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The problem of rational target selection for protein struc-
ture determination in structural genomics projects on
microbes is addressed. A flexible computational procedure
is described that directly incorporates the whole body of
annotation available in the PEDANT genome database into
the sequence clustering and selection process in order to
identify proteins that are likely to possess currently
unknown structural domains. Filtering out gene products
based on predicted structural features, such as known
three-dimensional structures and transmembrane regions,
allows one to reduce the complexity of neighbor relation-
ships between sequences and all but eliminates the need for
further partitioning of single-linkage clusters into disjoint
protein groups corresponding to homologous families. The
results of a large-scale computation experiment in which
exemplary target selection for 32 prokaryotic genomes was
conducted are presented.
Keywords: fold recognition/genome analysis/
sequence clustering/structural genomics

Introduction

Experimental elucidation of a three-dimensional structure for
each known protein sequence will hardly ever be possible.
Although both DNA sequencing and protein structure deter-
mination have become high-throughput technologies, it is still
four to five orders of magnitude more expensive to characterize
structurally one amino acid than to sequence the three DNA
bases coding for it and only for roughly 13 000 out of 500 000
distinctly different protein sequences currently available has a
three-dimensional structure been solved. Fortunately, proteins
typically come in families and the number of possible folding
patterns is limited. Therefore, to achieve a satisfactory struc-
tural characterization of the current population of protein
sequences, it would be sufficient to solve one representative
structure of each type—the structural knowledge about a
particular protein domain occurring in a family member can
then be extrapolated to other sequences using homology
modeling, provided that the degree of similarity is sufficiently
high. Several concerted high-speed structure generation
projects have been initiated, with the ultimate goal of solving
up to 10 000 new structures within the next 5 years and as a
result elucidate a representative of each protein fold existing
in nature (Sali, 1998). The availability of completely sequenced
genomes plays a key role in these efforts. The joint product of
genomics and structural biology, known as structural genomics,
turned out to be productive and mutually beneficial: while
genome data allow for more efficient exploration of the protein
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structure space (Gerstein, 1998; Frishman and Mewes, 1999;
Wolf et al., 2000), prediction and experimental determination
of protein structures are crucial for improving functional
inferences from genomes (Milburn et al., 1998; Hegyi and
Gerstein, 1999; Skolnick and Fetrow, 2000).

One particular aspect of structural genomics involves the
systematic structural exploration of complete proteomes.
Each genome of a free-living organism codes for a complete
set of functions and hence corresponding protein structures
necessary to support cellular life. Statistically, structural
tendencies in complete genomes, such as the fraction of
residues in α-helical and β-sheet conformations, are well
conserved between different species, but differ significantly
from the observed distribution in the current collection of
known protein structures (Frishman and Mewes, 1997a). This
observation led us to suggest that determining the complete
set of structures encoded in a small model organism would be
of great value for structural biology and would have the
potential to provide us quickly with a more objective view of
the diversity of protein folds. Structural knowledge can also
help to decipher the function of the majority of proteins in each
genome that cannot be characterized though the application of
standard bionformatics approaches, such as similarity searches
(Kim, 2000). In particular, genome-wide structure determina-
tion is the most direct way to address the problem of genomic
‘ORFans’, i.e. proteins without known function occurring in
only one organism (Fisher and Eisenberg, 1999). The benefits of
structural genomics on microbes are especially evident with
pathogens and also microorganisms adapted to extreme
environments because of the immediate relevance for medicine
and biotechnology, respectively (Terwilliger et al., 1998). Efforts
to obtain complete structural complements of several microbial
species are now under way [Mycobacterium tuberculosis (http://
www.doe-mbi.ucla.edu/TB/index.html), Pseudomonas aero-
philum (Mallick et al., 2000), Haemophilus influenzae (http://
s2f.umbi.umd.edu), Methanococcus jannaschii (http://sb3.lbl.
gov/genomics/proteinlist.html), Methanobacterium thermo-
autotropicum (http://nmr.oci.utoronto.ca/arrowsmith/proteomics/
index.html)]. In Japan, the Structurome Project (Yokoyama et al.,
2000) pursues the determination of all structures from the
thermophilic eubacterium Thermus thermophilis (http://www.
rsgi.riken.go.jp/). This genome was selected for a large-scale
protein structure study because of its compactness, thermostability,
presumed ease of crystallization and the availability of genetic
tools for further functional essays. Projects of this type are already
beginning to bear fruit. For example, Hwang et al. assigned
a function to a previously uncharacterized gene product of
M.jannaschii by means of the crystallographic analysis of its
three-dimensional structure (Hwang et al., 1999).

