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ABSTRACT The most stringent test for predic-
tive methods of protein secondary structure is
whether identical short sequences that are known
to be present with different conformations in differ-
ent proteins known at atomic resolution can be
correctly discriminated. In this study, we show that
the prediction efficiency of this type of segments in
unrelated proteins reaches an average accuracy per
residue ranging from about 72 to 75% (depending on
the alignment method used to generate the input
sequence profile) only when methods of the third
generation are used. A comparison of different meth-
ods based on segment statistics (2nd generation
methods) and/or including also evolutionary infor-
mation (3rd generation methods) indicate that the
discrimination of the different conformations of
identical segments is dependent on the method used
for the prediction. Accuracy is similar when meth-
ods similarly performing on the secondary struc-
ture prediction are tested. When evolutionary
information is taken into account as compared to
single sequence input, the number of correctly
discriminated pairs is increased twofold. The re-
sults also highlight the predictive capability of
neural networks for identical segments whose
conformation differs in different proteins. Proteins
2000;41:535–544. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Theoretical and experimental studies of protein folding
indicate that the protein native structure involves a deli-
cate balance between local and non-local interactions.1,2

Local interactions lead to the formation of stable frag-
ments of secondary structures, rather independently of the
protein global context, whereas non-local factors are respon-
sible for the overall formation of the stable tertiary struc-
ture.3–7 This view is corroborated by the finding that the
database of proteins known with atomic resolutions con-
tains unrelated chains with short identical sub- sequences
that are endowed with different secondary structure de-
pending on the protein global context.8–12 Segments with

identical sequence and different conformations are re-
ferred to as “chameleon” sub-sequences.4

The search of different releases of the ever-increasing
database of protein structures (PDB)13 has shown that
identical k-mers of different length (with 5 # k # 8) can be
found with different conformations in couples of unrelated
proteins (whose sequence identity is ,25%).8–12 The pres-
ence of these segments blurs the structural assignment of
a given residue and corrupts the pattern classification into
structural classes.14 It can be regarded, therefore, as a
limiting factor of the predictive performance of all the
computational methods that aim at the prediction of
secondary structure starting from the sequence. These
methods include the residue local context using a sliding
input window to perform segment statistics during the
training phase14–18 (they are referred to as the 2nd
generation methods19). It has been proven that methods
taking into account evolutionary information (3rd genera-
tion methods19) can largely increase the predictive perfor-
mance of secondary structure prediction.18,20 Systems
based on a consensus procedure can perform even better
when a systematic comparison of all the top scoring
methods is performed.21 One interesting question that can
be posed at this stage of the development of secondary
structure prediction is to what extent predictors are
capable of distinguishing the different structures of chame-
leon sequences. This will provide insights into the predic-
tive performance and will highlight to what extent chame-
leon sequences are endowed with a wrong prediction.
Evidently, these segments are blurring the mapping com-
puted by the networks to a larger extent than those
patterns endowed with a unique sequence-to-structure
relation.14

Presently, 3rd generation predictive methods are charac-
terized by an accuracy ranging from 72–78% (see Jones25)
depending on the type of predictor, alignment method, and
structural mapping.21–25 The task of predicting chameleon
sequences can, therefore, be posed as a benchmark to test
the discriminative capability of these top-scoring predic-
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tive methods. Several Web sites are presently available for
secondary structure prediction. The performance of the
methods, as described in the literature, is quite accu-
rate.21–26 However, since it is not always possible to trace
the protein sets used for the training phase of the different
methods, we implemented our predictor based, as the
majority of the well-performing predictors, on neural
networks. This allowed us to perform a reliable cross-
validation discriminating between training and testing
sets during our study.

We searched a subset of the PDB database containing a
large number of protein chains with low identity (,25%)
for those chameleon sequences with a variable length
ranging from 5 to 8 residues and totally different conforma-
tions. The prediction of these segments was then extracted
from the prediction of the correspondent proteins pre-
dicted with our method and other top-scoring ones. Our
results indicate that 3rd generation methods are superior
in predicting chameleon sequences as compared to 2nd
generation methods. Noticeably, it appears that 2nd gen-
eration methods predict chameleon sequences with an
accuracy that is lower than the predictive accuracy of the
method, indicating that the predictor is much affected by
the ambiguity that blurring patterns introduce in the
sequence-to-structure mapping. When evolutionary infor-
mation is taken into account chameleon sequences are
predicted with efficiency similar to that of the predictive
method on the global testing set. This clearly indicates
that sequence profile is sufficient to partially compensate
for blurring. The results are rather independent of the
predictive method and seem to be somewhat affected by
the procedure used to generate multiple alignment.

MATERIALS AND METHODS
Protein Database

The neural network based predictor is trained on protein
chains with a low level of identity (,25%). To avoid
redundancy in the training-set, a data set of 822 proteins
known at a molecular level (and containing 174,192 resi-
dues) is derived from the database of non-homologous
proteins (with an identity value ,25%) using the PDB_
select_jun_98 algorithm (http://www.embl-heidelberg.de).
The Swiss-Prot database of known protein sequences
(Release 38, July 1999) is used for pairwise and multiple
alignment of each of the query sequences.27 Secondary
structure assignment is done with the DSSP.28 This
program defines 8 states for secondary structure (H, E, B,
T, S, L, G, and I)28 that are reduced to three states, H, E,
and C, by different predictive methods.21–26 In assigning
secondary structure, we used the following reduction: H
and G to helix (H), E and B to beta strands (E), all the rest
to coil (C). It is very well documented that this three-state
reduction affects the predictor accuracy and that it pro-
motes a lower accuracy than classifying G in C.21

Database of Chameleon Sequences

A program written in C language is implemented to
search the selected database for segments with identical
sequence and different secondary structure. Secondary

structure is assumed to be different if no amino acid in the
segments has the same secondary structure in the same
position (such as the pair HHHHHH and EEEEEE, or the
pair CCCHHH and HHHEEE).

