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Abstract

RISE is an algorithm that combines rule induc-
tion and instance-based learning (IBL). It has
been empirically verified to achieve higher accu-
racy than state-of-the-art representatives of its
parent approaches in a large number of bench-
mark problems. This paper investigates the con-
ditions under which RISE’s bias will be more
appropriate than that of the pure approaches,
through experiments in carefully controlled ar-
tificial domains. RISE’s advantage compared to
pure rule induction increases with increasing con-
cept specificity. RISE’s advantage compared to
pure IBL is greater when the relevance of features
is context-dependent (i.e., when some of the fea-
tures used to describe examples are relevant only
given other features’ values). The paper also re-
ports lesion studies and other empirical observa-
tions showing that RISE’s good performance is
indeed due to its combination of rule induction
and IBL, and not to the presence of either com-
ponent alone.

Introduction

Rule induction (either performed directly (Michal-
ski 1983) or by means of decision trees (Quinlan
1993a)) and instance-based learning (Aha, Kibler, &
Albert 1991) (forms of which are also known as case-
based, memory-based, exemplar-based, lazy, local, and
nearest-neighbor learning) constitute two of the lead-
ing approaches to concept and classification learning.
Rule-based methods discard the individual training ex-
amples, and remember only abstractions formed from
them. At performance time, rules are typically applied
by logical match (i.e., only rules whose preconditions
are satisfied by an example are applied to it). Instance-
based methods explicitly memorize some or all of the
examples; they generally avoid forming abstractions,
and instead invest more effort at performance time in
finding the most similar cases to the target one.

The two paradigms have largely complementary
strengths and weaknesses. Rule induction systems of-
ten succeed in identifying small sets of highly predic-
tive features, and, crucially, these features can vary

from example to example. However, these methods
can have trouble recognizing exceptions, or in gen-
eral small, low-frequency sections of the space; this is
known as the “small disjuncts problem” (Holte, Acker,
& Porter 1989). Further, the general-to-specific, “sep-
arate and conquer” search strategy they typically em-
ploy causes them to suffer from the “fragmentation
problem”: as induction progresses, the amount of data
left for further learning dwindles rapidly, leading to
wrong decisions or insufficient specialization due to
lack of adequate statistical support. On the other
hand, IBL methods are well suited to handling ex-
ceptions, but can be very vulnerable to irrelevant fea-
tures. If many such features are present in the exam-
ple descriptions, IBL systems will be confused by them
when they compare examples, and accuracy may suf-
fer markedly. Unsurprisingly, in classification applica-
tions each approach has been observed to outperform
the other in some, but not all, domains.

We believe that rule induction and instance-based
learning have much more in common than a superfi-
cial examination reveals, and can be unified into a sin-
gle, simple and coherent framework for classification
learning, one that draws on the strengths of each to
combat the limitations of the other. This unification
rests on two key observations. One is that an instance
can be regarded as a maximally specific rule (i.e., a
rule whose preconditions are satisfied by exactly one
example). Therefore, no syntactic distinction need be
made between the two. The second observation is that
rules can be matched approximately, as instances are
in an instance-based classifier (i.e., a rule can match an
example if it is the closest one to it according to some
similarity-computing procedure, even if the example
does not logically satisfy all of the rule’s preconditions;
see (Michalski et al. 1986)). A rule’s extension, like
an instance’s, then becomes the set of examples that
it is the most similar rule to, and thus there is also no
necessary semantic distinction between a rule and an
instance.

The RISE algorithm (Domingos 1995b) is a practi-
cal, computationally efficient realization of this idea.!

