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I attempt to reconcile apparently conflicting factors and mecha-
nisms that have been proposed to determine the rate constant for
two-state folding of small proteins, on the basis of general features
of the structures of transition states. F-Value analysis implies a
transition state for folding that resembles an expanded and dis-
torted native structure, which is built around an extended nucleus.
The nucleus is composed predominantly of elements of partly or
well-formed native secondary structure that are stabilized by local
and long-range tertiary interactions. These long-range interactions
give rise to connecting loops, frequently containing the native
loops that are poorly structured. I derive an equation that relates
differences in the contact order of a protein to changes in the
length of linking loops, which, in turn, is directly related to the
unfavorable free energy of the loops in the transition state. Kinetic
data on loop extension mutants of CI2 and a-spectrin SH3 domain
fit the equation qualitatively. The rate of folding depends primarily
on the interactions that directly stabilize the nucleus, especially
those in native-like secondary structure and those resulting from
the entropy loss from the connecting loops, which vary with
contact order. This partitioning of energy accounts for the success
of some algorithms that predict folding rates, because they use
these principles either explicitly or implicitly. The extended nucleus
model thus unifies the observations of rate depending on both
stability and topology.

nucleation-condensation u diffusion-collision u SH3 u CI2 u loops

To understand pathways of protein folding, experimentalists
and theoreticians have, over the past decade, focused their

efforts on analyzing small proteins. Many of these fold very
rapidly with simple two-state kinetics. The structures of the
rate-determining transition states have been analyzed in increas-
ing numbers at atomic resolution by protein engineering and
F-values and by various types of computer simulation. A recent
development has been to correlate rate constants of folding (k)
of the two-state proteins with their topology by using the gross
parameter of the contact order (CO) defined by:

CO 5
1

LN ON DZi, j, [1]

where N is the total number of contacts in the protein, DZi.j is
the number of residues separating contacts i and j, and L is the
number of residues in the protein. In a protein with low contact
order, residues interact, on average, with others that are close in
sequence. A high contact order implies that there is a large
number of long-range interactions (1). That is, residues interact
frequently with partners that are far apart in sequence. There is
a statistically significant correlation between lnk and CO,
whereby the rate constant of folding decreases with increasing
contact order (Fig. 1). This correlation points to topology being

an important factor in the rate of folding. The questions are why
and what does it tell us?

The structure of the rate-determining transition state in
protein folding can be derived by F-value analysis (2, 3). This
procedure uses protein engineering to make suitable mutants of
the protein, and changes in the free energy of activation (DDG‡)
and equilibrium (DDG) on mutation are measured. F is defined
by DDG‡yDDG. A value of F for folding of 0 means that the
interaction measured is as poorly formed in the transition state
as it is in the denatured state. A value of one means that it is as
well formed in the transition state as in the native structure.
Exactly the same approach had been used previously (4, 5) to
understand changes in enzyme-substrate reactions during bind-
ing and catalysis, and the analogous equation was used to define
the equivalent of F (5).

Very recently, F-value analysis has been applied to three
proteins to support the contact order theory and the role of
topology (6–8). But, in apparent contradiction, it has been found
that three members of a family of the same topology fold with
rate constants that correlate with stability and not contact order
(9). There is strong evidence that many proteins fold by a
nucleation mechanism, whereas arguments have been made in
favor of hierarchical (framework) mechanisms in which pre-
formed elements of secondary structure associate (10, 11). I wish
now to present arguments that there are no real conflicts among
these proposals, and that each of these mechanisms is accom-
modated in existing schemes that invoke general features of
transition states for folding determined by F-value analysis.

Nature of Transition State for Protein Folding. F-Value analysis of
CI2 (12, 13) shows that:

(i) The protein folds around an extended nucleus that is
composed of a contiguous region of structure (for CI2, an
a-helix) and long-range native interactions with groups distant in
sequence.

