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ABSTRACT We have modified and improved
the GOR algorithm for the protein secondary struc-
ture prediction by using the evolutionary informa-
tion provided by multiple sequence alignments, add-
ing triplet statistics, and optimizing various
parameters. We have expanded the database used to
include the 513 non-redundant domains collected
recently by Cuff and Barton (Proteins 1999;34:508–
519; Proteins 2000;40:502–511). We have introduced a
variable size window that allowed us to include
sequences as short as 20–30 residues. A significant
improvement over the previous versions of GOR
algorithm was obtained by combining the PSI-
BLAST multiple sequence alignments with the GOR
method. The new algorithm will form the basis for
the future GOR V release on an online prediction
server. The average accuracy of the prediction of
secondary structure with multiple sequence align-
ment and full jack-knife procedure was 73.5%. The
accuracy of the prediction increases to 74.2% by
limiting the prediction to 375 (of 513) sequences
having at least 50 PSI-BLAST alignments. The aver-
age accuracy of the prediction of the new improved
program without using multiple sequence align-
ments was 67.5%. This is approximately a 3% im-
provement over the preceding GOR IV algorithm
(Garnier J, Gibrat JF, Robson B. Methods Enzymol
1996;266:540–553; Kloczkowski A, Ting K-L, Jerni-
gan RL, Garnier J. Polymer 2002;43:441–449). We
have discussed alternatives to the segment overlap
(Sov) coefficient proposed by Zemla et al. (Proteins
1999;34:220–223). Proteins 2002;49:154–166.
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INTRODUCTION

The prediction of protein structure, and ultimately
protein function from amino acid sequence is arguably one
of the most important problems in molecular biology.
Recently, his problem has become dramatically more
important, with completion of many large-scale genome
sequencing projects yielding an enormous amount of amino
acid sequence data, much of it corresponding to proteins of

unknown function. The gap between the number of known
protein sequences and the number of known structures in
the Protein Data Base (PDB) continuously grows at an
incredible rate. Some methods, such as homology modeling
or threading are useful, but sometimes unfeasible, making
major advances in protein structure prediction from se-
quence of the utmost importance. Although the prediction
of tertiary structure is one of the ultimate goals of protein
science, the prediction of secondary structure from se-
quence is still a more feasible intermediate step in this
direction. Furthermore, some knowledge of the secondary
structure can serve as an input for prediction.