At a given state of the technology to determine structures,
selection of the most economical set of targets is a major cost-
saving factor in any experimental structural genomics project.
The principal requirement of any such target list is that it must
reveal the minimal collection of gene products that possess all
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structural domains with yet unknown folds in the entire data
set under study. Given the high abundance of duplication
modules, both on the level of whole genes or parts of genes
intrinsic to all complete genomes, a crucial step in creating
the list of putative structural targets involves grouping together
proteins sharing similar sequence segments. This is typically
achieved through single-linkage clustering of amino acid
sequences based on pairwise similarity comparisons. Owing
to the well known phenomenon of domain chaining, totally
unrelated protein sequences may end up in the same cluster.
Sophisticated approaches have been developed to partition
single-linkage clusters further into groups of proteins that are
guaranteed to share sequence similarity (Sonnhammer and
Kahn, 1994; Koonin et al., 1996; Park and Teichmann, 1998;
Matsuda et al., 1999; Yona et al., 1999; Enright and Ouzounis,
2000). However, in many cases joint mosaic occurrence of
multiple conserved protein modules (Bork et al., 1997) gives
rise to very large sequence groups with a complex structure
of inter-sequence similarity relationships. Partitioning the cor-

Table I. Genome sequences considered in this study

Genome Domaina Number of ORFs

Aquifex aeolicus B 1522
Archaeoglobus fulgidus A 2407
Aeropyrum pernix A 2694
Borrelia burgdorferi B 850
Bacillus subtilis B 4099
Campylobacter jejuni B 1731
Chlamydia pneumoniae CWL029 B 1052
Chlamydia pneumoniae AR39 B 997
Chlamydia trachomatis serovar D B 894
Chlamydia trachomatis MoPn B 818
Deinococcus radiodurans B 3101
Escherichia coli B 4277
Haemophilus influenzae B 1709
Helicobacter pylori B 1553
Helicobacter pylori J99 B 1491
Mycoplasma genitalium B 480
Methanococcus jannaschii A 1735
Mycoplasma pneumoniae B 677
Methanobacterium thermoautotrophicum A 1869
Mycobacterium tuberculosis B 3924
Neisseria meningitidis MC58 B 1989
Pseudomonas aeruginosa B 5565
Pyrococcus abyssi A 1765
Pyrococcus horikoshii A 2064
Rickettsia prowazekii B 834
Synechocystis sp. B 3169
Thermoplasma acidophilum A 1509
Thermotoga maritima B 1846
Treponema pallidum B 1031
Ureaplasma urealyticum B 611
Vibrio cholerae B 1092
Xytella fastidiosa B 2765

See http://pedant.gsf.de/credits.html for a list of the Web links to the
respective sequencing centers.
aA, Archaea; B, Eubacteria.

Fig. 1. Flow chart of the target selection algorithm, exemplified using the E.coli genome. The entire protein complement of E.coli, comprising 4277 gene
products, is subjected to single-linkage clustering and is split into 2235 clustered sequences and 2042 singlets (sequences not having any paralogs in the
genome). Both subsets are filtered to exclude transmembrane proteins and those proteins which are completely structurally characterized. The resulting
singlets are declared structural targets. The remaining 701 sequences are subjected to two stages of iterative re-clustering. In the first stage, simple domain
problems, such as cannibalization of a short domain by a longer one, are resolved. In the second stage, more complex situations involving proteins with
domain similarities to protein of known structure are treated. At each iteration, redundant sequences are excluded from further consideration and clusters
reduced to just one sequence become singlets and are added to the target pool. Sequences remaining in the single-linkage clusters after the application of the
algorithm are also declared structural targets since they are guaranteed to possess at least one unique and sufficiently long domain not covered by structural
information.
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responding single-linkage clusters into single domain clusters
may represent a significant algorithmic challenge.