(ii) The transition state for folding is a distorted form of the
native structure, which appears to be more distorted and weak-
ened the further away from the nucleus. There is a gradation of
F-values, the ones in the nucleus tending to be 0.5–0.7 and the
more distal ones, from 0.1 to 0.3.

(iii) It was reasoned that the mechanism did not involve the
association of preformed elements of secondary structure, but
that the secondary and tertiary interactions are formed in
parallel because the F-values in the nucleus were significantly
less than 1. A mechanism was proposed, nucleation-condensa-
tion (or nucleation-collapse), that involves the simultaneous
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collapse or condensation of the tertiary structure around the
extended nucleus as it is formed.

(iv) Mutations, especially in the folding nucleus, affect the
folding rate, and there is a relation between folding rate and
stability [a Brønsted plot (14)].

The rate-determining transition state in the multistep pathway
for the folding of barnase is more polar (15). Many of the
F-values are very close to 0 or 1, and so the rate-determining step
is the docking of preformed structural domains. Mutations in the
regions of barnase that are unstructured in the transition state
have folding rates that are insensitive to mutation. The transition
state structures of many small proteins may be classified into
‘‘CI2’’ (a gradation of F-values) or ‘‘barnase’’ (polarized, with a
significant number of F-values close to 0 or 1) and are listed in
ref. 3, Table 19.2. Nucleation-condensation appears to be a
widespread mechanism. Indeed, lattice simulations indepen-
dently showed that a specific nucleus is an optimal mechanism
for folding model proteins (16).

Implications of a Native-Like Transition State. The transition state
resembles native-like structural elements with the connecting
loops tending to be poorly structured (some structured loops are
formed in the rate-determining transition state for barnase). A
consequence of the extended nucleus is that the overall topology
of the transition state must resemble that of the native structure.
The correlation between folding rate constant, which depends on
transition state structure, and contact order of the native state
for a large number of proteins (Fig. 1) implies that the topology
of the transition state resembles the topology of the native chain
in general.

Relationship of Contact Order to Loop Length and Configurational
Entropy. It has been speculated that the dependence of rate
constant on contact order may be a consequence of the relative
importance of short-range and long-range interactions, or it
might somehow relate to the length of the connecting loops in
proteins (17). To resolve this, I derive a simple equation relating
contact order and loop length for a specific case and then apply
this to kinetic data. The analysis is done for just that specific case,
but it illustrates the general principles.

Suppose two segments of a protein, A and B, are connected
by a loop of length nl, and that there are NA/B interactions across
the AyB interface. Suppose we insert l residues in the loop that
makes no interaction with other residues (Fig. 2). The total
number of interactions in the protein does not change, but the
value of Z for the interaction across the AyB interfaces increases

by l z NA/B, because each of the NA/B interactions is displaced by
l residues in sequence. Thus:

CO 5
1

~L 1 l!N
S ON DZi, j 1 lzNA/BD . [2]

Thus, contact order increases with increasing loop size.
The loss of configurational entropy of closing an unstructured

loop of nl 1 l residues relative to one of nl residues is calculated
from standard polymer theory to be:

DDS 5 2
3
2

R lnS1 1
l
nl
D . [3]

Eqs. 2 and 3 show that changes in contact order and configu-
rational entropy are directly related. The relationship becomes
simpler when l ,, nl. Then

DCO <
lzNA/B

LN
[4]

and

DDS < 2
3
2

R
l
nl

. [5]

To a first approximation:

DDS < 2
3RLN

2NA/Bnl
DCO [6]

or

DCO < 2
2NA/Bnl

3LN
3

DDS
R

. [7]

There are several assumptions in Eq. 3 that cause considerable
uncertainty in the exact relationship between DDS and CO. As
discussed (18), the exact value of nl is not known, and interac-
tions within the loop and with neighboring residues will alter its
energy. Further, the numerical term 3y2 may be an underesti-
mate, and values up to 2.4 may be appropriate, depending on the
nature of the side chains. Conversely, if the loop is partly

Fig. 1. Plot of logk vs. 100 3 CO for two-state folding proteins listed in Table
18.1 of ref. 3 and unpublished data from this laboratory.