!Obviously, it is not the only possible approach to uni-



RISE starts with a rule base that is simply the train-
ing set itself, and gradually generalizes each rule to
cover neighboring instances, as long as this does not
increase the rule base’s error rate on the known cases.
If no generalizations are performed, RISE acts as a
pure instance-based learner. If all cases are general-
ized and the resulting set of rules covers all regions
of the instance space that have nonzero probability, it
acts as a pure rule inducer. More generally, it will pro-
duce rules along a wide spectrum of generality; some-
times a rule that is logically satisfied by the target
case will be applied, and in other cases an approximate
match will be used. RISE’s bias, which is in effect in-
termediate between that of pure rule inducers and that
of pure instance-based learners, has been observed to
lead to improvements in accuracy in a large number
of domains from the UCI repository (Murphy & Aha
1995), resulting in significantly better overall results
than either “parent” bias (with C4.5RULES (Quinlan
1993a) and CN2 (Clark & Boswell 1991) being used
as representatives of rule induction, and PEBLS (Cost
& Salzberg 1993) as a representative of IBL). RISE is
described in greater detail in the next section.

The question now arises of exactly what factors
RISE’s comparative advantage is due to, and thus of
when it will be appropriate to apply this algorithm
instead of a pure IBL or a pure rule induction one.
This will first be approached by showing through lesion
studies that RISE’s strength derives from the simulta-
neous presence of the two components, and not from
either one alone. We will then consider rule induction
and IBL in turn, formulating hypotheses as to the fac-
tors that favor RISE over the “atomic” approach, and
testing these hypotheses through empirical studies in
artificial domains, where these factors are systemati-
cally varied.

The RISE Algorithm

RISE’s learning and classification procedures will be
considered in turn. More details can be found in

(Domingos 1995b; 1995a).

Representation and Search

Each example is a vector of attribute-value pairs, to-
gether with a specification of the class to which it be-
longs; attributes can be either nominal (symbolic) or
numeric. Each rule consists of a conjunction of an-
tecedents and a predicted class. Each antecedent is a
condition on a single attribute, and there i1s at most
one antecedent per attribute. Conditions on nominal
attributes are equality tests of the form a; = v;, where
a; is the attribute and v; is one of its legal values.
Conditions on numeric attributes take the form of al-
lowable intervals for the attributes, i.e., a; € [vj1, vj2],
where v;; and v, are two legal values for a;. Instances

fying the two paradigms (cf. (Branting & Porter 1991;
Golding & Rosenbloom 1991; Quinlan 1993b), etc.).

Table 1: The RISE algorithm.

Input: ES is the training set.
Procedure RISE (ES)

Let RS be ES.
Compute Acc(RS).
Repeat
For each rule R in RS,
Find the nearest example £ to R not already
covered by it (and of the same class).
Let R' = Most_Specific_Generalization(R, E).
Let RS’ = RS with R replaced by R’.
If Ace(RS") > Acc(RS)
Then Replace RS by RS’,
If R is identical to another rule in RS,
Then delete R’ from RS.
Until no increase in Acc(RS) is obtained.

Return RS.

(i.e., examples used as prototypes for classification) are
viewed as maximally specific rules, with conditions on
all attributes and degenerate (point) intervals for nu-
meric attributes. A rule is said to cover an example if
the example satisfies all of the rule’s conditions; a rule
is said to win an example if it is the nearest rule to the
example according to the distance metric that will be
described below.

The RISE algorithm is summarized in Table 1. RISE
searches for “good” rules in a specific-to-general fash-
ion, starting with a rule set that is the training set of
examples itself. RISE looks at each rule in turn, finds
the nearest example of the same class that it does not
already cover (i.e., that is at a distance greater than
zero from it), and attempts to minimally generalize
the rule to cover it. The generalization procedure is
outlined in Table 2. If the change’s effect on global
accuracy is positive, it is retained; otherwise it is dis-
carded. Generalizations are also accepted if they ap-
pear to have no effect on accuracy; this reflects a sim-
plicity bias. This procedure is repeated until, for each
rule, attempted generalization fails.

A potential difficulty is that measuring the accuracy
of a rule set on the training set requires matching all
rules with all training examples, and this would entail
a high computational cost if it was repeatedly done as
outlined. Fortunately, at each step only the change in
accuracy needs to be computed. Each example mem-
orizes the distance to its nearest rule and its assigned
class. When a rule is generalized, all that is necessary
is then to match that single rule against all examples,
and check if it wins any that it did not before, and
what its effect on these is. Previously misclassified
examples that are now correctly classified add to the



Table 2: Generalization of a rule to cover an example.