The former procedure selects 2,452 couples of segments
comprising 5 residues (5-mers), 107 couples comprising 6
residues (6-mers), and 12 couples including 7 residues per
segment (7-mers). Other couples, found in the literature,
that satisfy our criterion for structural diversity are also
added to the database of chameleon sequences, and pre-
dicted, when necessary, by our predictor with cross-
validation: 1bgw-1mdaH; 1cgu-1bglA; 1thg-1igmH taken
from Argos9; 1pgs-2sblB and 1pht-1wbc taken from Cohen
et al.10. In this way, the complete database includes 2,452
couples of 5-mers, 107 couples of 6-mers, 16 couples of
7-mers, and one only couple containing 8 residues (8-
mers), in sum 2,576 couples, a set much larger than those
previously reported.8–12 An accurate search of the data-
base and of previously reported data on chameleon se-
quences did not increase the number of couples to be
included in the 8-residue-long category. The total number
of residues is equal to 26,044, out of 755 proteins. The
sequences, structures, PDB identification codes, and sol-
vent accessibility values of the 6-, 7-, and 8-mer couples are
listed below.

Solvent Accessibility

The solvent accessibility of each segment is the solvent
accessibility value per residue as computed by the DSSP
program28 averaged over the segment length. Solvent
accessibility per residue is evaluated by normalizing the
computed value to the maximal exposed surface area of the
residue29 in the database of selected proteins. Two catego-
ries of segments (buried and exposed) are discriminated
depending on the average accessibility value being higher
and lower (or equal to) than a 16% threshold.30 This is a
limiting discriminating value for classifying a residue
buried (,16%) or exposed ($16%).30

Neural Network-Based Predictor

A feed-forward neural network is implemented and
trained with the back propagation algorithm.31 The net-
work architecture basically consists of perceptrons with
one hidden layer containing 22 hidden nodes and an input
window spanning 17 residues. Three output nodes are
considered in order to discriminate three structural types:
alpha (H), beta (E), and coil motifs (C) of secondary
structure. The architecture of the predictor is extended to
include a second cascaded network to filter out spurious
assignments (a so-called structure-to-structure step20).

The prediction is finally obtained by averaging over the
outputs of six different predictors (all based on the architec-
ture described above) acting as a jury. The six predictors
include (1) different window lengths (9 and 17 residues);
(2) weight balancing during training32; (3) distinguishing
two structural types instead of three. Each of the predic-
tors was trained with a 20-fold cross-validation on the 822
proteins selected from the PDB.

Evolutionary information is given as input in the form of
sequence profiles after multiple sequence alignments.
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Sequence alignments were derived from the HSSP data-
base33 in which alignments were constructed using
BLAST34 to search the sequence database and MAX-
HOM35 to align the sequences. Moreover we used PSI-
BLAST36 (3 rounds with threshold equal to 0.001) to
search the Swiss-Prot database and we generated se-
quence profiles from its outputs by means of a newly
implemented program. This is based on the notion that the
PSI-BLAST complete outputs contain the local pairwise
alignments of the query sequence with all the extracted
sequences. From this it is possible to compute a profile by
merging each local pairwise alignment.37 This second
alignment method, as compared with the first, gave a 1%
increase of the overall efficiency on the 822 proteins. The
overall performance of our predictor (available at www.
biocomp.it) is shown in Table I, both using single and
multiple sequence as input. The overall efficiency of this
predictor using multiple sequence is somewhat lower than
that of another recently published method also based on
the use of PSI-BLAST and neural networks.25 In our
opinion, this is possibly due to the different databank used
for homology search (Swiss-Prot containing about 80,000
sequences in this study against a selected databank of
340,000 chains mentioned in Jones25). In Figure 1 the
distribution of the accuracy per protein obtained using as
input single and multiple sequence is reported for the sake
of comparison with previous work.25 Prediction efficiency
is evaluated by computing different scoring indexes (see
Appendix38).

RESULTS AND DISCUSSION
Characterizing Chameleon Sequences

The residue composition of chameleon sequences is
somewhat different from that of the protein database from
where they have been extracted (Table II). Indeed, the
relative frequency of occurrence of apolar residues is
slightly higher than that of charged and polar ones. These

results are in agreement with previous observations when
chameleons were extracted with other methods from data-
bases of proteins much smaller than ours.11 They also
seem to corroborate the suggestion that alanine, valine,
isoleucine, and leucine taken in any pair have the most
chance to produce favourable interactions under a variety
of different circumstances.39 Moreover, cysteine, tripto-
phan, methionine, proline, and hystidine residues are
significantly less abundant in chameleon segments as
compared to the protein sequences. It appears that in our
relatively large database of chameleons, residues are
non-uniformly distributed and this suggests that the struc-
tural adaptability of proteins should vary from sequence to
sequence.8

When secondary structures are determined with DSSP,
about 39% of the couples are found either in alpha helical
motifs (H) or in mixed coil-strand (C-E) structures, 16%

TABLE I. Efficiency of the Neural Network-Based Predictors on the 822 Proteins of
the Testing Set