Fig. 2. Cartoon of the extended (specific) nucleus mechanism of the nucle-
ation-condensation mechanism. This is for the extreme case of the connecting
loops being unstructured. The filled circles represent native-like elements of
secondary structure that interact mainly by native tertiary interactions. The
shaded part of the loop illustrates an insertion of length l.
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structured in the transition state, then 3y2 will be an overesti-
mate.

Effect of Unstructured Closed Loop on Folding Kinetics. A simple way
of analyzing reaction kinetics is the application of transition state
theory or analogous theories that assume that a transition state
or activated complex is in (virtual) rapid equilibrium with the
ground state. The rate constant is then given by an equation that
is the product of the virtual equilibrium constant and the
frequency (n) and transmission coefficient (k) of passing over
the energy barrier. Suppose that the transition state has a free
energy that is higher than the ground state by DDG‡, then the
rate constant is given by:

k 5 kn exp~2DDG‡/RT!. [8]

Energies that affect the equilibrium are directly manifested in
the activation energy, DDG‡. The product kn cancels out when
comparing rates of reaction under identical conditions, as in
F-value analysis. We can calculate the effect of loop entropy on
rate by assuming that folding follows Eq. 8. Suppose that the loop
of nl residues is unstructured in the transition state but is closed
at either end by tertiary interactions made as two elements of
structure associate in the transition state. Increasing the loop by
l residues increases the loss of configurational entropy by DDS
according to Eq. 3. The increase in free energy of activation
because of loop size is given by TDDS, and the change in lnk by
2DDSyR. Thus, according to Eq. 6,

D lnk < 2
3LN

2NA/Bnl
DCO. [9]

This equation predicts an approximately linear relationship
between changes in k and changes in contact order resulting from
changes in loop size. The equation is derived for a specific case
for changes within a single protein, but it does illustrate some
general points. Importantly, the slope is a function of the number
of interactions between the elements connected by the loop and
the nature and degree of structure formation within the loop in
the transition state, which will alter the factor of 3y2. The slope
is thus unlikely to be a constant.

Diffusion Control of Protein Folding? The effects of inserting
residues into loops of CI2 and the a-spectrin SH3 domain have
been systematically analyzed and have provided an excellent
system for benchmarking the above equations (18, 19). Before
applying Eq. 9 to the data, the question has to be addressed of
whether the folding reaction is diffusion controlled. The usual
meaning of ‘‘diffusion control’’ in chemical kinetics is that a
reaction is limited by the rate of diffusion together of molecules.
The characteristics of such a diffusion-controlled reaction are
that it has a low activation energy, the rate decreases with
increasing viscosity (k a 1yh), and the reaction rate is not
affected by the activation energy of the chemical steps. It was
proposed from the effects of viscogenic agents that the folding
of CspB is diffusion controlled, that is, compaction of the
polypeptide chain is rate determining because the rate constant
for folding is inversely proportional to viscosity (20). Plaxco and
Baker showed that folding of the 62-residue IgG binding domain
of protein L is not diffusion controlled (21), as did Bhattacharya
and Sosnick the a-helical GCN4-p29 (22). The kinetics was
analyzed by Kramers’ theory (23), a more fundamental version
of Eq. 8 that does not invoke a fixed value of n. Kramers’ theory
invokes an inverse dependence of kn on viscosity under ‘‘high-
viscosity’’ conditions because of frictional effects on passage
over the transition state barrier. At ‘‘high viscosity,’’ the system
moves many times back and forth over the top of the barrier in
a diffusion-like way before it can escape to give products, and the