It should be noted that the sequence clustering tools
mentioned above were developed with the purpose of studying
the family relationships between proteins for better functional,
structural and evolutionary inferences. While this information
is also invaluable in the context of target selection for structural
genomics, the immediate technical objective here is much
more limited: we want to exclude protein domains that either
do not belong to our targeted class (e.g. transmembrane proteins
if we are interested in soluble proteins) or already have been
structurally characterized. In this paper, we argue that the
computational complexity of the target selection process can
be significantly reduced if the knowledge about predicted
structural features and other relevant protein properties is
directly incorporated into the clustering procedure. It is suffi-
cient to perform the simple step of initial single-linkage
clustering. After the application of a number of filtering
criteria, many of these clusters will be excluded from
consideration because all sequences constituting them have
been discarded. In some other cases, single-linkage clusters
will be reduced to just one candidate sequence. Finally, the
remaining clusters will include sequences all of which are
potential structural targets. The complicated procedure of
resolving the domain structure of single-linkage clusters thus
becomes obsolete. An important prerequisite of this approach
is the availability of a comprehensive annotated database of
completely sequenced genomes.

Materials and methods
Genome sequences and annotation
In this work we considered completely sequenced genomes of
25 eubacterial and seven archaebacterial species (Table I).
Exhaustive automatic annotation of these genomes was con-
ducted using the PEDANT genome analysis suite (Frishman
and Mewes, 1997b; Frishman et al., 2001) and can be accessed
through the PEDANT genome database (http://pedant.gsf.de).

The main distinctive feature of the PEDANT system is its
ability to assign proteins to automatically derived structural
and functional categories. The categorization system is multi-
dimensional in that each sequence can be assigned to many
different categories and each category can contain any number
of gene products. The main vehicle for similarity searches
against the full non-redundant protein sequence database and
a number of specialized datasets (e.g. functional categories) is
the PSI-BLAST algorithm developed at the National Center
for Biotechnology Information, Bethesda, MD (Altschul et al.,
1997). In addition, detection of various sequence motifs,
extraction of relevant keywords, enzyme classification and
superfamily information are performed.

Structural categorization of gene products involves a highly
sensitive comparison of each gene product with the SCOP
database of known structural domains (Brenner et al., 2000;
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Fig. 1.
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Fig. 2. Circular representation of a single-linkage cluster (circlegram). On the inner circle, five M.tuberculosis gene products (rv1164, rv1161, rv1736, rv1442
and rv1163) are shown as black sectors. The N- to C-terminal direction is clockwise. Sequence regions aligned by BLAST after an all-against-all comparison
of M.tuberculosis proteins are joined by stripes colored according to the BLAST alignment score. On the next (middle) circle, shown in brown, IMPALA hits
in the database of protein sequences with known three-dimensional coordinates are mapped. The outer circle, shown in blue, indicates the location of
predicted transmembrane regions. Positions of other functional and structural features, such as SCOP domains, protein motifs, low-complexity regions, etc.,
can be shown on further concentric circles, one for each feature.

Lo Conte et al., 2000) and the sequences of proteins with
known three-dimensional structure (Berman et al., 2000) using
the novel IMPALA software (Schaffer et al., 1999). This
program allows one to compare a query protein sequence with
a collection of position-specific scoring matrices generated by
BLAST and is thus perfectly suitable for similarity-based fold
recognition (Wolf et al., 1999). Our current approach to
genomic fold recognition involves the following steps: (i)
create a complete non-redundant protein sequence database,
(ii) run a PSI-BLAST search with 10 iterations with each
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SCOP domain or PDB sequence against the non-redundant
protein sequence database and save the resulting profiles, (iii)
construct a SCOP or PDB profile library using the IMPALA
software suite and (iv) run an IMPALA search with each
genomic sequence against the SCOP or PDB library. Addition-
ally, for each genomic sequence a number of structural features
are predicted, including secondary structure (Frishman and
Argos, 1997), low-complexity regions (Wootton and Federhen,
1993), membrane regions (Klein et al., 1985), coiled coils
(Lupas et al., 1991) and signal peptides (Nielsen et al., 1997).
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Fig. 3. Single-linkage cluster involving five gene products from A.pernix.