Instead of predicting the full three-dimensional struc-
ture, it is much easier to predict simplified aspects of
structure, namely the key structural elements of the
protein and the location of these elements not in the
three-dimensional space but along the protein amino acid
sequence. This reduces the complex three-dimensional
problem to a much simpler one-dimensional problem. The
fundamental elements of the secondary structure of pro-
teins are a-helices, b-sheets, coils, and turns. All these
elements can be easily observed in the crystal three-
dimensional structure of proteins in the PDB. Because
such visual observation is rather subjective, there is need
for a more rigorous definition of various elements of the
protein secondary structure from the atomic coordinates in
the PDB. In 1983, Kabsch and Sander1 developed the
classification of elements of secondary structure based
mainly on hydrogen bonds between the backbone carbonyl
and NH groups. Their dictionary of secondary structure
assignment Database of Secondary Structure in Proteins
(DSSP) is widely used in protein science (although there
are other alternative assignment methods, such as
STRIDE) and the DSSP server was established at Euro-
pean Molecular Biology Laboratory (EMBL) in Heidelberg
with all proteins in the PDB bank given DSSP assign-
ments.2 According to the DSSP classification, there are
eight elements of secondary structure assignment denoted
by letters: H (a-helix), E (extended b-strand), G (310 helix),
I (p-helix), B (bridge, a single residue b-strand), T (b-turn),
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S (bend), and C (coil). Coil is defined as a structural
element that does not belong to any of the other seven
classes. Eight types of the secondary structure are too
many for existing methods of the secondary prediction,
instead usually only three states are predicted: helix (H),
extended (b-sheet) (E), and coil (C). Instead of coil (C),
some authors use the nomenclature nonregular, aperiodic
structure or a loop with the abbreviation (L).3 The eight-
letter DSSP alphabet requires translation into the three-
letter code. For instance, for the CASP4 (Critical Assess-
ment of Structure Prediction) experiments, helices (H, G,
and I) in the DSSP code are assigned the letter H in the
three-letter secondary structure code, whereas strands (E)
and bridges (B) in the DSSP code are translated into
sheets (E) in the three-letter code. Other elements of the
DSSP structure (T, S, C) are treated as coil (C). There are,
however, other ways to make these assignments. For some
authors, I (p-helix) is translated into coil (which is not so
important because of the rarity of I structures). Frishman
and Argos5 assumed that the DSSP H and E are translated
to H and E in the three-state code, and all other letters of
the DSSP code are translated to coil (C). Additionally, they
assumed that helices shorter than five residues (HHHH or
less) and sheets shorter than three residues (EE) are coils.
In this article, we adopt the Frishman and Argos transla-
tion of the DSSP alphabet into the three-code to calculate
the accuracy of prediction of the secondary structure by
the GOR algorithm. Some other authors have treated
helical DSSP G elements as helices H in the three-letter
code only if they were neighbors to H sequences, but
isolated G elements were treated as coil (i.e., GGGHH-
HHH is translated to HHHHHHHH whereas
CCCGGGCCC is translated to CCCCCCCCC).6,7 The
bridge (B) is the DSSP structure that is most difficult for
the secondary structure prediction, because it is only one
residue long. This is the reason that frequently the correc-
tions for bridges B are done, namely the sequence BC is
translated to EE and BCB to CCC.3 The GOR program
uses the correction algorithm which removes all such short
secondary structure sequences as the most likely assign-
ment errors. To add to the confusion, the DSSP assign-
ment algorithms are not all identical. The DSSP algorithm
used in the PDB differs from the original DSSP algorithm
developed at EMBL, and their assignments differ slightly.
The original EMBL algorithm takes into account inter-
chain hydrogen bonds, which the PDB algorithm does not.
Additionally, hydrogen bond placement can be different
because of ambiguous interpretation of imperfect geom-
etries inherent in experimental structures (Philip Bourne,
personal communication).

It is worth noting that the theoretical problem of one-
dimensional secondary structure prediction with three
states (H, E, C) can be reduced even further to only two
states by defining the structural states of residues with
respect to their solvent accessibility, with compact globu-
lar proteins having residues either buried inside and
inaccessible to water, or exposed residues on the surface
and easily accessible to water.3 This binary classification
of structural elements of proteins corresponds to the

simple hydrophobic-polar (HP) model of proteins. Such
simple models are sometimes useful to localize protein
functional sites and predict the functional properties of a
given amino acid sequence, such as trans-membrane pro-
teins.

The CASP experiments initiated by John Moult,4 which
since 1994 have taken place every second year, gave the
protein structure prediction a new impetus. Scientists
from different laboratories try to predict structures of
newly discovered but not yet published crystallographic
data of new PDB entries. The experiment helps to assess
and compare various prediction algorithms and tech-
niques, and the current state of the art of prediction
methodology.

To measure quality of protein secondary structure predic-
tion, it is convenient to introduce an accuracy matrix [Aij]
of the size 3 3 3 (i and j stand for the three states H, E, C).
The ij-th element Aij of the accuracy matrix is then the
number of residues predicted to be in state j, which
according to the DSSP data are actually in state i. Then
the sum over the columns of matrix A gives the number of
residues nj that are predicted to be in state j3:

nj 5 O
i 5 1

3

Aij (1)

However, the sum over the rows of A gives the number of
residues Ni which according to the experimental data are
in state i:

Ni 5 O
j 5 1

3

Aij (2)

It is obvious that the diagonal elements of A count the
correct predictions for each of three structural states, and
the off-diagonal elements contain the information about
wrong predictions.

The main parameter measuring the accuracy of the
protein secondary structure prediction is the parameter Q3

defined as:

Q3 5

O
i 5 1

3

Aii

N 100 (3)

which gives the percentage of all correctly predicted resi-
dues within the three-state (H, E, C) classes. Here N is the
total number of residues in the sequence.

N 5 O
i 5 1

3

Ni 5 O
j 5 1

3

nj (4)

There are also parameters measuring individually the
correctness of prediction for each of the structural classes
such as:

qi 5
Aii

Ni
100 for i 5 H, E, C (5)
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Usually, the easiest to predict are coils (C), then helices
(H), and the most difficult for prediction are sheets (E).

