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ABSTRACT In this study we present an
accurate secondary structure predictionproce-
dure by using a query and related sequences.
The most novel aspect of our approach is its
reliance on local pairwise alignment of the
sequence to be predicted with each related
sequence rather than utilization of a multiple
alignment. The residue-by-residue accuracy of
the method is 75% in three structural states
after jack-knife tests. The gain in prediction
accuracy compared with the existing tech-
niques, which are at best 72%, is achieved by
secondary structurepropensities based onboth
local and long-range effects, utilization of simi-
lar sequence information in the from of care-
fully selected pairwise alignment fragments,
and reliance on a large collection of known
proteinprimary structures. Themethod is espe-
cially appropriate for large-scale sequence
analysis efforts such as genome characteriza-
tion, where precise and significant multiple
sequence alignments are not available or
achievable. Proteins 27:329–335, 1997.
r 1997Wiley-Liss, Inc.
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INTRODUCTION

A major improvement in protein secondary struc-
ture prediction accuracy from sequence alone re-
sulted from the exploration of additional information
contained in often numerous sequences homologous
to that predicted. This was made possible by the
unprecedented speedup in nucleotide sequencing
capabilities, resulting in a near 15-fold increase in
the number of sequences over the last decade. For
85% of the known protein sequences, at least one
homologous sequence is known (as inferred from the
ProDomdatabase1), making secondary structure pre-
diction frommultiple sequences realizable.
Although the benefits of multiple sequences for

secondary structure prediction were noted long ago,2

most of the consistent methodological work on this
subject was made over the last decade3-5 with the
best available programs surpassing the 70% accu-
racy level6-9; reviewed recently in ref. 10. Many
recent secondary structure predictions are based on

sequence families.11-14 It is generally accepted that
the utilization of multiply aligned sequences brings
about a gain in prediction accuracy of 6–8%, relative
to the single sequence case.6,15,16

The framework of current approaches includes
automatic multiple alignment of related sequences
and derivation of amino acid residue variation pat-
terns at individual alignment positions or within
fixed-length sequence spans of the multiple align-
ment. To generate the secondary structure predic-
tion for the query sequence, an entire range of
mathematical formalisms has been used from simple
statistical rules to sophisticated machine learning
algorithms.
Multiple sequence alignment remains a difficult

task in molecular bioinformatics. Rigorous algo-
rithms based on dynamic programming have the
computational complexity of at least Ln (where L is
the sequence length and n is the number of se-
quences) and can be impractical if many or long
sequences are involved. Although several shortcuts
based on incorporation of biologically relevant infor-
mation to limit the search space have been sug-
gested,17-20 the currently used approaches almost
always rely on hierarchical clustering of the se-
quences by pairwise alignment beginning with the
most closely related pairs, so that the overall align-
ment quality depends largely on the pairwise similar-
ity scores of different sequences along the evolution-
ary tree.21-27 Once aligned, two sequences preserve
their register and gaps introduced at earlier stages
of the alignment procedure are never reconsidered,
following the dictate ‘‘once a gap, always a gap.’’23

Such procedures represent a compromise between
pairwise and overall alignment quality.
Most of the gaps introduced in the alignment can

be irrelevant for secondary structure prediction,
which focuses on the relationship of the sequence to
be predicted with all the other sequences and not on
all pairwise relationships. Very distantly related
proteins often share only short functional and struc-
tural sequence patterns, making attempts to multi-
ply, align, and utilize the entire sequences futile.
Important structural elements present in some fam-
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ily members can be matched against gaps in other
sequences,28 which will either mislead the recogni-
tion procedure or leave certain alignment regions
unassigned.29 Sequences completely foreign to the
given family can also be recruited by database
searching techniques with inappropriate or ambiva-
lent parametric setting, further reducing the informa-
tion content of the multiple alignment. Recent evi-
dence shows that misaligned sequences can reduce
prediction accuracy to a level lower than that
achieved with mere single sequence information.15,16

In this study we propose an alternative way to use
the additional information contained in a set of
related sequences. A careful pairwise alignment of
the query sequence with all related sequences is
performed. Only significant alignment fragments
are subsequently considered. The secondary struc-
ture propensities of the auxiliary-related sequences
are combined with (projected onto) those of the base
sequence and weighted according to their degree of
similarity.