Single-linkage clustering of complete genomic protein
complements
An all-against all comparison of proteins within each genome
was effected using PSI-BLAST, with low-complexity sequence
regions masked. Sequences possessing a sufficient degree of
similarity in a reciprocal fashion (BLAST similarity score �45
bits) were joined into single-linkage groups. In cases where
reciprocal BLAST comparisons produced only one local align-
ment between two sequences in each direction, this hit was
made symmetrical by taking into account only the longer
alignment. Optionally, it is also possible to take into account
results of sensitive recognition of PFAM domains (Bateman
et al., 2000) through HMMER searches (Eddy, 1998). If two
or more proteins in a genome display similarity to the same
PFAM domain with a significant E value (typically 0.001), it
may be safely assumed that the corresponding protein sequence
spans are similar to each other, even if BLAST fails to
recognize such relationships.
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The lists of clustered sequences for all identified clusters in
32 completely sequenced genomes are available through the
PEDANT Web site (see category sequence clusters).
Algorithm for target selection
The flow chart of our algorithm, which we dub STRUDEL
(STRUcture DEtermination Logic), is presented in Figure 1,
using the genome of Escherichia coli as an example. The
analysis of each protein complement begins with single-linkage
clustering. As a result, all sequences are partitioned into two
sets: singlets, i.e. sequences without homology to other gene
products of the genome considered and hence not participating
in any cluster and clustered sequences. Both sets are subjected
to filtering according to user-specified criteria. Throughout
this work we excluded from further consideration predicted
transmembrane proteins and sequences with known three-
dimensional structure. More specifically, sequences were
filtered out if they (i) had more than one predicted trans-
membrane region or (ii) the maximum length of a sequence
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Fig. 4a.

span not covered by IMPALA similarity hits to proteins of
known structure was below a certain threshold (denoted
3D_UNCOVERED; Figure 2), reflecting the expected length
of a structural domain. Singlets remaining after the filtering
are considered structure determination targets. The entire pool
of sequences possessing paralogs is re-clustered and a number
of newly created singlets are attributed to the structural
target set.

In the subsequent steps of the procedure, the structure of
sequence alignments among the members of single linkage
clusters and the similarity hits to proteins of known structure
are analyzed with the goal of excluding redundant information.
First, simple domain problems, such as cannibalization of a
short domain by a longer domain and completely duplicate,
globally similar sequences, are handled. The parameter
SEQ_UNCOVERED determines the maximum allowed length
of the contiguous sequence span not involved in local align-
ments with other proteins in the cluster. Next, more complex
situations involving the mapping of known three-dimensional
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domains on the alignments between clustered sequences are
resolved. Sequences that have less than SEQ_UNCOVERED
amino acid residues not covered by either three-dimensional
hits or alignments with other sequences are excluded because
some of their domains already have structural information while
the remaining sequence portions are completely contained in
the other cluster members. The iterative process of discarding
superfluous sequences from sequence clusters, one at a time,
and re-clustering the remaining sequences continues until
convergence, i.e. either until no more sequences can be
discarded using the criteria currently applied or the cluster is
reduced to just one sequence. In the latter case the resulting
singlet is declared the structural target. The resulting clusters
include polypeptide chains that have at least 3D_UNC-
OVERED residues without structural information and at least
SEQ_UNCOVERED residues not covered by either structural
or similarity hits. As seen in Figure 1, the number of the
single-linkage clusters left decreases significantly after each
round of exclusion and re-clustering.
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Fig. 4. Continued.

The default values of SEQ_UNCOVERED and 3D_UNC-
OVERED used in this work are both 100 amino acid residues,
corresponding to the expected favorable size of a structural
domain (Xu and Nussinov, 1998). The influence of these
parameters on the results of target selection is detailed below.

The particular succession of steps shown in Figure 1 is
not mandatory and is mainly dictated by simple practical
considerations. For example, it would be possible to do
the preliminary sequence filtering first and then cluster the
remaining proteins. However, clustering requires much more
time than filtering and it is much more likely that the user of
the system will want to change filtering parameters than
clustering parameters. Hence it is sensible to do the clustering
of the complete set of proteins only once and save the result
in the PEDANT relational database. Subsequent steps of the
analysis can be quickly performed according to user-specified
filtering conditions.