For n states, the equally probable purely random
assignment gives probability 100/n% of correct predic-
tion, that is, for three states (H, E, C), the prediction less

than 33.3% is worse than random assignment, if all
three states were equally populated (which is not true
for real proteins).

The parameter measuring the quality of prediction is
the correlation coefficient Ci proposed by Matthews3,8:

Ci 5

AiiSO
k Þ i

3 O
j Þ i

3

AjkD 2 SO
j Þ i

3

AijDSO
j Þ i

3

AjiD
ÎSAii 1 O

j Þ i

3

AijDSAii 1 O
j Þ i

3

AjiDS O
k Þ i

3 O
j Þ i

3

Ajk 1 O
j Þ i

3

AijDS O
k Þ i

3 O
j Þ i

3

Ajk 1 O
j Þ i

3

AjiD (6)

which allows us to compare the result of the prediction
with the completely random assignment. For the perfect
prediction, the Matthews coefficient Ci 5 1 whereas for
completely random Ci 5 0 (negative values of Ci are also
possible, for predictions worse than random). Other quan-
tities used for the assessment of the prediction accuracy
are the average ^Li& length of each type of structural
elements: helices, sheets and coils, the number of various
secondary structure elements in the protein, and the
segment overlap coefficients.6,9,10 The number of the struc-
tural elements and predicted average lengths and their
overlap should be close to experimental data for good
predictions. On average, proteins contain about 30% heli-
cal structure (H), about 20% b-strands (E), and about 50%
coil (C) structure. This means that even the most trivial
prediction algorithm which assigns all residues to the coil
(C) state would give approximately 50% correct prediction.
The coil is also the easiest to predict, whereas strands (E)
are the most difficult for prediction. The difficulty of the
prediction of b-sheets is attributable to their relative
rarity and to the irregular, nonlocal nature of contacts, in
contrast to a-helices where contacts are well localized (the
i-th and i 1 4-th residue have a nonbonded contact).

Recently, it has been emphasized that the correctness of
the prediction for individual residues has to be completed
by the secondary structure overlaps.6,9,10 A new properly
normalized measure of this overlap, the so-called segment
overlap (Sovobs) was defined recently by Zemla et al.9

The first serious attempts of the secondary structure
prediction which started in the 1970s with the seminal
works of Chou and Fasman,11 Lim,12,13 and Garnier et
al.14 (GOR I method) were based on single sequences and
gave the cross-validated accuracy of the prediction below
60%. All early works on the prediction of the secondary
structure relayed on the single residue statistics in various
structural elements. The predictions were done by using a
sliding window of a certain size (for example of a width of
four residues, a characteristic length for helical contacts,
in the Chou and Fasman method,11 or of width 17 residues
in the GOR I method14) but only single residue statistics
for each residue within such a window were calculated for

the prediction. This gave a serious deficiency for these
predictions.

A significant improvement in protein secondary predic-
tion was done by using the pair-wise statistics for blocks of
residues in secondary structure segments within the win-
dow (GOR III–IV). The practical implementation of this
method is based also on a window of a certain width, which
is moved along the protein chain. Then the statistics of the
residues within the window are used to predict the confor-
mational state of the residue at the center of the window.
While the window moves along the chain, the secondary
structure states of all residues from the N-terminal to the
C-terminal along the chain are predicted.

This window-based method has been used by many
different secondary structure prediction methods, based
on various techniques, such as information theory (GOR
III15,16 GOR IV17), neural networks,5,18 –24 nearest-
neighbor algorithms,6,7,25–29 and several other ap-
proaches.6,30–35 The accuracy of the prediction of these
methods based on a single-sequence analysis has been
improved significantly, breaking the 60% level but below
the 70% limit for the most successful methods.