METHODS
Protein Structure Data Sets

For training, testing, and comparing our algo-
rithm, we used the same nonredundant set of 125
globular protein tertiary structures, as listed by Rost
and Sander6 (set RS). The atomic coordinates were
taken from the Protein Structure Bank (PDB).30 For
the final training we created our own set with the
automated procedure of Heringa et al.31 (set FA).
The latter contained 556 protein chains determined
by X-ray analysis and NMR with no more than
30% pairwise sequence identity, no sequence with
length less than 50 residues, and crystallographic
resolution .2.5 Å.

Generating Related Sequence Sets

For each protein with a known three-dimensional
structure as used in this analysis, related protein
sequences were extracted from the largest protein
sequence data bank (TREMBL), which was created
by T. Etzold and G. Schaefer at the European
Molecular Biology Laboratory (EMBL)32 and con-
tains translations of all coding frames without inter-
nal stop codons in the EMBL nucleotide sequence
database.33 Searching for similar sequences was
based on the improved FASTA technique34 (version
2.0), which provides an estimate of statistical signifi-
cance of the hits found based on the extreme value
distribution.35 Because the evaluation of alignment
quality is incorporated in our technique at a later
stage (see below), a very generous cutoff for extreme
values (0.1) was used to ensure that a full se-
quence set is generated. Every set of sequences sim-
ilar to a given sequence with known topology was
made nonredundant with the procedure of Her-
inga et al.31 such that no two sequences of the set
had more than 95% residue identity. This step

was necessary because the TREMBL database often
contains identical or nearly identical sequences
resulting from different sequencing projects, as
well as fragments included in other database
entries.

Secondary Structure Propensities

The principal step in our procedure involves gener-
ating seven secondary structural propensities (Pi, i5
1,7) for the query sequence and each sequence in the
related set as described earlier for the algorithm
PREDATOR, which relies only on single sequence
information for secondary structure prediction.36

Three propensities are based on long-range interac-
tions involving potential hydrogen bonding residues
in antiparallel (P1) and parallel (P2) b-strands as
well as a-helices (P3); three further propensities for
helix (P4), strand (P5), and coil (P6) rely on the
similarity of the sequence segment to be predicted
with those of known conformation (nearest neighbor
approach37), and finally a statistically based turn
propensity (P7) used over a four-residue window as
described by Hutchinson and Thornton.38 These
propensities rely on different concepts (hydrogen
bonded pairing, sequence fragment similarity, and
knowledge-based statistics) that complement each
other with appropriate weighting and allow a high
prediction accuracy (68%) by using single sequence
information only.

Combination of the Secondary Structure
Propensities of the Base Sequence With
Those of Related Sequences

This section describes the primary novel element
of our method. Instead of relying on protein se-
quences multiply aligned over their entire length,
PREDATOR uses pairwise alignments of the base
sequence with each sequence from the related set
identified by the SIM technique of Huang and
Miller.39 SIM produces Q best nonintersecting local
alignments between a pair of sequences by dynamic
programming.
Let Pi

0 (l) be the secondary structure propensities
of the sequence being predicted, where i refers to a
given propensity (i 5 1,7) and l is the residue site
(l 5 1,L0) in a sequence of length L0. Let Pi

m (l) (i 5
1,7; l 5 1,Lm; m 5 1,M) represent secondary struc-
ture propensities for M-related sequences with
respective lengths Lm. After aligning the base se-
quence with the m-th similar sequence, we obtain in
general Q best local nonintersecting alignments with
residue percentage identity of the aligned fragments
V q

0,m (q 5 1,Q) and length Sq
0,m (Fig. 1). The percent-

age of identity is relative to the number of matched
residue pairs where gaps are not considered, al-
though they may appear in the SIM local align-
ments. The quality of every pairwise alignment with
the base sequence was characterized by the pseudo-
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information

Iq
0,m 5 2V q

0,m ln V q
0,m (1)

and the measure of Sander and Schneider40

Ṽ q
o,m 5 290.15* Sq

0,m20.562
(2)

which gives the minimum threshold of percentage of
identical residues for a given length of residue matches
necessary for true structural homology (Fig. 2).
Alignments are discardedas insignificant byapplying

the following selection criteria: 1) Sq
0,m , 10; 2) Iq

0,m , Ĩ
where Ĩ is an empirically chosen threshold; or
3)Vq

0,m , Ṽq
0,m for a given alignment length Sq

0,m (Fig. 2).
The final propensity values for each residue l of

the base sequence are calculated as a weighted sum
of the native propensities Pi

0 (l) and all propensities
of the residues from homologous sequences projected
onto the residue l from the local pairwise alignment
procedure such that