Graphical representation of single-linkage clusters
Owing to the multi-domain composition of many proteins,
single-linkage clusters often include sequences that are totally
unrelated to each other. In order to facilitate the analysis of
the resulting groups we have implemented a visual representa-
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tion of single-linkage clusters, further referred to as circlegram
(Figure 2). A circlegram may include any number of concentric
circles, each for a certain protein feature. In this work, the
inner-most circle on such graphics schematically represents
polypeptide chains as black sectors, with the N- to C-terminal
direction corresponding to the clockwise direction on the
circlegram. On the next circle of larger radius, IMPALA
similarity hits to proteins of known structure are depicted as
brown sectors. Finally, the outermost circle indicates the
location of predicted transmembrane regions in blue. Owing
to the small scale of the graphics and relatively low resolution,
several features, e.g. transmembrane domains, may be lumped
into one contiguous sector. BLAST similarity hits between the
proteins constituting the cluster are shown as stripes originating
from respective black sectors, with boundaries corresponding
to the start and end positions of local alignments. The stripes
are colored according to the BLAST similarity scores (see the
color key in the bottom of each picture). Similarity relationships
between proteins based on the presence of PFAM domains
(see above) may be additionally shown as stripes of a single
color, irrespective of the E values of the underlying PFAM
search hits. Circlegrams represent a convenient means of
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Fig. 4. Continued.

displaying any number of sequence-related structural and
functional features together with intra-protein similarity rela-
tionships. They are similar in spirit to the circular depiction
of correlated structural features within one protein sequence
developed by Pazos et al. (Pazos et al., 1997) and complement-
ary to the linear diagrams of domain similarity implemented
by Storm and Sonnhammer (Storm and Sonhammer, 2001).

Results and discussion
Combining sequence clustering with the analysis of protein
structural features
The main distinctive feature of our method is the direct
incorporation of predicted protein structural features into the
clustering procedure. This approach allows to discard a large
number of gene products at early stages of the target
selection process and radically reduce the complexity of the
resulting single-linkage clusters. Figure 3 provides an example
of a single-linkage cluster from Aeropyrum pernix which is
collapsed to a singlet if standard settings described in the
Materials and methods are applied. All sequences forming
the cluster possess the thioredoxin domain with known tertiary
structure. Two genes, gi_5106134 and gi_5106201, code for
apparently single domain proteins and are discarded since
they are almost completely covered by three-dimensional
information. Two further proteins, gi_5105410 and
gi_5105974, will be discarded since they have a large
membrane-spanning domain on the C-terminus and an
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additional putative hydrophobic region on the N-terminus. The
remaining gene product gi_5104297 is retained as a structural
target because in addition to the C-terminal thioredoxin domain
it includes a completely uncharacterized soluble domain on
the N-terminus. The results for this cluster will be different
if the user is interested in shorter domains and sets both
3D_UNCOVERED and SEQ_UNCOVERED to ~75 amino
acid residues. Then gi_5106201 also becomes a structural
target since its N-terminal portion encompassing approximately
the first 80–90 amino acids displays no similarity to any other
known protein.

The E.coli cluster shown in Figure 4a involves the 30S
ribosomal protein S1 (g1787140) (Kimura et al., 1982) and a
number of other RNA-associated proteins. The S1 protein
contains six copies of the S1 RNA binding domain (of which
IMPALA recognizes only four) with the three-dimensional
structure solved by Bycroft et al. (Bycroft et al., 1997). Single
occurrences of this domain are also detected in five other
proteins in this cluster, g1790622, g1789645, g1789811,
g1787325 and g1789555. In the latter, another DNA-binding
domain, the KH module (Siomi et al., 1993), with known
structure, is also present immediately adjacent to the S1
domain. In addition, the ribonuclease E protein (g1787325)
has a very weak IMPALA hit (score � 45 bits, E value �
0.004) to another protein with known structure, the NCD
kinesin motor protein from Drosophila melanogaster shown
in the central part of the protein; this similarity is certainly
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Fig. 4. Continued.