Inputa

Single Sequence Q3 (%) 66.3
SOV 0.62

Q[H] 0.69 Q[E] 0.61 Q[C] 0.66
P[H] 0.70 P[E] 0.54 P[C] 0.71
C[H] 0.54 C[E] 0.44 C[C] 0.45

Multiple sequence Q3 (%) 72.4
(MaxHom) SOV 0.69

Q[H] 0.75 Q[E] 0.65 Q[C] 0.75
P[H] 0.77 P[E] 0.64 P[C] 0.73
C[H] 0.64 C[E] 0.54 C[C] 0.53

Multiple Sequence Q3 (%) 73.4
(PSI-BLAST) SOV 0.70

Q[H] 0.75 Q[E] 0.70 Q[C] 0.73
P[H] 0.80 P[E] 0.63 P[C] 0.75
C[H] 0.67 C[E] 0.56 C[C] 0.53

aInput to the networks included single sequence or sequence profiles evaluated with MaxHom33 and
PSI-BLAST,34 respectively. Scores are computed with a cross-validation procedure. The different
statistical indexes are defined in the Appendix.

Fig. 1. Distribution of Q3 scores for the 822 proteins predicted by the
neural networks in cross-validation. Distribution of accuracy is shown for
predictions computed using single sequence (white bars) and sequence
profiles (compared with MaxHom, grey bars) and PSI-BLAST (black bars)
as input to the networks.
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are either in H or in C, and 14% are either in H or in E
structures. The remainder is distributed over the other
possible structures (Table III). Therefore, chameleons
seem to predominantly adopt H/C-E secondary structures
also when we consider the subset including only the 6-, 7-,
and 8- mers (for a total of 124 couples) (Table III).

We can ask the question as to where chameleons are
located in the protein with respect to the solvent. The
analysis of solvent accessibility indicates that a majority of
the couples are composed of exposed segments (61%), that
31% of the couples are mixed with one segment exposed
and the other buried, and that only 8% are buried (Table
III). This trend is rather independent of the structural
compositions of the couples. In conclusion, our results
show that in a large database of non-redundant proteins,

chameleon sequences (comprising about 15% of the whole
set of residues) exhibit general structural features that are
also shared by the remainder of the protein residues.

Predicting Chameleon Sequences

In order to predict a chameleon pair, first the two
proteins to which the segments belong are predicted; then
the prediction of chameleon sequences is extracted from
that of the corresponding proteins. This is done by cross-
validation both using single and multiple sequences as
input to the networks. The prediction accuracy is evalu-
ated using the scoring indexes listed in the Appendix (see
Table IV). It is evident that prediction is significantly
improved when evolutionary information is taken into

TABLE II. Frequency of Occurrence of Amino Acids in Chameleons and in the Protein Databasea

G A V F P M I L S T Y H C N Q W D E K R

f ch 7.93 12.67 10.51 2.98 2.20 0.94 6.42 13.33 5.24 5.61 2.28 1.18 0.46 2.92 2.70 0.46 5.07 6.87 6.04 4.20
f pr 7.62 8.09 6.93 4.07 4.79 2.17 5.54 8.38 5.96 5.78 3.69 2.33 1.64 4.61 3.82 1.55 5.95 6.24 5.94 4.86
f 1.04 1.57 1.52 0.73 0.46 0.43 1.16 1.59 0.88 0.97 0.62 0.51 0.28 0.63 0.71 0.30 0.85 1.10 1.02 0.86

Apolar Polar Charged
af ch: frequency of occurrence (%) of amino acids in chameleons; f pr: frequency (%) of occurrence of amino acids in the database of 822 proteins; f: f
ch/f pr. Based on multinomial distribution, f values .1.1 or ,0.9 are statistically significant.

TABLE III. Motifs of Secondary Structure and Solvent Accessibility of Chameleon Couples

A. 5-mers
Segment 1
struct. type

Segment 2
struct. type Noa

No
(both exposed)a

No
(mixed)a

No
(both buried)b

C E 140 83 45 12
C H 390 294 83 13
E H 340 150 142 48
C E-H 21 14 7 0
E C-H 240 130 92 18
H C-E 952 583 287 82
C-E C-H 263 179 71 13
C-E C-E 22 11 10 1
C-E E-H 17 11 5 1
C-H E-H 6 4 2 0
C-H C-H 30 26 4 0
C-E C-E-H 11 5 5 1
C-H C-E-H 17 13 4 0
E-H C-E-H 2 2 0 0
C-E-H C-E-H 1 1 0 0

B. 6-, 7-, 8-mers
Segment 1
struct. type

Segment 2
struct. type Nob

No
(both exposed)b

No
(mixed)b

No
(both buried)b

C E 4 2 1 1
C H 17 13 3 1
E H 10 3 6 1
C E-H 2 2 0 0
E C-H 13 4 8 1
H C-E 59 33 21 5
C-E C-H 16 7 8 1
C-E E-H 2 2 0 0
C-H C-E-H 1 0 0 1

aNumber of chameleon couples. The total number of 5-mer couples is 2,452.
bNumber of chameleon couples. The total number of 6-, 7-, 8-mer couples is 124.
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account, particularly when PSI-BLAST is used to derive
the protein profile (Table IV).