Pi
0,Final(l) 5

Pi
0(l) 1 o

m51

M 5
Iq
0,mPi

m(h),

0,

if a residue h of sequence
m is projected onto residue
l of sequence 0 through
local alignment q
otherwise

1 1 o
m51

M 5
Iq
0,m,

0,

if a residue of sequence
m is projected onto
residue l of sequence 0
through local alignment q
otherwise

Generating and Evaluating the Prediction

The rules for assigning the secondary structural
type at each reside site l from the final propensities
Pi
0,Final (l) were the same as for the single sequence

PREDATOR (see ref. 36 for details). If (P1(l) . t1 or
P2(l) . t2) and P3(l) , t3, then predict sheet; other-
wise if P3(l) . t3, then predict helix; otherwise
predict coil. If P6(l) . t6, then predict coil. If P5(l) .
t5, then predict sheet. If P4(l) . t4, then predict helix.

If P7(l) . t7, then predict coil. The threshold values ti
(i5 1,7) were determined to achieve the best possible
prediction accuracy by a global optimization proce-
dure involving multiple steps of random generation of
starting threshold values in reasonable ranges with a
subsequent Nedler-Mead simplex function minimiza-
tion.41 Postprocessing of the prediction consisted of
eliminating a-helices of four residues and fewer in
length and b-strands of two or fewer residues in length.
To ensure the absence of a relationship between

sequences in the training set used to optimize propen-
sity thresholds and the protein sequence under
prediction, we implemented a simple one-at-a-time
jack-knife procedure. Each of the protein sequences
with known tertiary structure was iteratively re-
moved from the training set, all propensities recalcu-
lated, optimal thresholds found, and the resulting
secondary structure prediction procedure applied to
the removed sequence. Prediction accuracy was de-
fined as the fraction of residues whose secondary
structural conformation was correctly predicted in
three states (helix, sheet, and coil). DSSP secondary
structure assignments42 were used in this study to
compare with past efforts that were always reliant
on DSSP. However, the final version of PREDATOR
has an option where the user can specify one of the
two target secondary structure assignment methods,
DSSP or STRIDE.43 The average accuracy over all
such jack-knife tests was taken to indicate the
overall prediction accuracy.

RESULTS AND DISCUSSION

This study concentrates on a new and optimal way
to use and extract similar sequence information for

Fig. 1. Pairwise local alignments of the query sequence 0 with
the related sequences m 5 1,2 . . . M. Every alignment is
characterized by its length Sq

0, m and residue percentage identity
Vq

0, m (q 5 1,Q), where Q is the total number of local alignments
between the sequences 0 and m.

Fig. 2. Alignment quality (pseudoinformation) as a function of
residue identity fraction (see Methods). The value of the pseudoin-
formation is used as a weight to combine the secondary structure
propensities of matched residues in the related sequences with
each of those in the query sequence. Note that the curve has its
maximum at ,35% identity. The accepted range of identity is
shown over the hatched area and is bracketed by two thresholds,
Ṽ and Ĩ, where Ṽ depends on the alignment length according to
the Sander and Schneider40 formula (illustrated in the figure for an
80-residue alignment span) while constant Ĩ was empirically found.
Note that sequence segments with lower identity to the query
sequence contribute more to the secondary structure prediction
because of their greater information content.

331PROTEIN SECONDARY STRUCTURE PREDICTION



secondary structure prediction. The general ap-
proach is applicable to any propensity-based predic-
tion technique. Rigorous dynamic programming pair-
wise alignment of the base sequence with each and
all related sequence fragments or entire sequences
results in more precise relationships than those
arising from multiple alignment procedures that
demand significant global sequence matching and
can miss distantly related sequence spans. Any
relaxation in significance can yield mistaken align-
ments, which in turn reduce prediction performance.
Ourmethod also projects secondary structure propen-
sities of individual residues from sequences in the
related set onto the correspondingly matched resi-
dues in the query sequence through the use of
weights proportional to the similarity of the aligned
fragments.
The mean residue-by-residue prediction accuracy