spurious. Two further proteins, g1787542 and g1790074, do
not contain any domains with known structure, but share a
domain sequence similarity with g1790622 and g1789555,
respectively. Using the default parameters, the STRUDEL
algorithm rejects g1787542, g1789645 and g1790074 because
they are completely contained in other proteins of this group.
As a result, five proteins with partially known structures form
the final cluster (Figure 4b) and all of them are declared
structural targets. In fact, however, g178140 must have been
rejected because it is completely covered by the six copies of
the S1 domain. The problem is that, as mentioned above, only
four of them are detected by the IMPALA search so that over
150 amino acid residues of this protein end up not having
structural information. Increasing the 3D_UNCOVERED para-
meter to 160 residues leads to g178140 being discarded, but
at the same time g1787325 is also discarded because in this
case two structural hits, the correct one to the S1 domain and
the incorrect one to the NCD protein, account for a sufficiently
large fraction of its polypeptide chain (Figure 4c). Thus, using
3D_UNCOVERED � 100 and 3D_UNCOVERED � 160 in
this example leads to over- and under-prediction of potential
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structural targets, respectively. The correct answer can only
be achieved by imposing a stricter similarity threshold for
IMPALA searches (score � 45 bits) in combination with
3D_UNCOVERED � 160. The spurious similarity between
g1787325 and the NCD protein will then be below the threshold
and g1787325 is recognized as a structural target because only
a minor part of its polypeptide chain is covered by the similarity
hit to the S1 domain.

The results are different if the PFAM similarity data are
considered while building single-linkage clusters (see Materials
and methods). One more protein, the L factor protein with the
PEDANT id g1789560, is recruited because the PFAM motif
corresponding to the S1 RNA binding domain is identified
based on HMMER searches (Figure 4d). The relatedness of
this protein to other members of the cluster could not be
detected through the BLAST all-against-all comparisons. In
this case the resulting cluster after the application of STRUDEL
encompasses six potential structural targets, one more than
without PFAM (Figure 4e). However, the total number of
targets derived by the algorithm from this group of proteins
remains unchanged. In the case when PFAM hits are not
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Fig. 4. The E.coli cluster involving the 30S ribosomal protein S1 and related proteins. (a) Initial single-linkage cluster obtained without consideration of
PFAM hits; (b) resulting single-linkage cluster after the application of STRUDEL with default parameters; (c) resulting single-linkage cluster after the
application of STRUDEL with 3D_UNCOVERED � 160 amino acid residues; (d) initial single-linkage cluster obtained taking into consideration PFAM hits;
(e) resulting single-linkage cluster after the application of STRUDEL.

Fig. 5. Dependence of the number of sequences remaining in single-linkage
clusters after the application of the STRUDEL algorithm (Figure 1) on the
parameters SEQ_UNCOVERED and 3D_UNCOVERED.
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Fig. 6. Dependence of the number of structural targets, among both
clustered sequences and singlets, produced by the STRUDEL algorithm on
the parameters SEQ_UNCOVERED and 3D_UNCOVERED.
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Fig. 7. Percentage of structural targets in 32 complete genomes before and after the application of STRUDEL.

considered g1789560 does not get assigned to any single
linkage cluster and ends up being a singlet. Since only a minor
part of this protein is covered by the S1 domain with known
structure, it is also declared to be a structural target. Thus, in
this particular example consideration of PFAM does not have
any influence on the number of targets generated, although the
better knowledge about the composition of this protein family
is certainly helpful for subsequent manual evaluation of the
results.