In the last few years, major progress has been made in
the accuracy of the prediction of secondary structure from
sequence (see review in Ref. 36). The improvement has
been obtained by using, instead of a single sequence,
multiple sequence alignments containing the evolutionary
information about protein structure. The multiple se-
quence alignment information was used first in 1987 by
Zvelebil et al.37 and later (1993) supplemented by Levin et
al.38 and independently by Rost and Sander18 for the
prediction of secondary structure. It gave a significant
boost to the accuracy of secondary structure prediction.
The most successful methods like PHD39 and its most
recent versions, or PSIPRED24 claim to achieve a predic-
tion accuracy above 76%. Recently, Petersen et al.23 an-
nounced the accuracy of predictions above 77% by using a
neural network based prediction program. (The title of
their article even contains the information about 80%
accuracy of the prediction, but the actual cross-validated
accuracy is about 77%.36)
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The main reason that information from the multiple
sequence alignments improves the prediction accuracy is
attributable to the fact that during evolution protein
structure is more conserved than sequence, which conse-
quently leads to the conservation of the long-range informa-
tion. One may suppose that part of this long-range informa-
tion is revealed by multiple alignments. Many proteins
have a similar structure whereas having sequence identity
as low as 20%. Protein function is more vital for evolution-
ary survival, than is sequence conservation so random
mutations to the sequence that destroy its function usually
cause the mutated sequence to be eliminated during
evolution and hence do not exist.

The new efficient multiple sequence alignment pro-
grams such as PSI-BLAST40 allow for easy use of the
alignment information for secondary structure prediction.
Multiple sequence alignment enables identification of the
evolutionarily conserved residues and leads to improve-
ment in the prediction of secondary structure.36,41–43 Our
recent results44 show that many sequences having 25–30%
identity compared with the query sequence, have their
secondary structure predicted better than the query se-
quence. The results presented in this article further sup-
port this observation. Our computations indicate that
small improvements in the accuracy of the prediction are
even obtained by removing sequences from the multiple
sequence alignment that are too similar to the query
sequence, whereas removing the sequences with ex-
tremely low identity does not improve the secondary
structure prediction.

The methodology of the secondary structure prediction
is usually based on having a database of sequences with
known secondary structure. The protein secondary struc-
ture prediction program finds relations between a se-
quence and structure by using the sequences in the
database and using them for the prediction of the second-
ary structure of new sequences, different than those in the
database. Consequently, the success of predictions de-
pends to a large extent on the proper choice of sequences
for the database. The database should cover all types of
proteins in the most representative way, and no proteins
in the database should be too similar. It is usually required
that the similarity between the sequences in the database
should be as low as possible (10–20% or less). If a protein
sequence for which the secondary structure is being pre-
dicted is too similar to any of the sequences in the
database, then the prediction is usually better.

Because the performance of various prediction programs
depends on the databases used and on the set of sequences
for which the prediction is done, the comparison of accu-
racy of prediction of the various methods should be done
very carefully by using cross-validation techniques. Re-
cently, Cuff and Barton30,31 proposed new databases of
non-redundant domains for the unbiased testing of various
prediction algorithms. The first database contained 396
sequences and the latest database contains 513 non-
redundant sequences. We have used this database of 513
sequences in the present work.

The GOR Method of Protein Secondary Structure
Prediction

The GOR program is one of the first major methods
proposed for protein secondary structure prediction from
sequence. The original article (GOR I) was published by
Garnier, Osguthorpe, and Robson14 in 1978, with the first
letters of the authors’ names forming the name of the
program. The method has been continuously improved and
modified during the last 20 years.15–17,44 The first version
(GOR I) used a rather small database of 26 proteins with
about 4,500 residues. The next version (GOR II) used the
enlarged database of 75 proteins of Kabsch and Sander
containing 12,757 residues.16 Both versions predicted four
conformations (H, E, C, and turns T) and were using
singlet frequency information within the window (so called:
directional information). Starting with GOR III,15 the
number of predicted conformations was reduced to three
(H, E, and C). The GOR III method started to additionally
use information about the frequencies of pairs (doublets) of
residues within the window, based on the same database
as the earlier version. The latest version of the program is
available online at the web based protein secondary struc-
ture prediction server (http://abs.cit.nih.gov/gor/) and is
named GOR IV.17 It uses 267 protein chains containing
63,566 residues. The GOR algorithm is based on the
information theory combined with the Bayesian statistics.
One of the basic mathematical tools of the information
theory is the information function I(S,R):

I~S; R! 5 log@P~SuR!/P~S!# (7)

For the problem of the protein secondary structure predic-
tion, the information function is defined as the logarithm
of the ratio of the conditional probability P(SuR) of observ-
ing conformation S, [where S is one of the three states:
helix (H), extended (E), or coil (C)] for residue R (where R is
one of the 20 possible amino acids) and the probability P(S)
of the occurrence of conformation S. The last publicly
available version (GOR IV) of the program is using a
database of 267 sequences with known secondary struc-
ture to calculate the information function I(S;R).