Using single sequence as input to the network, the
prediction score per residue of chameleons is 7.6 percent-
age points lower than that obtained on the whole testing
set with the same input procedure (see Table I). On the
other hand, when sequence profiles are fed as input to the
networks, prediction ranks 12 to 13 percentage points
higher than using single sequence. In this respect, it is
similar to the average prediction values obtained for the
overall efficiency of the networks (72.4 and 73.4%, respec-
tively, depending on the method used to generate sequence
profile). Chameleons are, therefore, predicted with effi-
ciency rather close to that of the method on the whole
database. Ultimately, this clearly indicates that in spite of
their intrinsic ambiguity chameleons are predicted with
efficiency similar to that of the other protein segments.
This is due to the length of the input window (17 residues
long), which is apparently sufficient to compensate for the
ambiguity of the chameleon subpatterns.

Data relative to the prediction and location of 6-, 7-, and
8- mer couples are shown separately in Table IV and also
listed in Table V with the average solvent accessibility of
each segment.

In Table VI, we used the same set of 6-, 7-, and 8- mers
listed in Table V to test different methods presently
available on the Web. We use the accuracy values obtained
in training and testing by our predictor to settle the lower
and higher limits of the performance both when single
sequence and sequence profiles are used for prediction. If
the method tested is performing better than ours, the

expected accuracy value should be at least $58.9% in
single sequence and $75% in multiple sequence (Table IV)
whether the predictor includes the protein in the training
set or not.

The results listed in Table VI point to several conclu-
sions. It is evident that a neural network using single
sequence as input is performing slightly better than a
similar method (GOR IV)40 based on the information
theory and using all possible pair frequencies within a
window of the same length as that of the neural network
(17 residues long).

When evolutionary information is used, it appears that
other methods based on neural networks perform similarly
to our predictor (PHD,18 PSI-PRED,25 PRED2ARY24). A
consensus-based method (JPRED21) also reaches a similar
accuracy by means of a filtering procedure of methods that
rank slightly worse when considered independently (DSC,41

NNSSP,23 PREDATOR,22 as implemented in JPRED21).

Focusing on the Predictions of Chameleon
Sequences

The effect of multiple sequence input on the structural
discriminating capability of the networks is shown in
Figure 2. The frequencies of occurrence of the average
accuracy (,Q3.) obtained for the whole set of chameleon
sequences is reported. Provided that evolutionary informa-
tion is used, it is evident that if we allow at most one wrong
prediction over the couple (,Q3. $ 90%), some 34% of the
segments present in the database are correctly discrimi-
nated. In single sequence, this figure reduces to 15%. The
result is particularly relevant if it is considered that we are

TABLE IV. Prediction of Chameleons With Neural Networks

5-mers
Single sequence Q3 (%) 58.6

Q[H] 0.69 Q[E] 0.55 Q[C] 0.47
P[H] 0.65 P[E] 0.55 P[C] 0.51
C[H] 0.42 C[E] 0.37 C[C] 0.29

Multiple sequence Q3 (%) 69.1
(MaxHom) Q[H] 0.78 Q[E] 0.63 Q[C] 0.63

P[H] 0.78 P[E] 0.68 P[C] 0.58
C[H] 0.62 C[E] 0.52 C[C] 0.43

Multiple sequence Q3 (%) 71.3
(PSI-BLAST) Q[H] 0.80 Q[E] 0.69 Q[C] 0.61

P[H] 0.81 P[E] 0.69 P[C] 0.60
C[H] 0.66 C[E] 0.56 C[C] 0.45

6-, 7-, 8-mers
Single sequence Q3 (%) 58.7

Q[H] 0.67 Q[E] 0.59 Q[C] 0.45
P[H] 0.66 P[E] 0.55 P[C] 0.51
C[H] 0.40 C[E] 0.39 C[C] 0.30

Multiple sequence Q3 (%) 71.6
(MaxHom) Q[H] 0.79 Q[E] 0.71 Q[C] 0.60

P[H] 0.82 P[E] 0.71 P[C] 0.57
C[H] 0.66 C[E] 0.60 C[C] 0.42

Multiple sequence Q3 (%) 75.1
(PSI-BLAST) Q[H] 0.83 Q[E] 0.79 Q[C] 0.60

P[H] 0.86 P[E] 0.70 P[C] 0.64
C[H] 0.72 C[E] 0.63 C[C] 0.48
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TABLE V. List of Secondary Structures, Predictions, and Sequences of Chameleons of Length Six, Seven, and Eight

Sequence PDB id
Start
resa Structure Prediction

Solv
accb PDB id

Start
resa Structure Prediction

Solv
accb

^Q3&
(%)