rate constant becomes inversely proportional to viscosity. Under
these conditions, the rate constant varies with both viscosity and
the change in chemical activation energy. Plaxco and Baker (21)
pointed out that the interpretation of the observed inverse
dependence of folding rate on viscosity is ambiguous and is
consistent both with diffusion-limited chain collapse and fric-
tional effects on the transition state, because both predict that
rates vary as 1yh. But numerical simulation demonstrated that
the effects of viscosity were at the transition state and not at the
early diffusive steps (21). The assertions of Baker and Plaxco are
directly supported from observations on CI2 that the folding of
wild-type and loop insertion mutants of CI2 is on a much longer
time scale (.10 ms) than chain compaction events, which are on
a time scale of 100 ms or less (24). Indeed, one mutant of CI2
(RF48) folds some 40 times faster than wild type, with a half life
of 0.3 ms, showing directly that diffusional events per se are not
rate limiting for wild type. Similarly, some mutants of the SH3
domain fold faster than wild type (120 s21 vs. 3 s21; Luis Serrano,
personal communication) so that its folding is not diffusion
limited. Further, a compact transition state is not consistent with
an early transition state that is expected from collapse being rate
determining (21, 24).

Experimental Tests of the Contact Order Relationships. Plotted in
Fig. 3 are the logarithms (log10) of the rate constants vs. 100 3
CO for mutants of CI2 containing 7, 9, 11, and 13 residues that
are mainly Gln, and 13 residues that are predominantly Ala or
Gly inserted between residues 40 and 41 of its loop. The slopes
are 20.36, 20.26, and 20.19, respectively, compared with a
value of 20.12 calculated from Eq. 9 (converted to log10),
assuming a value of nl of 15, which is the length of the loop in
the native protein. Also plotted are data for 2, 4, 6, 10 residues
inserted between residues 19 and 20 or 47 and 48 of a-spectrin
SH3. The slopes are 20.28 and 20.53, respectively, compared
with values of 20.07 and 20.47 calculated from Eq. 8 and the
native loop lengths. These values span that of 20.43 found for
the proteins plotted in Fig. 1. Given the uncertainties in the
theory behind Eq. 3 and the assumptions about the nature of the
loops in the transition state, the agreement is probably as good
as can be expected. Nevertheless, the observations that loga-
rithms of folding rate constants are linear with contact order for
these specific systems, and that the slopes are of the right order
of magnitude and vary qualitatively as predicted, are consistent
with and lend strong support for the importance of contact order
in protein folding.

Fig. 3. Plots of logk vs. 100 3 CO for loop insertion mutants of CI2 and the
a-spectrin SH3 domain.
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How Precise Is the Dependence of lnk on Contact Order? The rate
constant for folding depends on all the energy differences
between the transition and ground states. The energies first
analyzed are those caused by direct interactions of residues,
especially those in the folding nucleus. These can dominate the
rate equation. For example, the rate constants for the folding of
CI2 span three orders of magnitude: wild type folds at 25°C at
56 s21, the double mutant AG16yIA57 in the folding nucleus at
2.4 s21, and RF48 at 2300 s21. Consequently, the contact order
equation cannot by itself accurately predict rate constants. But
the correlation between logk and contact order is truly remark-
able and points to general principles about the nature of folding
that must be included in simulations. Further, the correlation
also implies that the free energy of forming the nucleus in the
transition state has the component from direct interaction
constant within a few kcalymol so that the entropy terms from
contact order appear above the ‘‘noise’’ level from differences in
specific interactions.

Pathway to the Extended Nucleus: Nucleation-Condensation vs.
Diffusion-Collision. The increasing accumulation of F-value data
and the correlation of the contact order plot with native state
topology are strong evidence for the mechanism involving an
extended nucleus in the transition state being quite general.
There is persuasive evidence both for the nucleation-
condensation mechanism for CI2 and allied proteins with simul-
taneous formation of secondary and tertiary interactions and
some evidence for a diffusion-collision model for the folding of
the small a-helical fragment of l repressor by preformed ele-
ments of secondary structure associating (25, 26). The strict
diffusion-collision model predicts that local interactions every-
where in helices and strands define the folding rate. Nucleation-
condensation predicts that some native tertiary interactions are
crucial as well as the native interactions’ secondary structure in
the nucleus. In practice, the transition states for both processes
involve extended structures with a mixture of tertiary and
secondary interactions, the secondary structural elements in the
diffusion-collision mechanism forming the tertiary interactions
as the secondary structures coalesce. Nucleation-condensation
and diffusion-collision mechanisms are basically extremes of the
same process, with the elements of secondary structure being
inherently more stable and better formed in the diffusion model
than in nucleation-condensation (27) (Fig. 4).