Inputs: R = (a1,as,...,a4,cg) is a rule,
E = (e1,ea,...,e4,cg) is an example.
a; is either True, z; = r;, OF 74 jower < i < T3 upper-

Function Most_Specific_Generalization (R, E)

For each attribute ¢,
If a; = True then Do nothing.
Else if 7 is symbolic and e; # r; then a; = True.
Else if €; > 75 upper then 75 upper = €;.
Else if €; < 75 jower then r; joper = €.

accuracy, and previously correctly classified examples
that are now misclassified subtract from it. If the for-
mer are more numerous than the latter, the change in
accuracy is positive, and the generalization is accepted.
With this optimization, RISE’s worst-case time com-
plexity has been shown to be quadratic in the number
of examples and the number of attributes, which is
comparable to that of commonly-used rule induction
algorithms (Domingos 1995b).

Classification

At performance time, classification of each test exam-
ple is performed by finding the nearest rule to it, and
assigning the example to the rule’s class. The distance
measure used is a combination of Euclidean distance
for numeric attributes, and a simplified version of Stan-
fill and Waltz’s value difference metric for symbolic at-

tributes (Stanfill & Waltz 1986).

Let E = (e1,ea,...,e4,cg) be an example with
value e; for the ith attribute and class cg. Let R =
(a1,as,...,aa,cr) be a rule with class cg and condi-

tion a; on the ith attribute, where a; = True if there is
no condition on ¢, otherwise a; is ; = r; if ¢ is symbolic
and a; is 7; jower < T; < Tiupper if ¢ is numeric. The
distance A(R, E) between R and E is then defined as:

A(RE) =3~ () 1)

where the component distance §() for the ith attribute
is:

0 if a; = True
8(3) = { SV DM (r;,e;) if i is symbolic A a; # True
Srum (1) if ¢ is numeric A a; # True
2)
SV DM (r;, e;) is the simplified value difference metric,
defined as:

SVDM (zi,z;) = Y [P(cnlzi) — Plenlz;)]  (3)

where z; and z; are any legal values of the attribute,
C' i1s the number of classes, ¢ is the hth class, and
P(cp|z;) denotes the probability of ¢p conditioned on
z;. The essential idea behind VDM-type metrics is
that two values should be considered similar if they
make similar class predictions, and dissimilar if their
predictions diverge. This has been found to give good
results in several domains (Cost & Salzberg 1993). No-
tice that, in particular, SV DM (z;, ;) is always 0 if
i=7.

The component distance for numeric attributes is

defined as:

0 if Ti lower S €; S Ti upper
e;—r .
S if e; > Ti upper

Snum(i) = Tmaxr—Tmin
r —e .
nlower — if e; < Tilower

Tmaxr—Lmin

(4)
Tmar and &,i, being respectively the maximum and
minimum observed values for the attribute.

The distance from a missing numeric value to any
other is defined as 0. If a symbolic attribute’s value
is missing, it is assigned the special value “?”. This
is treated as a legitimate symbolic value, and its dis-
tance to all other values of the attribute is computed
and used. When coupled with SVDM, this is a sensible
policy: a missing value is taken to be roughly equiva-
lent to a given possible value if it behaves similarly to
it, and inversely if it does not.

When two or more rules are equally close to a test
example, the rule that was most accurate on the train-
ing set wins. So as to not unduly favor more specific
rules, the Laplace-corrected accuracy is used (Niblett

1987):

Ncorr (R) +1

LAce(R) Noon(B) 7 C (5)
where R is any rule, C' is the number of classes,
Nyon(R) is the total number or examples won by R,
Neorr (R) is the number of examples among those that
R correctly classifies, and C' is the number of classes.
The effect of the Laplace correction is to make the es-
timate of a rule’s accuracy converge to the “random
guess” value of 1/C as the number of examples won
by the rule decreases. Thus rules with high apparent
accuracy are favored only if they also have high sta-
tistical support, i.e., if that apparent accuracy is not
simply the result of a small sample.