6-mers
TVLETL 1h9_ 11 EEEEEC EEEEEC E 1broa 82 HHHHHH HHHHHH E 100
RVPALV 1ak5_ 125 HHHHHH HHHHHH B 3cox_ 7 EEEEEE EEEEEE B 100
VDLLKN 1ao7b 38 EEEEEC EEEEEC E 1hjga 16 HHHHHH HHHHHH E 100
RYIELV 1atla 4 EEEEEE EEEEEE B 1opy_ 14 HHHHHH HHHHHH E 100
AGVKKV 1bcmb 269 CCCCEE CCCCEE E 1glya 314 HHHHHH HHHHHH E 100
QLIIED 1bvh_ 124 CCCCCC CCCCCC E 1ecmb 73 HHHHHH HHHHHH E 100
ASGQSY 1cem_ 236 CCCCCC CCCCCC E 1nox 127 HHHHHH HHHHHH E 100
LLLQVA 1cnt2 69 HHHHHH HHHHHH B 2pola 33 EEEEEE EEEEEE E 100
EKVANL 1dkgb 5 HHHHHH HHHHHH E 1ptq_ 44 CCCCCC CCCCCC E 100
NSILQR 1eur_ 51 CEEEEE CEEEEE B 1xyza 31 HHHHHH HHHHHH E 100
SLLDEE 1garb 110 CCCCCC CCCCCC E 1pyta 79 HHHHHH HHHHHH E 100
VVNTMR 1gpb_ 219 CEEEEE CEEEEE B 1kid_ 80 HHHHHC HHHHHC E 100
TDVFIR 1hlb_ 36 HHHHHH HHHHHH E 1lam_ 198 EEEEEE EEEEEE E 100
AKLVAV 1ipwb 103 EEEEEE EEEEEE B 3sdha 135 HHHHHH HHHHHH E 100
VVTIEG 1ksr_ 44 EEEEEC EEEEEC E 1ppn_ 31 HHHHHH HHHHHH B 100
KVYIEK 1pyp_ 16 EEEEEC EEEEEC E 5csma 119 HHHHHH HHHHHH E 100
GLRVLD 1rhs_ 27 CEEEEE CEEEEE B 2dkb_ 312 HHHHHH HHHHHH B 100
DTIALV 1rusa 194 HHHHHH HHHHHH E 2dri_ 2 CEEEEE CEEEEE B 100
ITTVLN 1tys_ 112 HHHHHH HHHHHH E 2sil_ 200 CCCCEE CCCCEE E 100
VDLSHF 1uby_ 178 CCCCCC CCCCCC E 2nef_ 30 HHHHHH HHHHHH E 100
GKMVVT 1ytba 59 CEEEEE CEEEEE E 2rslc 104 HHHHHH HHHHHH E 100
DEHKTL 2hmza 24 HHHHHH HHHHHH E 4rhv1 217 CCCCEE CCCCEE E 100
DMVELQ 1a0i_ 191 CHHHHH CHHHHH E 1kit_ 597 EEEECC EEEEEC B 91.7
YDSVID 1ak0_ 238 HHHHHH HHHHHH E 1ipsa 287 CCCEEC CCEEEC E 91.7
VTAMLL 1ble_ 77 CEEEEE EEEEEE B 1gpmb 240 HHHHHH HHHHHH B 91.7
VAAVKA 1broa 149 HHHHHH HHHHHC E 1kid_ 90 EEEEEC EEEEEC B 91.7
LGLVLD 1ceo_ 83 CEEEEE CEEEEE B 1vnc_ 135 HHHHHH HHHHHC E 91.7
SKVDDF 1frvb 303 CCCECC CCCCCC E 2pgd_ 36 HHHHHH HHHHHH E 91.7
KHLEAG 1gdlo 107 HHHHCC HHHHCC E 2pola 254 EEEEEE EEEEEC E 91.7
PAAAAI 1goh_ 171 CCEEEE CCCEEE B 1tca_ 280 HHHHHH HHHHHH E 91.7
SAAHAL 1gtra 442 ECCCCE ECCCCC E 1qnf_ 262 HHHHHH HHHHHH E 91.7
LVQFGV 1hava 13 EEEEEE HEEEEE B 1ycsb 53 HHHHCC HHHHCC E 91.7
GDAIIE 1iso_ 407 HHHHHH HHHHHC E 1iyv_ 66 CCEEEE CCEEEE E 91.7
PVIERL 1jer_ 75 CEEEEC CEEEEE E 1kvu_ 42 HHHHHH HHHHHH E 91.7
QSFEQV 1maz_ 68 HHHHHH HHHHHH E 2hft_ 110 EEEEEE EEEEEC E 91.7
KKGATL 1pkn_ 118 CCCCEE ECCCEE E 1ycc_ 9 HHHHHH HHHHHH E 91.7
GSAAVL 1rgs_ 184 CCEEEE CEEEEE E 1xjo_ 101 HHHHHH HHHHHH B 91.7
PRQALV 1whtb 134 HHHHHH HHHHHH B 3pchm 32 CCCCCE CCCCCC E 91.7
IDLLLA 1ako_ 228 CEEEEE EEEEEE B 2pfkd 272 HHHHHC HHHHHH E 83.3
GKLVRD 1asya 364 HHHHHH HHHHHH E 1igna 66 CCECEC CEEEEC E 83.3
QVKYLG 1ax4a 330 HHHHHH HHHHHH B 1mml_ 242 CEEECC CEEEEE E 83.3
TLQLDV 1bgc_ 98 HHHHHH HHHHHH E 1fds_ 61 EEECCC EEEEEC E 83.3
SVVVSG 1bgp_ 117 HHHHCC HHHCCC E 1tdtc 228 EEEEEE EEEEEC B 83.3
LPVIDS 1bib_ 83 CCEECC EEEECC E 1dkgb 59 HHHHHH HHHHHH B 83.3
INLDIP 1cdb_ 17 ECCCCC EEECCC E 1qapa 11 HHHHHH HHHHHH E 83.3
MGGVSE 1chd_ 170 CCCCCE HCCCEE E 1mhlc 336 HHHHHC HHHHHC B 83.3
SGIVSG 1csee 104 HHHHHH HHHHHH E 1phc_ 384 CCCECE CCCCCC B 83.3
LLLAGY 1gotb 283 EEEEEE EEEEEC B 2pfkd 274 HHHCCC HHHHCC E 83.3
LKLAGR 1itg_ 48 HHHHHH HHHHHC E 1wba_ 103 EEECCC EEEECC E 83.3
AELKPL 1mbd_ 84 HHHHHH HHHHHH E 1vdc_ 27 CCCCCE CCCEEE E 83.3
VLDAKT 1nox_ 2 CCCHHH CHHHHH E 2bbkh 284 EEECCC EEECCC E 83.3
ELKGTS 1ospo 40 EEEEEE EEEEEE E 2abd_ 60 CCCCCC HHCCCC E 83.3
NLTSVL 1ovab 279 EHHHHH CHHHHH E 1ysc_ 168 CEEEEE EEEEEE E 83.
FFLFDD 1psla 74 HHHHHH HHHHHH E 2lgsa 126 EEEECE EEEEEC B 83.3
GNVTAE 1qapa 252 CCCCHH CCCCHH E 1xsoa 83 EEEEEE CCEEEE E 83.3
RPRFER 1rgs_ 238 HHHHHH HHHHHH E 2kdb_ 172 CCCCEE CCCCCC E 83.3
KYPVDL 2dri_ 260 EEEECC EEEEEE E 3pbga 55 HHHHHH HHHHHH E 83.3
LTGVKV 1alo_ 33 CCCCCC HCCCEE B 2dmr_ 687 EEEEEE EEEEEE B 75
APDEWI 1amp_ 87 EEEEEE CCCEEE E 1spua 616 CCCCHH CCCCHH E 75
LVTEVE 1bip_ 97 CCCCCC HHCCCE E 1pkn_ 176 EEEEEE EEEEEE B 75
TGRAAV 1cfe_ 63 CHHHHH CHHHHH B 1dar_ 36 HCCCCE HCEEEE B 75
VGAELE 1csee 191 CCCCCC CCCEEE E 1esc_ 158 HHHHHH HHHHHH E 75
RTYKLL 1csn_ 52 HHHHHC HHHHHH E 1wba_ 127 CCEEEE EEEEEE B 75
SLKDGV 1irk_ 200 HHHHCC HHHHCC E 1ytfc 21 EEEEEE EECCCE B 75
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TABLE V. (Continued)