of the technique described here is 74.8% resulting
from a one-at-a-time protein jack-knife procedure
applied to a carefully selected set (RS) of 125 nonho-
mologous protein sequences with known tertiary
structure as originally listed by Rost and Sander,6

albeit one chain of an inappropriate membrane-
buried protein was excluded. Matthews54 correlation
coefficients for a-helix, b-sheet, and coil were 0.61,
0.45, and 0.44, respectively. The distribution of the
accuracy values for different chains of the RS set is
shown in Figure 3. This set has become a compara-
tive standard to assess the quality of prediction
schemes.7,44 The accuracy without the jack-knife
procedure was 77.5%, only 2.5 percentage points
higher than with jackknifing. However, because each
protein structure in the 125-protein set represents
on average ,0.8% of the total information, statistics
gathered from the training set may be insufficient for
this method. The data bank of known protein struc-
tures30 is ever increasing, and currently there are
556 protein chains (see Methods) whose sequences
are maximally related at the 30% residue identity

level. The accuracy of PREDATOR on this larger set
(FA)was 74.6%without jack-knife calculations, which
would have involved prohibitive computational re-
quirements. However, because each protein in the
latter set contains on average less than 0.2% of the
total information, the prediction accuracy, based on
the experience with the 125-protein set, would be
expected to drop marginally by ,0.6% due to the
jack-knife procedure, leading to a real expected
accuracy near 74%. The accuracy with respect to the
STRIDE43 secondary structure assignmentswas,0.5%
lower than that achievedwith theDSSP42method.
The influence of each aligned fragment on the

secondary structure prediction of the query sequence
was dependent on the identity level within the
aligned region, according to equation 1 (see Meth-
ods). Thus, sequences or sequence spans very similar
to the query sequence and those insignificantly
related to it have little or no influence on the
prediction, whereas sequences with similarity in the
most informationally rich range of 35–70%make the
greatest contribution. Very similar sequences pro-
vide little new information with respect to the query
sequence. Highly diverged sequences can have con-
siderably different secondary structure even when
the overall topological equivalence is preserved and
must therefore be downweighted. This local down-
weighting of very distant sequences and closely
related sequences is unique to our approach and
certainly different from other sequence weighting
schemes.18,45-47 Furthermore, Vogt et al.48 have shown
that protein sequence alignments, when compared
with those derived from three-dimensional struc-
tural superposition, display a mean correctness of
match near 90% at 35% residue identity, whereas at
30%, 25%, and 20% the respective average accura-
cies drop quickly to 85%, 75%, and 55%. The se-
quence identity is calculated locally for the aligned
fragments considered significant by the SIM routine.
This allows the use of even more related sequence

Fig. 4. Number of residues projected onto each of the pre-
dicted residues through the search and alignment procedure.

Fig. 3. Distribution of the PREDATOR prediction accuracy
from related multiple sequences in three states over the 125
protein chains in the RS set (see Methods).
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information than that in global multiple alignments
because in many cases only relatively short domains
or motifs in two proteins are really similar with
global identity below the significance threshold.
Experts in certain protein families often work with

sequence alignments resulting from careful manual
refinement based on both visual criteria and avail-
able experimental data. PREDATOR has an option
to allow to take into account such cases and preserve
the register of multiply aligned sequences for second-
ary structure prediction. Pairwise alignments of the
query sequence with other homologues are directly
borrowed from the multiple alignment. Significant
fragments of the pairwise alignments are then de-
tected in the usual manner and their secondary
structure propensities projected onto the base se-
quence as previously described. The rest of the
procedure remains unchanged.
This method also maximizes the amount of se-

quence information used for prediction by searching
for related sequences in the TREMBL database, the
largest collection of protein sequences currently avail-
able. The total number of individual residues con-
tained in the FA set of 556 proteins is 120,080, and
only 6,734 or less than 1% had nomatch from related