Lesion Studies

Lesion studies were conducted using 30 datasets from
the UCI repository (Murphy & Aha 1995). Several as-
pects of the algorithm’s performance were also mea-
sured. The results are shown in Table 3. Super-
scripts indicate significance levels for the accuracy dif-
ferences between systems, using a one-tailed paired ¢



Table 3: Results of lesion studies, and performance monitoring. Superscripts denote significance levels: 1 is 0.5%,

2is 1%, 3 is 2.5%, 4 is 5%, 5 is 10%, and 6 is above 10%.

Accuracy of subsystem Match type frequency
Domain RISE IBL Rules No tie-b. | No/One No/Multi One Multi
Audiology 77.0 75.8° 55.11 76.21 53.6 1.6 43.0 1.8
Annealing 97.4 97.7% 77.7! 97.2! 24.1 0.0 75.6 0.2
Breast cancer 67.7 65.11 69.0% 68.71 33.4 1.5 59.1 6.0
Credit screening | 83.3 81.31 66.91 83.25 51.9 0.0 46.9 1.1
Chess endgames | 98.2 91.91 91.9 98.01 27.6 0.1 714 0.9
Pima diabetes 70.4 70.3% 66.2! 70.5! 70.9 0.1 274 1.6
Echocardiogram | 64.6 59.21 65.7° 64.55 70.1 0.1 26.8 3.0
Glass 70.6 68.32 47.3! 70.42 71.5 0.0 272 1.3
Heart disease 79.7 77.81 64.7! 79.75 63.1 0.0 34.8 2.1
Hepatitis 78.3 78.45 79.6° 78.5° 55.3 0.1 43.1 15
Horse colic 82.6 76.61 79.0! 81.7! 39.7 0.2 55.4 4.6
Thyroid disease 97.5 94.1* 84.8! 97.5% 40.7 0.1 58.3 0.9
Iris 94.0 94.73 71.0! 94.08 45.9 0.0 54.0 0.2
Labor neg. 87.2 90.8! 73.71 87.15 51.8 0.2 46.6 14
Lung cancer 44.7 42.0% 26.5! 44.2° 88.2 0.4 9.1 24
Liver disease 62.4 60.9* 62.1° 62.3° 72.7 0.2 24.0 3.0
Contact lenses 77.2 72.5! 64.81 75.83 13.2 1.5 83.0 2.2
LED 59.9 55.91 52.71 49.7! 14.7 4.5 473 335
Lymphography 78.7 82.0! 70.11 78.23 42.9 0.4 53.9 2.8
Mushroom 100.0 97.5° 100.08 99.8! 7.3 0.0 925 0.2
Post-operative 64.1 59.11 70.91 65.91 36.5 12.2 44.7 6.6
Promoters 86.8 90.6! 68.41 85.9* 59.7 0.0 35.8 4.5
Primary tumor 40.3 34.3! 33.5! 37.0! 34.2 4.1 41.6 20.1
Solar flare 71.6 71.1% 65.5! 68.11 16.7 2.9 59.9 204
Sonar 77.9 83.8! 52.91 77.95 95.6 0.0 43 0.1
Soybean 100.0  100.0° 85.11 100.08 16.9 0.0 83.1 0.0
Splice junctions 93.1 87.8! 75.91 92.1! 67.4 0.0 29.9 2.7
Voting records 95.2 94.63 83.7! 94.21 7.4 0.1 90.3 2.1
Wine 96.9 95.11 51.5! 96.9% 78.1 0.0 21.9 0.0
Zoology 93.9 94.5* 81.0! 93.7* 17.5 0.0 81.9 0.5

test.? The first four columns compare the full system’s
accuracy (“RISE”) with that obtained using lesioned
versions: the IBL component alone (“IBL”), the rule
induction component alone (“Rules”), and disabling
the tie-breaking procedure (“No tie-b.”). The last four
columns all refer to the full RISE system, and show,
respectively: the percentage of test cases that were not
matched by any rule, but had a single closest rule, or
for which all equally close rules were of the same class
(“No/One”); the percentage not matched by any rule,
and for which there were equally close rules of more
than one class (“No/Multi”); the percentage matched
by only one rule, or rules of only one class (“One”);

2Since, in each case, the goal is to determine whether
RISE’s accuracy is higher than that of the lesioned system
(and not just different from it in either direction), a one-
tailed test is the appropriate choice (rather than a two-
tailed one).

and the percentage matched by rules of more than one
class (“Multi”). These observations aid in interpreting
the lesion study results.