Sequence PDB id
Start
resa Structure Prediction

Solv
accb PDB id

Start
resa Structure Prediction

Solv
accb

^Q3&
(%)

YQDTAK 1isua 12 CECCCE HCCCCC E 1pbn_ 10 HHHHHH HHHHHH E 75
LIRDHI 1leb_ 14 HHHHHH HHHHHH E 1pbn_ 131 EEEEEE EEECCC E 75
AVAKRL 1php_ 75 HHHHHH HHHHHH E 1vdc_ 119 EEECCC CCCCCC E 75
VNSLGE 1tlk_ 86 EECCEE ECCCCC E 2ilk_ 86 HHHHHH HHHHHH E 75
PELADL 1yaia 32 EEECCC EEEECC E 4pgaa 42 CCHHHH HHHHHH E 75
KDVEGI 2omf_ 281 EEECCC CCCCCC E 5csma 183 CCHHHH CCHHHH E 75
ELVGPK 1a0b_ 16 HHCCHH HHHCCC E 2phla 255 EEEEEC EEEECC B 66.7
PKLVTE 1agna 328 HHHHHH HHHHHH E 1bip_ 95 CCCCCC HHHHCC E 66.7
IGGAAV 1chma 175 HHHHHH HHHHHH B 1uxy_ 277 ECCEEE CCCHHH B 66.7
LQALDI 1cto_ 9 EEECCC CEEEEE E 2fsp_ 37 HHHHHH HHHHHH E 66.7
ATGSDD 1gotb 241 EEEECC EEECCC B 4aaha 194 CCCCHH ECCCCC E 66.7
LDKYGD 1knya 24 HHHHHH HHHCCC E 2dmr_ 720 CECCCC EECCCC B 66.7
TLVVGG 1liaa 96 HHHHCC EEEECC B 1lxta 55 EEEEEE EEEEEE B 66.7
APAAAA 1lml_ 247 CCCCCC CCHHHH E 1tca_ 279 HHHHHH HHHHHH E 66.7
VIGLLD 1p38_ 80 ECCCCE EEEEEE B 1tdtc 31 HHHHHH HHHHHH B 66.7
IRAALP 1pda_ 172 CCEECC HHHCCC E 1php_ 37 HHHHHH HHHHHH E 66.7
GKIEMG 1tum_ 38 CCCCCC CCCCCC E 2por_ 68 EEEEEE CEECCC E 66.7
NMLPLL 1a0i_ 167 HHHHHH HHHHHH B 2mev4 52 CCCCCC HHHHHC E 58.3
EKLIEK 1aa3_ 14 CCCECC EEEEEE E 1xixb 37 HHHHHH HHHHHH E 58.3
VGINHG 1ab8a 114 EEEEEE EEEECC B 1arv_ 98 HHHHHH HHCCCC E 58.3
RLKPEI 1avob 14 HHHHHH HCCHHH E 1dora 238 CCCCCC HHCCCE E 58.3
DVANAV 1aym2 18 CCCCCE EEEEEE E 1pkn_ 330 HHHHHH HHHHHH B 58.3
IATVNE 1cyx_ 23 EEEECE EECCCE B 1thtb 273 HHHHHH EEEHHH E 58.3
MFGYAT 1dar_ 578 CCCHHH HHHHHH E 1mxa_ 116 EEEEEE EEEECC B 58.3
TPNILY 1ggga 154 HHHHHH HHHHHH B 1quf_ 189 CCCCCC CHHHHH B 58.3
RHVYGE 1ggta 695 EEEEEE CEEEEE B 2pbal 74 HHHHHH CEECHH E 58.3
IWNSSV 1kuh_ 24 HHHHHC HHHCCE E 1vdc_ 210 ECCEEE EEEEEE E 58.3
PKATSS 1tnra 61 HHHHCC CCCCCC E 2bpa2 35 CECCEE CCCCEE E 58.3
GHKIKG 1a0b_ 57 HHHHHH CCEEEE E 1lnh_ 1 CCEEEE CCEEEE E 50
LQVEIG 1aa0_ 11 HHHHHC EEEEEE E 1cewi 54 EEEEEE EEEEEE B 50
YRALLE 1ad2_ 3 CCCCCC HHHHHH E 1dhs_ 34 HHHHHH HHHHHH E 50
EETLVI 1auk_ 254 HHEEEE CCEEEE E 1awj_ 19 CCCCCC CCEEEE E 50
VEEVNA 1def_ 20 CCCCCC HHHHHH E 1gdlo 253 HHHHHH HHHHHH E 50