Depending on the objectives of a particular structure deter-
mination project, the requirement that the potential structural
targets must not have significant transmembrane domains may
be relaxed in order to take into account individual, sufficiently
long globular domains of membrane-associated proteins. The
M.tuberculosis sequence cluster centered around the ‘fused
nitrate reductase’ rv1736c (Figure 2) provides a good illustra-
tion of this point. rv1736c is the result of re-arrangement and
fusion of the α, δ and γ chains of membrane-bound nitrate
reductase, encoded by genes rv1161 and rv1163 and rv1164,
respectively (Cole et al., 1998). The soluble α subunit (together
with the β subunit) is anchored to the plasma membrane by
the γ subunit, while the δ polypeptide is not part of the final
enzyme and is presumably important for the stability of the
αβ complex prior to its membrane attachment (Moreno-Vivian
et al., 1999). rv1161, in its turn, shares a weak domain
similarity with the biotin sulfoxide reductase rv1442. Since
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the tertiary structure of the entire rv1161 gene product is
known via its homology to the R.capsulatis dimethyl sulfoxide
reductase (Schneider et al., 1996), the fused protein rv1736
efficiently consists of one globular domain with known struc-
ture, one more globular domain with unknown structure,
corresponding to rv1163 and one transmembrane domain
on the C-terminus, corresponding to rv1163. Consequently,
STRUDEL yields rv1163 as the only target from this cluster.
However, if rv1163 did not exist, the corresponding globular
domain in rv1736c would have been overlooked because of
the presence of the transmembrane domain in the latter. We
have implemented an option in the STRUDEL software that
allows to consider mixed membrane/soluble proteins as poten-
tial structural targets.

Choice of the analysis parameters

The interactive application of STRUDEL allows to use
what-if scenarios to explore different outcomes for a given
cluster or for the genome as a whole and to optimize the
analysis parameters to suit the goal of a particular structure
determination project. In this section we demonstrate the
global influence of the parameters 3D_UNCOVERED and
SEQ_UNCOVERED on the results of the target selection
process using the E.coli genome as an example.

The total number of single-linkage clusters found in E.coli
using the reciprocal BLAST score threshold of 45 bits is 479,
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encompassing 2235 proteins. As seen in Figure 1, after the
first round of filtering (removing sequences with completely
known three-dimensional information and membrane proteins),
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701 sequences, or 16% of the protein complement, remain
clustered in 193 clusters. The next stage of the algorithm,
elimination of global redundancy between clustered sequences,
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Fig. 9. Percentage of sequences in single-linkage clusters before and after the application of STRUDEL.

results in reducing the number of clustered sequences and
clusters to a mere 139 and 39, respectively. Finally, resolving
mixed domain problems has a rather insignificant effect,
leading to 127 sequences in 38 clusters. Thus, the application
of STRUDEL with default parameters (3D_UNCOVERED �
100 and SEQ_UNCOVERED � 100) reduces the fraction of
E.coli sequences grouped in single-linkage clusters from 52.3%
to a mere 3% of the protein complement.

The parameters 3D_UNCOVERED and SEQ_
UNCOVERED strongly influence the outcome of the re-
clustering procedure (Figure 5). Setting both of them to 50
amino acid residues, for example, results in an increase in
the number of clustered sequences to �5% while raising the
parameter value to 250 residues eliminates sequence clusters
nearly completely (0.4%). Therefore, we conclude that the
whole issue of sequence clustering is only of importance if
one is interested in structural information on relatively short
sequence domains of multi-domain proteins.

The dependence of the total number of structural targets
produced by STRUDEL, among both clustered sequences
and singlets, on the parameters 3D_UNCOVERED and
SEQ_UNCOVERED is shown in Figure 6. It is immediately
clear that 3D_UNCOVERED is crucial whereas SEQ_
UNCOVERED has a very minor effect on the results. For
example, changing SEQ_UNCOVERED from 50 to 250 (with
3D_UNCOVERED � 100) leads to a reduction in the number
of targets generated from 1442 to 1327 (which is equivalent
to ~3% of the complete gene complement). As shown in the
flow chart in Figure 1, using the default parameters, nearly
four times more clustered sequences are discarded based
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on structural filtering criteria (membrane regions, known
structural domains) than due to sequence redundancy. Using
the default parameters 3D_UNCOVERED � 100 and
SEQ_UNCOVERED � 100, 32.6% of the E.coli proteins
possesses at least one structurally uncharacterized domain.
This value varies from ~40% with 3D_UNCOVERED � 50
to as few as 13% with 3D_UNCOVERED � 250. The latter
setting is essentially equivalent to focusing only on single-
domain proteins or multi-domain proteins in which none of
the domains has a known structure.

Genome comparison in terms of the number of structural
targets

Figure 7 provides a comparison of the fraction of structural
targets, both in singlets and in single-linkage clusters, in all
completely sequenced bacterial genomes. On average, 48% of
gene products in a genome are globular proteins with at least
one structurally uncharacterized domain. After elimination of
redundancy on the domain level this figure is lowered to
41.5%. Hence the application of STRUDEL results in the
reduction of the number of structural targets by ~7.5%, on
average, with respect to the situation where sequence clusters
are not taken into account.