The conformational state of a given residue in the
sequence depends not only on the type of the amino acid R
but also on the neighboring residues along the chain
within the sliding window. GOR IV uses a window of 17
residues, that is, for a given residue, eight nearest neigh-
boring residues on each side are analyzed.

According to information theory, the information func-
tion of a complex event can be decomposed into the sum of
information of simpler events, generally:

I~DS; R1, R2, . . . Rn! 5 I~DS; R1! 1 I~DS; R2uR1!

1 I~DS; R3uR1, R2! 1 · · · 1 I~DS, RnuR1, R2, . . . Rn 2 1! (8)

where the information difference is defined as:

I~DS; R1, R2, . . . Rn! 5 I~S; R1, R2, . . . Rn!

2 I~n-S; R1, R2, . . . Rn! (9)

PROTEIN SECONDARY STRUCTURE PREDICTION 157



Here, n-S denotes all conformations different than S, that
is, if S is H then n-S is E and C.

The GOR IV method assumes also that the information
function is a sum of information from single residues
(singlets) and pairs of residues (doublets) within the
window of width 2d 11 (i.e., d 5 8, for the window of 17
residues):

log
P~Sj, LocSeq!

P~n-Sj, LocSeq!

5
2

2d 1 1 O
n,m 5 2 d

d

log
P~Sj, Rj 1 m, Rj 1 n!

P~n-Sj, Rj 1 m, Rj 1 n!

2
2d 2 1
2d 1 1 O

m 5 2d

d

log
P~Sj, Rj 1 m!

P~n-Sj, Rj 1 m!
(10)

Here the first summation is over doublets and the second
summation is over singlets within the window centered
around the j-th residue. The pair frequencies of residues Rj

and Rj1m with Rj occurring in conformations Sj and n-Sj

are calculated from the database. All 267 proteins in the
GOR IV database have well-determined structures (with
crystallographic resolution at least 2.5 Å). Using the
frequencies calculated from the databases, the program
can predict probabilities of conformational states for a new
sequence.

The accuracy of the prediction with the GOR IV program
based on single sequences (without multiple alignments)
tested on the database of 267 sequences with the rigorous
jack-knife methodology was 64.4%. Other methods (using
single sequences) for the secondary structure predictions
such as neural network methods or nearest-neighbor
methods have similar or lower success rates.30 A big
advantage of the GOR method over other methods is that it
clearly identifies all factors that are included in the
analysis and calculates probabilities of all three conforma-
tional states. Because the GOR IV algorithm is computa-
tionally fast, it is possible to perform the full jack-knife
procedure: each time when the prediction for the given
sequence (of 267 sequences) is done, the sequence is
removed from the database and the spectrum of frequen-
cies used for the prediction is recalculated without includ-
ing the information about the query sequence.

In a recent publication, Kloczkowski et al.44 applied the
evolutionary information for the secondary structure pre-
diction by combining of the multiple sequence alignment
for a small set of 12 proteins with the GOR IV algorithm.
All 12 proteins in the set were chosen to represent various
classes of folds. The proteins had well-determined resolu-
tion (better than 2.5 Å, mostly better than 2 Å) and had
identity less than 20% to any of the 267 proteins in the
database. We first performed binary alignments for each
protein chain (from the set of 12 chains under study) with
sequences in the PIR database by using the FASTA
program. Then sequences having at least 20–30% pair-
wise identity with the target sequence were aligned by
using the CLUSTAL program for the multiple alignment.

Sequence comparison is an extremely important technique
in computational biology. By comparing different se-
quences to each other, one can determine which parts of
sequences are similar. The similarity of sequences is
usually related to their evolutionary dependence and
quality of the alignment of two sequences can be measured
by a properly defined score. The GOR program takes
sequence (in the FASTA format) and predicts its secondary
structure. For each residue i along the sequence, the
program calculates the probabilities pH, pE, and pC and the
secondary structure prediction (H, E, or C). The probabili-
ties are normalized between 0 and 1 with:

pH 1 pE 1 pC 5 1 (11)

Usually, the predicted conformational state corresponds to
that with the highest probability, but sometimes the
program makes exceptions to this rule.