The transition states for the stepwise and nucleation mecha-
nisms are thus qualitatively similar, which leads to a dilemma in
interpreting kinetic data and simple models of folding. Accord-
ing to the transition state equation (Eq. 8), the rate folding
constant depends on just the energy difference between the
transition state and the ground state, provided any preequilibria
are rapid (Fig. 3). Thus, kinetic data relating changes in structure
and kinetics respond in a qualitatively similar manner to changes
in structure. But they can be distinguished between by quanti-
tative data: the diffusion-collision mechanism is predicted to
have F-values of 1 for the relevant secondary structure, which is
found for a model system (28), whereas nucleation-condensation
has mainly fractional values that can tend to 1.0 for especially
stable elements.

Baldwin and Rose (10, 11) have argued that all proteins fold
in a hierarchical model, with the successive docking of elements
of native structure. But the predictive success of their hierar-
chical model does not have implications for the kinetic mecha-
nism, because any mechanism that invokes rapid preequilibria
and an extended nucleus containing native-like secondary struc-
ture will fit the observed kinetics.

Simulations of Folding. The mechanistic features of an extended
folding nucleus that is stabilized directly by native-like sec-
ondary-structure interactions and destabilized by loop entropy

are explicitly or implicitly included in the simple algorithms for
folding of Muñoz and Eaton (29) and Baker and coworkers (6).
Muñoz and Eaton successfully calculated the folding rate con-
stants of 22 proteins using an elementary statistical mechanical
model and the known distribution of interactions in their three-
dimensional structures. They assumed residues come into con-
tact only after all of the intervening chain is in the native
conformation, and that native structure grows from localized
regions that then fuse to form the complete native molecule. The
relative success of their calculations suggested that folding rate
constants are largely determined by the distribution and strength
of contacts in the native structure, that is, topology is important.

Fig. 4. (Lower) Simplified energy diagrams for true two-state folding via
nucleation-condensation and apparent two-state kinetics for a framework
mechanism that involves the formation of, say, an a-helix, at a higher energy
than the denatured state. If both mechanisms involve an extended network of
long-range native-like tertiary interactions around the helix, then the free
energy of activation, DG‡, responds to changes in structure in a similar manner
for both mechanisms, because DG‡ depends just on the difference in energy
between similar transition states and the denatured state. (Upper) Two-
dimensional representation of the merging of the nucleation-condensation
and framework mechanisms. In the framework mechanism, the F-values for
the formation of the helix are close to 1, because it is relatively stable and can
form to an appreciable extent in the absence of tertiary interactions. As the
helix becomes less stable, it requires more tertiary interactions to become
stable in the transition state, and so the formation of helix is coupled with that
of tertiary structure. The F-values for formation of the helix can then be
appreciably less than 1.
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The Baker model invokes similar features and is successful in
predicting structures as well as rates (6, 30). Very recently, Debe
and Goddard (31) have calculated accurately the rates of folding
of 21 of the two-state folding proteins, on the basis of the
nucleation-condensation mechanism. The extended nucleus
mechanism of the nucleation-condensation mechanism is clearly
a very robust basis for calculating folding rate constants.

Although there is no single mechanism for protein folding, the
extended transition state provides a unifying feature in the

two-state folding of small domains. An extended nucleus is
necessary for the folding of these domains, because a large
number of interactions have to be made for an energetically
downhill passage after the transition state.
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