These results are more easily understood by summa-
rizing them in a few comparative measures. These are
shown in Table 4. The first line shows the number of
domains in which RISE achieved higher accuracy than
the corresponding system, vs. the number in which
the reverse happened. The second line considers only
those domains in which the observed difference is sig-
nificant at the 5% level or lower. The third line shows
the global significance levels obtained by applying a
Wilcoxon signed-ranks test (DeGroot 1986) to the 30
accuracy differences observed. The average accuracy
across all domains is a measure of debatable signifi-
cance, but it is often reported, and is shown on the
last line.

The first specific question addressed was whether



Table 4: Summary of lesion study results.

Measure RISE IBL Rules No t.-b.
No. wins - 21-8 25-4 20-4
No. sig. wins - 16-7  24-2 15-3
Wilcoxon test - 0.5% 0.1% 0.2%
Average 79.7 78.1 67.9 79.0

there is any gain in the rule induction process (i.e.,
whether RISE constitutes an improvement over pure
instance-based learning). The “IBL” column in Ta-
ble 3 reports the accuracies obtained by the initial,
ungeneralized instance set, and shows that generaliza-
tion often produces significant gains in accuracy, while
seldom having a negative effect.

The converse question is whether the instance-based
component is really necessary. Simply assigning exam-
ples not covered by any rule to a default class, as done
in most rule induction systems, might be sufficient.
The “Rules” column in Table 3 shows the results ob-
tained using this policy, and confirms the importance
of “nearest-rule” classification in RISE. The sum of the
“No” columns in the right half of Table 3 is the per-
centage of test cases assigned to the default class. This
is often very high, the more so because RISE tends to
produce rules that are more specific than those output
by general-to-specific inducers. The use of nearest-rule
is thus essential. Note that the results reported in the
“Rules” column are for applying the default rule during
both learning and classification; applying it exclusively
during classification produced only a slight improve-
ment.

Another important component of RISE whose utility
needs to be determined is the conflict resolution pol-
icy, which in RISE consists of letting the tied rule with
the highest Laplace accuracy win. This was compared
with simply letting the most frequent class win (“No
tie-b.” column in Table 3). The sum of the “Multi”
columns in the right half of Table 3 is the percentage
of cases where tie-breaking is necessary. This is typ-
ically small, and the increase in accuracy afforded by
RISE’s conflict resolution strategy is correspondingly
small (0.7% on average, for all datasets). However,
this increase is consistently produced, as evinced by
the fact that RISE is more accurate than its lesioned
version with a 0.2% significance by the Wilcoxon test.

Taken together, the lesion studies show that each
of RISE’s components is essential to its performance,
and that it is their combination in one system that is
responsible for the excellent results obtained by RISE
vis-a-vis other approaches.

RISE as Rule Induction

Our hypothesis is that RISE’s advantage relative to
“divide and conquer” rule induction algorithms is at
least in part due to its greater ability to identify small
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Figure 1: Accuracy as a function of concept specificity
(16 features).

regions in the instance space (i.e., regions that are rep-
resented by few examples in the training set). Thus
RISE should be more accurate than a “divide and con-
quer” algorithm when the target concepts are fairly
to very specific, with the advantage increasing with
specificity. Thus the independent variable of interest
is the specificity of the target concept description. A
good operational measure of it is the average length
of the rules comprising the correct description: rules
with more conditions imply a more specific concept.
The dependent variables are the out-of-sample accura-
cies of RISE and of a “divide and conquer” algorithm,;
C4.5RULES (Quinlan 1993a) was used as the latter.
Concepts defined as Boolean functions in disjunctive
normal form were used as targets. The datasets were
composed of 100 examples described by 16 attributes.
The average number of literals C'in each disjunct com-
prising the concept was varied from 1 to 16. The num-
ber of disjuncts was set to Min{2¢~1 25}. This at-
tempts to keep the fraction of the instance space cov-
ered by the concept roughly constant, up to the point
where it would require more rules than could possibly
be learned. Equal numbers of positive and negative
examples were included in the dataset, and positive ex-
amples were divided evenly among disjuncts. In each
run a different target concept was used, generating the
disjuncts at random, with length given by a binomial
distribution with mean C' and variance C(1 — <); this
is obtained by including each feature in the disjunct
with probability 10—6 Twenty runs were conducted,
with two-thirds of the data used for training and the
remainder for testing.