We have previously applied the GOR algorithm to the
multiple sequence alignments (for the 12 proteins) ob-
tained by using CLUSTAL. The gaps in the alignments
were skipped by the GOR algorithm during the calculation
of probabilities pH, pE, and pC for each residue in the
multiple alignment but the information about position of
gaps was retained. If we consider the multiple alignment
as a matrix of size n 3 m, where m is the length of the
alignment and n is the number of alignments, then each
element of the alignment matrix is one of the 20 amino
acid letters, or a gap (-) represented by the 21-st letter
character. [The possibility of unknown residues (X), or
nonstandard residues (B, Z) is also taken into consider-
ation, and such residues are similarly treated as gaps by
the GOR program.] The results of the calculations of the
probabilities of the three secondary states pH, pE, and pC

for all residues in the alignments by the GOR program are
stored as three matrices PH(i, j), PE(i, j), and PC(i, j) each of
size n 3 m, such that PH(i, j) represents the probability pH

of the helical conformation for the j-th residue in the i-th
multiple alignment sequence (with similar definition for
the E and C conformational states).

If the (i,j)-th element of the alignment matrix is a gap (-)
then the (i,j)-th elements of PH(i, j), PE(i, j), and PC(i, j) are
set to zero. The gaps are neglected in the prediction of the
secondary structure by the GOR algorithm but the informa-
tion about them is retained in the alignment matrix and in
the matrices PH(i, j), PE(i, j), and PC(i, j). In the final step,
we calculate the average values (over all alignments)
^PH(j)&, ^PE(j)&, and ^PC(j)& of the elements of matrices PH(i,
j), PE(i, j), and PC(i, j) at the j-th column in the alignment
matrix A. We sum the probabilities PH(i, j) [and similarly
PE(i, j) and PC(i, j)] over all alignments (0 # i # n) at the
j-th position in the sequence of multiple alignments, and
divide this sum by the number of alignments containing
non-gap entries at the j-th position. We skip columns that
contain gaps at the j-th position in the query sequence.
Then for each position j at the alignment sequence we
calculate the maximum of the three numbers max{^PH(j)&,
^PE(j)&, ^PC(j)&}. If, for example, the maximum corresponds
to ^PH(j)& then the j-th position in the multiple sequence
alignment is assigned the helical conformation with prob-
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ability ^PH(j)&. In this way, each position in the multiple
sequence alignment is assigned a secondary structure.

This method proved to be successful in the prediction of
the secondary structure, the accuracy of the prediction for
the set of 12 proteins being 71.9%. By applying a correction
technique to remove very short helices or sheets, and
imposing the requirement that the conformations H and E
must be separated by at least one C state the accuracy of
the prediction increased to 74.4%. The set of 12 proteins is
however too small for definitive estimation of the accuracy
of the prediction, even though the proteins in the set were
carefully chosen to have no identity to sequences in the
database and to be a good unbiased representation of a
larger population of proteins.

The main aim of this article was the systematic study of
the prediction of the secondary structure by the GOR
method using multiple alignments.

The Method

We made several changes to the GOR IV program to
improve the accuracy of the secondary structure prediction
even from a single sequence without the multiple align-
ments, and to ensure that the accuracy of the predictions
satisfy the jack-knife cross-validation standards. All these
modifications provide a basis for the new version of the
program that we call GOR V. The new GOR V version of
the program will soon be available on a web-based second-
ary structure Internet prediction server, replacing the
current GOR IV version.

All modifications and improvements of the original GOR
IV program incorporated into the GOR V version are listed
below:

1. As mentioned in the introductory part of this article, we
have enlarged the database of sequences with known
secondary structure. The previous GOR database of 267
sequences was replaced by a new database of 513
non-redundant domains proposed by Cuff and Bar-
ton.30,31 The database of 513 non-redundant domains
containing 84,107 residues was downloaded from Bar-
ton’s web site.30,31 The strict application of the full
jack-knife method for this database enables a highly
accurate, objective, and unbiased calculation of the
accuracy of the prediction, and an easy comparison with
results of other prediction algorithms that use the
non-redundant sequences as a prediction methodology
standard.