TREMBL sequences whose propensities im-
proved the prediction (Fig 4). Nearly half of the
predicted residues had between 1 and 10 related
residues, whereas the remaining half had more
than 10.
It must be emphasized that the prediction arising

from our method is not a consensus over a set of
sequences, especially given the use of weights and
related fragments, but rather a prediction for just
one sequence in the presence of others. Significant
variation can be expected between the consensus
structure of aligned sequences and the structure of
each sequence in the set49,50 such that if considerably
diverged protein families are involved, the consen-
sus approach can result in significant error. Our
method is also particularly helpful in molecular
modeling where the prediction is centered on the
modeled sequence.
Secondary structure predictions generated sepa-

rately for each sequence in a set could be used for a
consensus prediction. This approach, however, has
been justifiably criticized51 because the amplitudes
of individual propensities are not considered and
decision making is unreliable when secondary struc-

Fig. 5. Secondary structure prediction of the factor for inver-
sion stimulation (FIS) protein53 (chain A, PDB code 3FIS) contain-
ing a helix-turn-helix motif for DNA binding.52 The first 19 residues
of the protein were not resolved by X-ray crystallographic tech-
niques and are not included in the sequence. A: Results of the
FASTA34 search against the SWISS-PROT32 database with the
sequence of the FIS protein. The SWISS-PROT data bank was
only used for demonstration because it is better documented than
TREMBL. Sequences NTRC_ECOLI andNTRC_SALTYare nearly
identical and only one of them was used for further calculations.
The last column provides the estimate of statistical significance for
a given database hit based on the extreme value distribution.35
Only top-scoring hits of the database search with E-values less
than 0.1 are shown. B: CLUSTAL W46 multiple sequence align-
ment of the FIS protein and related sequences. Only a fragment of
the alignment corresponding to the full sequence of the PDB entry

3FIS is shown. Local alignments of the related proteins with the
query sequence produced by PREDATOR (through the SIM
technique) by using the same set of proteins are shadowed and
percentage of identity and pseudoinformation value are indicated
in the last two columns. Numbered residue sites taken from the
SWISS-PROT and corresponding to the NH2-terminal residue in
the spans shown are given in the column after database identifi-
ers. The sequence FIS_ECOLI represents the full version of the
FIS protein (with the 19-residue NH2-terminal portion) and is
discarded by PREDATOR because it is 100% identical to the query
sequence. Note that the sequence NTRC_PROVU was aligned
differently byCLUSTALW(upper line) andbyPREDATOR (lower line).
The helix-turn-helix motif participating in DNA binding is in boxes.
Secondary structure of the FIS protein predicted by PREDATOR and
assigned by the STRIDE algorithm43 from the known tertiary structure
is shown below.
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tural states of equivalent residues display signifi-
cant spread.
To demonstrate the performance of PREDATOR,

we selected a well-documented example of the helix-
turn-helix structural motif found in many protein
families involved in DNA binding.52 A SWISS-
PROT database search using one sequence of such
proteins, the Escherichia coli FIS (factor for inver-
sion stimulation),53 yielded 12 related sequences
(Fig. 5A). Their global multiple alignment and local
pairwise alignments used by PREDATOR are com-
pared in Figure 5B. PREDATOR selectively used
only significantly related fragments with weights
dependent on the identity level. The sequence of the
FIS protein from Haemophilis influenzae, nearly
90% identical to the query sequence within the local
alignment used by PREDATOR,made little contribu-
tion to the prediction (pseudoinformation value 0.11),
whereas the sequence fragments of the nitrogen
assimilation regulatory proteins fromdifferent organ-
isms, acetate metabolism regulatory protein, and
transcription regulatory protein FLBDmade consid-
erable contributions where pseudoinformation val-
ues ranged from 0.35 to 0.37, close to the maximum
possible (Fig. 2). The resulting prediction (Figure
5B) correctly reproduces both helices of the helix-
turn-helix motif, as well as the two helices flanking
the motif.

IMPLEMENTATION AND AVAILABILITY

The algorithm described here is implemented as a
stand-alone portable C program called PREDATOR.
The source code, documentation, and executables for
many computer platforms are available for academic
users via anonymous ftp from ftp.ebi.ac.uk (directo-
ries /pub/software/unix/predator, /pub/software/dos/
predator) or from Dmitrij Frishman (frishman
@mips.biochem.mpg.de). Protein sequences can be
submitted for secondary structure prediction either
toWWWURLhttp://www.embl-heidelberg.de/preda-
tor/predator_info.html or through electronic mail to
predator@embl-heildelberg.de. A mail message con-
taining HELP in the first line will be appropriately
answered.
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