EAGKQA 1dru_ 105 HHHHHH HHHHHH E 1pbn_ 262 CCCCCC HHHHHH E 50
PEEVLD 1fds_ 195 HHHHHH CCCCCC E 3minb 256 CCCCCC CCCCCC B 50
YWTYPG 2cba_ 188 EEEEEE EEEECC B 2mtac 77 CCCCHH CEECCC E 50
DLALGK 1ctj_ 3 CHHHHH CCCCCC E 1smd_ 167 EECCCC CCCCCC E 41.7
LLPRVA 1efva 100 HHHHHH CHHHHH B 1p04a 75 EEEEEE CCCCCC E 41.7
SPLAQI 1ak1_ 52 HHHHHH CCCHHH E 4aaha 27 ECCCCC CCHHHH E 33.3
TVGGVT 1ar1a 368 HHHHHH EEEEEE B 2wea_ 91 EECCEE EEEEEE E 33.3
ATVKAK 1prcc 26 HHHHHH CCCCCC E 1rgs_ 99 CEEEEC EEEEEE E 33.3
TLIKDG 1pioa 186 CCHHHH CEEEEC B 1spua 25 EEEECC HHHHCC B 25
KQIIAN 1ixh_ 43 HHHHCC EEEEEC E 1shca 127 CEEEEE HHHHHH E 8.3
7-mers
LITTAHA 1cgu_ 121 HHHHHHH HHHHHHH E 1bgla 833 EEEEEEE EEEEEEE B 100
AVLSAIG 1mxa_ 90 EEEEEEE EEEEEEE E 1tml_ 203 HHHHHHC HHHHHHC E 100
ASVKQVS 1amp_ 63 EEEEEEC EEEEEEE E 1gky_ 83 HHHHHHH HHHHHHH E 92.9
KGLEWVS 1thg_ 191 HHHHHHH HHHHHHH B 1igmh 43 CCEEEEE CCCEEEE E 92.9
GTATHTV 1goh_ 577 CEEECCE EEEEEEE B 1sly_ 500 HHHHHHH HHHHHHH E 78.6
EKAYLRT 1pgs_ 177 CEEEEEE HHHEEEE B 2sblb 699 HHHHHHH HHHHHHH B 78.6
RRDALLE 1ayl_ 305 CCCCEEE HHCEEEE E 1qapa 3 HHHHHHH CHHHHHH E 71.4
LRRARAA 1gdlo 194 CCCCCEC CCCHHHC B 1pta_ 52 HHHHHHH HHHHHHC E 71.4
VQNLQVE 1aa0_ 8 HHHHHHH HHEEEEE E 1ipsa 225 CCCEEEE CCCEEEE B 64.3
QEALEIA 1tif_ 30 HHHHHHH HHHHHHH E 1wtua 66 CCCCCCC CCEEEEE E 64.3
VDAELFL 1bcmb 174 EEHHHHH HHHHHHH E 1pex_ 37 CCCEEEE CCCCCCH E 57.1
DLKIQER 1cdb_ 99 EEECCCC HHHHHCC E 1nre_ 32 HHHHHHH CHHHHHH E 57.1
ATADFVA 1clc_ 264 HHHHHHH HHHHHHH B 2mev1 15 CCCCCCC CEEEEEE E 57.1
RSSLPGF 1aerb 105 HHHHHHE CCCCCCC E 1cto_ 88 CCCCCCC ECCCCCC E 42.9
LSLAVAG 1bgw_ 36 HHHHHHH CCCEECC E 1mdah 67 CCEEEEC CCCEEEE B 35.7
SNRFYTL 1aym2 51 CCCCEEC CEEEEEE E 1pax_ 72 HHHHHHH CCCEEEE E 21.4
8-mers
GSLVALGF 1pht_ 33 HHHHCCCC CEEEEEEE E 1wbc_ 72 CCCEEEEEE CCEEEEEEE B 43.8
aStarting position in the protein sequence.
bAverage solvent accessibility: E, exposed; B, buried.
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analyzing the prediction of a small subset of the residues
included in the database (about 15%). Indeed, with the
same threshold of accuracy only 5% (single sequence) and
9% (multiple sequence) of the proteins of the database are
predicted (see Fig. 1).

