of x. More samples (up to infinity) produce in essence

an equivalent result. The key idea underlying our framework is to “bootstrap” these results,
which apply to individual parameters, to similar guarantees on the difference (loss) between
the whole complex model mined from finite data and the model that would be obtained from
infinite data in infinite time. The high-level approach we use consists of three steps:

1. Derive an upper bound on the time complexity of the mining algorithm, as a function
of the number of samples used in each step.

2. Derive a upper bound on the relative loss between the finite-data and infinite-data
models, as a function of the number of samples used in each step of the finite-data
algorithm.

3. Minimize the time bound (via the number of samples used in each step) subject to
user-defined limits on the loss.
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Where successful, this approach effectively allows us to mine infinite data in finite time,
“keeping up” with the data no matter how much of it arrives. At each step of the algorithm,
we use only as much data from the stream as required to preserve the desired global loss
guarantees. Thus the model is built as fast as possible, subject to the loss targets. The
tighter the loss bounds used, the more efficient the resulting algorithm will be. (In practice,
normal bounds yield faster results than Hoeffding bounds, and their general use is justifiable
by the central limit theorem.) Each data point is used at most once, typically to update the
sufficient statistics used by the algorithm. The number of such statistics is generally only
a function of the model class being considered, and is independent of the quantity of data
already seen. Thus the memory required to store them, and the time required to update
them with a single example, are also independent of the data size.

When estimating models with continuous parameters (e.g., mixtures of Gaussians), the
above procedure yields a probabilistic bound on the difference between the parameters es-
timated with finite and infinite data. (By “probabilistic,” we mean a bound that holds
with some confidence 1 − δ∗, where δ∗ is user-specified. The lower the δ∗, the more data is
required.) When building models based on discrete decisions (e.g., decision trees, Bayesian
network structures), a simple general bound can be obtained as follows. At each search step
(e.g., each choice of split in a decision tree), use enough data to ensure that the probability
of making the wrong choice is at most δ. If at most d decisions are made during the search,
each among at most b alternatives, and c checks for the winner are made during each step, by
the union bound the probability that the total model produced differs from what would be
produced with infinite data is at most δ∗ = bcdδ. For specific algorithms and with additional
assumptions, it may be possible to obtain tighter bounds (see, for example, Domingos &
Hulten (2000)).

3 Time-Changing Data

The framework just described assumes that examples are i.i.d. (independent and identically
distributed). However, in many data streams of interest this is not the case; rather, the data-
generating process evolves over time. Our framework handles time-changing phenomena by
allowing examples to be forgotten as well as remembered. Forgetting an example involves
subtracting it from the sufficient statistics it was previously used to compute. When there is
no drift, new examples are statistically equivalent to the old ones and the mined model does
not change, but if there is drift a new best decision at some search point may surface. For
example, in the case of decision tree induction, an alternate split may now be best. In this
case we begin to grow an alternative subtree using the new best split, and replace the old
subtree with the new one when the latter becomes more accurate on new data. Replacing the
old subtree with the new node right away would produce a result similar to windowing, but
at a constant cost per new example, as opposed to O(w), where w is the size of the window.
Waiting until the new subtree becomes more accurate ensures that past information continues
to be used for as long as it is useful, and to some degree overcomes the trade-off implicit
in the choice of window size. However, for very rapidly changing data the pure windowing
method may still produce better results (assuming it has time to compute them before they
become outdated, which may not be the case). An open direction of research that we are
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beginning to pursue is to allow the “equivalent window size” (i.e., the number of time steps
that an example is remembered for) to be controlled by an external variable or function that
the user believes correlates with the speed of change of the underlying phenomenon. As
the speed of change increases the window shrinks, and vice-versa. Further research involves
explicitly modeling different types of drift (e.g., cyclical phenomena, or effects of the order in
which data is gathered), and identifying optimal model updating and management policies
for them. Example weighting (instead of “all or none” windowing) and subsampling methods
that approximate it are also relevant areas for research.

4 Conclusion

In many domains, the massive data streams available today make it possible to build more
intricate (and thus potentially more accurate) models than ever before, but this is precluded
by the sheer computational cost of model-building; paradoxically, only the simplest models
are mined from these streams, because only they can be mined fast enough. Alternatively,
complex methods are applied to small subsets of the data. The result (we suspect) is often
wasted data and outdated models. In this extended abstract we outlined some desiderata
for data mining systems that able to “keep up” with these massive data streams, and some
elements of our framework for achieving them. A more complete description of our approach
can be found in the references below.
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