The results are shown graphically in Fig. 1. The
most salient aspect is the large difference in difficulty
between short and long rules for both learners. Con-
cepts with very few (approx. three or less) conditions
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Figure 2: Accuracy as a function of concept specificity
(32 features).

per rule are so simple that both RISE and C4.5RULES
are able to learn them easily. In separate experiments,
corrupting the data with 10% and 20% noise degraded
the performance of the two algorithms equally, again
giving no advantage to C4.5RULES. At the other end,
however, RISE has a clear advantage for concepts with
12 or more conditions per rule; all differences here are
significant at the 5% level using a one-tailed paired ¢
test.3

The slight upward trend in C4.5RULES’s curve for
C > 10 was investigated by repeating the experiments
with 32 attributes, 400 examples, a maximum of 50
rules and C' = 1,...,32. The results are shown
in Fig. 2. C4.5RULES’s lag increases, but the up-
ward trend is maintained; on inspection of the rules
C4.5RULES produces, this is revealed to be due to the
fact that, as the concept rules become more and more
specific, it becomes possible to induce short rules for
its negation. The hardest concepts, for which both the
concept and its negation have necessarily long rules,
are for intermediate values of C'.

In summary, the results of this study support the hy-
pothesis that the specificity of the regions to be learned
is a factor in the difference in accuracy between RISE
and “divide and conquer” rule induction systems, with
greater specificity favoring RISE.

RISE as IBL

High sensitivity to irrelevant features has long been
recognized as IBL’s main problem. A natural solution
is identifying the irrelevant features, and discarding
them before storing the examples for future use. Sev-
eral algorithms have been proposed for this purpose
(see (Kittler 1986) for a survey), of which two of the

3See the previous footnote regarding this test.

most widely known are forward sequential search (FSS)
and backward sequential search (BSS) (Devijver & Kit-
tler 1982). Many variations of these exist (e.g., (Aha
& Bankert 1994)). Their use can have a large positive
impact on accuracy. However, all of these algorithms
have the common characteristic that they ignore the
fact that some features may be relevant only in con-
text (i.e., given the values of other features). They may
discard features that are highly relevant in a restricted
sector of the instance space because this relevance is
swamped by their irrelevance everywhere else. They
may retain features that are relevant in most of the
space, but unnecessarily confuse the classifier in some
regions.

Consider, for example, an instance space defined by
a set of numeric features F, and a class composed of
two hyperrectangles, one of which is defined by inter-
vals f; € [a;, b;] in a subset Fq of the features, and
the other by intervals in a subset Fo disjoint from the
first. Current feature selection algorithms would re-
tain all features in F{ and Fg, because each of those
features is relevant to identifying examples in one of
the hyperrectangles. However, the features in Fo act
as noise when identifying examples defined by F, and
vice-versa. Instead of storing the same set of features
for all instances, a better algorithm would discard the
features in Fgo from the stored instances of the first
hyperrectangle, and the features in Fq from those of
the second one. RISE has this capability.

Our hypothesis is that, viewed as an instance-based
learner, RISE derives strength from its ability to per-
form context-sensitive feature selection (since different
examples may be covered by different rules, and thus
different features will be used in their classification).
Thus, RISE’s advantage relative to IBL using conven-
tional feature selection methods should increase with
the degree of context sensitivity of feature relevance.
To empirically investigate this hypothesis, a concrete
measure of the latter is required. If the target concept
description is composed of a set of prototypes, one such
possible measure is the average D for all pairs of pro-
totypes of the number of features that appear in the
definition of one, but not the other:

D= P—l) SN dijr (6)

i=1 j=1k=1

i—1

where P is the number of prototypes, F' is the total
number of features, and d;j; is 1 if feature k appears
in the definition of prototype ¢ but not in that of pro-
totype j or vice-versa, and 0 otherwise. This “feature
difference” measure was taken as the independent vari-
able in the study.