In Table VII, high-scoring predictions ,Q3. $ 90%)
obtained using multiple sequences are listed by grouping
the chameleon couples according to structural types and
categories of solvent accessibility. It is evident that the
effect of multiple alignment on the prediction is distrib-
uted over the most represented structural classes, rather
independently of the category of solvent accessibility.
Noticeably, the best-predicted sequences are those in the
E/H structures, which are not the most abundant struc-
tural class in the database of chameleons (see Table III).
This is in agreement with the previous finding that
multiple sequence comparison techniques are efficient in
the alignment of structural regions.42

TABLE VI. Performance of Different Methods on Chameleons

Input Methoda Q3 (%)

Single sequence NN Test 58.9 Train 59.8
GORIV 55.2

Multiple sequence NN Test 75.1 Train 76.4
(PSI-BLAST) PHD 73.68

PSI-PRED 75.59
JPRED 72.94
PRED2ARY 73.31
DSC 69.89
NNSSP 69.80
PREDATOR 68.90

aNN are the neural network-based predictors described in this work used in testing and
training and available at www.biocomp.unibo.it; GORIV40: pbil.ibcp.fr/cgi-bin/npsa_
automat.pl; PHD18: dodo.cmpc.columbia.edu/predictprotein; PSI-PRED25: globin.bio.
warwick.ac.uk.psiform.html; JPRED21: circinus.ebi.ac.uk:8081/submit.html; PRED2ARY24:
www.cmpharm.ucsf.edu/;jmc/pred2ary; DSC,41 NNSSP,23 and PREDATOR22 as imple-
mented in JPRED.21

TABLE VII. Analysis of Chameleons Predicted With an Accuracy>90%

Segment 1
struct type

Segment 2
struct type %a

%
(both exposed)a

%
(mixed)a

%
(both buried)a

C E 17.4 (144) 17.6 (85) 13 (46) 30.8 (13)
C H 37.3 (407) 39.1 (307) 31.4 (86) 35.7 (14)
E H 65.7 (350) 67.3 (153) 64.2 (148) 65.3 (49)
C E-H 4.3 (23) 6.3 (16) 0 (7) — (0)
E C-H 24.9 (253) 20.1 (134) 29 (100) 36.8 (19)
H C-E 37 (1011) 35.1 (616) 40.3 (308) 39.1 (87)
C-E C-H 12.2 (279) 10.8 (186) 13.9 (79) 21.4 (14)
C-E C-E 4.5 (22) 9.1 (11) 0 (10) 0 (1)
C-E E-H 10.5 (19) 7.7 (13) 20 (5) 0 (1)
C-H E-H 0 (6) 0 (4) 0 (2) — (0)
C-H C-H 6.7 (30) 7.7 (26) 0 (4) — (0)
C-E C-E-H 0 (11) 0 (5) 0 (5) 0 (1)
C-H C-E-H 11.1 (18) 15.4 (13) 0 (4) 0 (1)
E-H C-E-H 0 (2) 0 (2) — (0) — (0)
C-E-H C-E-H 0 (1) 0 (1) — (0) — (0)

aPercentage of chameleon couples predicted with ^Q3& $90% and sorted by structural type and category of
solvent accessibility. The corresponding total number of couples in the database is showed within
parentheses. The number of couples with ^Q3& $90% is 857, 42 of which are 6- and 7-mers.

Fig. 2. Bar graph showing the distribution of the ^Q3& scores for the
2,576 couples of the database of chameleons predicted using as input
single sequence (white bars) and multiple sequence (black bars, obtained
with PSI-BLAST).
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CONCLUSIONS

In this study, we show that chameleon sequences can be
predicted by methods of secondary structure prediction
relying on the information contained in the context of a
local window sliding over the protein sequence or includ-
ing the protein sequence profile computed from the mul-
tiple alignment. When single sequence is used, ambiguous
mapping during training hampers the discrimination of
the different structural types, and the efficiency is lower
than that obtained in cross-validation over the whole
testing set. Fifteen percent of the couples, however, are
quite well discriminated (,Q3. $ 90%), indicating that in
some cases the information included in the 17-residue-long
window is sufficient to compute the correct prediction. This
suggests that chameleons might be stabilized by the local
protein context in a given secondary structure type simi-
larly to other well-predicted segments in the protein
sequence.12 Most importantly, when sequence profiles are
used instead of single sequence the inclusion of evolution-
ary information in the input window is partially sufficient
to mitigate the ambiguity associated with the structural
classification of chameleon segments. As a matter of fact,
the prediction efficiency of chameleons levels that attained
on the whole testing set. Our results, in sum, also high-
light the generalization capability of the neural network-
based predictive methods for those segments, which, in
proteins, have the same sequence but different secondary
structure.
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APPENDIX

In this study, the efficiency of the predictors is scored
using the statistical indexes defined in the following. The
network accuracy is:

Q3 5 P/N (1A)

where P is the total number of correct predictions and N is
the total number of possible predictions. The average
accuracy (,Q3.) is the Q3 value averaged over the couple.
The correlation coefficient C for the structural class s (H,
E, and C) is defined as:

C~s! 5 ~p~s! p n~s! 2 u~s! p o~s!!/@~p~s! 1 u~s!!~p~s! 1 o~s!!

3 ~n~s! 1 u~s!!~n~s! 1 o~s!!#1/2 (2A)

Where, for each class s, p(s) and n(s) are, respectively, the
total number of correct predictions and correctly rejected
assignments while u(s) and o(s) are the numbers of under
and over predictions. The accuracy for each discriminated
structure s is evaluated as:

Q~s! 5 p~s!/@p~s! 1 u~s!# (3A)

Where p(s) and u(s) are the same as in eq. (2A). The
probability of correct predictions P(s) is computed as:

P~s! 5 p~s!/@p~s! 1 o~s!# (4A)

Where p(s) and o(s) are the same as in eq. (2A).
The segment-based measure (Sov) of the assessment of

protein secondary structure prediction is computed as
described in Zemla et al. (1999).38
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