The particular values of the number of structural targets for
each genome are mostly determined by the interplay of two
main factors: the degree of redundancy and the number
of known three-dimensional structures identified (Figure 8).
Bacterial genomes display a varying degree of duplication.
While in the most duplicated genome of Pseudomonas
aeruginosa �50% of proteins have at least one paralog, in the
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least redundant M.thermoautotropicum the figure is ~10%. The
percentage of gene products with at least one significant
IMPALA hit to a protein of known structure also varies widely,
from 14% in A.pernix to 56% in Mycoplasma genitalium.
Aeropyrum pernix, in particular, has the greatest number of
structural targets because it is the least structurally characterized
and one of the least duplicated genomes.

After the application of STRUDEL the fraction of clustered
sequences falls 10-fold, to an average of 3–5% (Figure 9). All
sequences still participating in single-linkage clusters are
attributed to potential structure determination targets which
makes further algorithmic analysis of the clusters unnecessary.
The remaining 95–97% gene products are either discarded or
end up in the singlet pool and are declared structural targets.

Conclusions

Our procedure automatically yields the minimum set of gene
products without any structural homologues and those partially
covered by known structural domains. For the latter, structure
determination of only individual uncharacterized domains is
required. The main observation that we want to demonstrate in
this paper is that our pragmatic filtering/re-clustering procedure
allows for a dramatic reduction of the number of sequences
participating in single-linkage clusters and thus makes the
problem of algorithmically rigorous clustering and resolving
complex domain similarity problems much less severe. As
seen in Figure 1, out of 2235 E.coli sequences initially
contained in single-linkage clusters, only 127 still remain
clustered after the application of the complete target selection
procedure.

By default, our algorithm takes as input the complete set
of gene products from a given organism. However, the area
of application of our technique is not necessarily limited to
completely sequenced genomes. The same protocol is suited
for any sufficiently large and diverse group of proteins of
interest, including proteins known to interact with each other
and those involved in a certain cellular process (Terwilliger
et al., 1998). STRUDEL has an option to start the analysis
with a manually pre-selected protein list.

In this work, we considered as initial targets all predicted
soluble proteins possessing substantially large sequence
domains without available structural information. All para-
meters of the analysis are dynamic and can be changed.
For example, the choice of the minimum allowed sequence
similarity required to join to proteins in a single-linkage cluster
depends on the objective of the project. Two proteins sharing
a common structural motif at a very low similarity level can
be joined in one cluster if the purpose is to obtain a general
idea about the folding topology. For detailed studies on
structures involving the analysis of individual structural
elements, ligand binding sites, etc., a much higher level of
homology will be required to join sequences into the same
target family.

The decision tree shown in Figure 1 should be considered
a rough prototype of the target selection process in a
realistic structural genomics project. Each step of the
procedure will certainly require further detail. For example,
distinguishing between soluble and insoluble proteins is a
complex task which goes far beyond mere membrane region
prediction. Christendat et al. (Christendat et al., 2000)
developed a specialized data mining technique for this purpose
which involves consideration of hydrophobic stretches in
addition to Gln, Asp, Glu and aromatic composition. The
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process of mapping known three-dimensional structures on
genomic sequences should ideally take into account discontinu-
ous domains.

Using the wealth of pre-computed sequence attributes
available through the PEDANT database, it is easy to apply a
variety of other user-specified criteria for initial screening of
gene products that are more likely to yield to expression and
crystallization. Those should include protein size and pI, the
number of cysteine and methionine residues, information on
amino acid repeats, predicted exposed surface area and non-
globular regions, to name just a few (E.Ulrich, personal
communication). Other important features include predicted
cellular localization, functional category and the size and
phylogenetic distribution of the protein family to which a given
protein belongs. Furthermore, the entire body of experimental
evidence produced by functional analysis studies (availability
of mutants, expression data, protein–protein interactions)
should ideally be taken into account. We conclude that the
target selection for structural genomics can be best explored
in conjunction with extensive high-quality genome annotation.
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