RISE’s pure IBL component (see the section on le-
sion studies) was taken as the basic instance-based
learner, and FSS and BSS were applied to it. For
comparison, RISE’s generalization procedure was also
applied, but in order to ensure the fairness of this pro-



cedure, all aspects of RISE that do not relate to fea-
ture selection were disabled: numeric features were not
generalized to intervals, but either retained as point
values or dropped altogether,* generalization for each
rule stopped as soon as an attempted feature deletion
for that rule failed (as opposed to only when attempts
failed for all rules simultaneously), and duplicate rules
were not deleted. The resulting simplified algorithm
will hereafter be referred to as “RC”. Thus the depen-
dent variables of interest were the accuracies of RC,
FSS and BSS.

Two-class problems were considered, with 100 ex-
amples in each dataset, described by 32 features. In
each domain, each feature was chosen to be numeric
or Boolean with equal probability (i.e., the number of
numeric features is a binomial variable with expected
value F'/2 and variance F/4). Class 1 was defined by
ten clusters, and class 0 was the complement of class 1.
Each prototype or cluster was defined by a conjunction
of conditions on the relevant features. The required
value for a Boolean feature was chosen at random, with
0 and 1 being equally probable. Each numeric feature
i was required to fall within a given range [a;, b;], with
a; being the smaller of two values chosen from the in-
terval [-1, 1] according to a uniform distribution, and
b; the larger one. A cluster was thus a hyperrectangle
in the relevant numeric subspace, and a conjunction of
literals in the Boolean one.

The choice of relevant features for each prototype
was made at random, but in a way that guaranteed
that the desired value of D for the set of prototypes was
maintained on average. The feature difference D was
varied from 0 to 8, the latter being the maximum value
that can be produced given the number of features and
prototypes used. Twenty domains were generated for
each value of D, and two-thirds of the examples used as
the training set. The average accuracy of RC, FSS and
BSS on the remaining examples is shown graphically
as a function of D in Figure 3.

All differences in accuracy between RC and FSS are
significant at the 5% level, as are those between RC
and BSS for D = 1, 2, 4, 5, and 8. The smallest dif-
ference occurs when D = 0, as our hypothesis would
lead us to expect. All accuracies are negatively corre-
lated with D, but the absolute value of the correlation
is much smaller for RC (0.49) than for FSS and BSS
(0.89 and 0.82, respectively). The downward slope of
the regression line for RC’s accuracy as a function of D
(-0.35) is also much smaller than that for FSS (-1.21)
and BSS (-0.61). We thus conclude that RC’s higher
performance is indeed at least partly due do its context
sensitivity.

*The policy adopted was to compute the mean and stan-
dard deviation of each numeric feature from the sample in
the training set, and attempt dropping the feature only
when the values for the rule and the example to which its
generalization is being tried differ by more than one stan-
dard deviation.
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Figure 3: Accuracy as a function of context depen-
dency.

Conclusion

In this paper we investigated the bias of RISE, an algo-
rithm that combines rule induction and instance-based
learning, and has been observed to achieve higher ac-
curacies than state-of-the-art representatives of either
approach. Lesion studies using benchmark problems
showed that each of the two components is essen-
tial to RISE’s high performance. Studies in carefully
controlled artificial domains provided evidence for the
hypothesis that, compared to rule inducers, RISE’s
strength lies in its ability to learn fairly to highly spe-
cific concepts, and, compared to instance-based learn-
ers, in its ability to detect context dependencies in fea-
ture relevance.

Directions for future research include: elucidating
further factors in the differential performance of RISE
relative to rule induction and IBL; repeating the ex-
periments described here with a wider variety of rule
and instance-based learners and artificial domains; and
bringing further types of learning into RISE’s frame-
work, including in particular the use of analytical
learning from expert-supplied domain knowledge.
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