2. We have optimized the parameters in the GOR algo-
rithm to increase the accuracy of the prediction. The
most important modification was the introduction of the
decision constants in the final prediction of the confor-
mational state. The GOR IV program had a tendency to
over-predict the coil state (C) at the cost of the helical
conformation (H), and to an even greatest extent at the
cost of b-strands (E). We have therefore introduced
decision parameters.

The predicted probability of the coil (C) conformation
must be greater by some critical margins than probabil-
ity of either the (H) or (E) states to accept C as the

winning conformation in the prediction process. The
margin for the b-strands is greater than for helices,
because strands were more often mis-predicted by the
program as coils. The introduction of the decision
constants significantly improves the predicted results
by about 1.6%.

3. We have modified the GOR algorithm to include the
triplet statistics within the window. The previous ver-
sions of the program used only single residue statistics
(GOR I–II) or the combination of the single residue and
pair residue statistics within the window (GOR III–IV).
Now the GOR algorithm calculates statistics of singlets,
pairs, and triplets for the secondary structure predic-
tion. By introducing additional triplet statistics, the
problem of optimization of the prediction becomes more
complicated, and in the present version the triplets are
only treated as a small perturbation to the optimization
solution found for singlets with doublets. Because of
this, the addition of the triplets improved the accuracy
of the prediction by only 0.3%. It is probably possible to
find a better optimization and obtain a further improve-
ment to the prediction in the future, notably by using a
larger database.

4. We have applied a resizable window for the GOR
program. The previous version of the program (GOR IV)
was using the window having a fixed width of 17
residues, that is, with eight residues on both sides of the
central one. We have studied in detail the dependence
of the accuracy of the prediction of the GOR algorithm
on the size of the window. It is found that the accuracy
of the prediction is slightly better for the smaller
window of the width of 13 residues. The use of a smaller
window has computational advantage in that it re-
quires less computer memory and in turn permits us to
include the triplet statistics (within the window) for the
prediction of secondary structure. Because the number
of triplets within the window of size N is N(N-1)(N-2)/6,
the difference between the window of size 17 (680
triplets) and the new one of size 13 (286 triplets) is
substantial. The Cuff and Barton30,31 database on
non-redundant sequences of protein domains also in-
cludes a significant number of short sequences, that are
not domains, with many of them as short as 20–30
residues. Of course, the prediction of the secondary
structure for such short sequences is very inaccurate,
because of the artificial end effect of the window. (For
residues at the beginning or at the end of the sequence,
there are no neighbors on the left or on the left side
within the window to provide proper statistics.) All
window-based prediction programs have this problem
and usually short sequences are omitted in the predic-
tion and removed from the database. We have found
that we can overcome this problem by using smaller
windows for the prediction of the secondary structure of
short sequences. The use of a window size of seven or
nine residues gives surprisingly good (better than the
average prediction) results for residues as short as
20–30 residues. We have therefore modified the pro-
gram in such way that, depending on the length of the
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query sequence, the GOR algorithm adjusts the width
of the window used for the prediction. For sequences 25
residues or shorter, we use the window size of seven
residues, for sequences longer than 25 but shorter than
51 residues, the window is nine residues, for sequences
at least 51 residues long but shorter than 100 residues,
the window is 11 residues, and for all sequences at least
100 residues long, the window is 13 residues. The
introduction of the resizable window allowed us to
include all 513 non-redundant sequences in the predic-
tion procedure.

5. We have used the multiple sequence alignment for the
secondary structure prediction. Instead of using first
the FASTA pair alignments and then CLUSTAL mul-
tiple sequence alignments—the method applied in our
previous study of the set of 12 protein chains—we used
directly the multiple sequence alignments from the
PSI-BLAST program for each of the 513 non-redundant
sequences from the database. We run PSI-BLAST pro-
gram using the nr database which contains all known
databases: all non-redundant GeneBank CDS transla-
tions 1 PDB 1 SwissProt 1 PIR 1 PRF. We set the
maximum number of iterations in the BLAST computa-
tions to five with an E value of 5 3 1024. This means
that if in five iterations the BLAST alignment proce-
dure is unable to converge, we use the partially con-
verged alignments from the fifth iteration. Only in a few
(four) cases (mainly for very short sequences) was the
BLAST program unable to find any alignments (“no hits
found” result) and in those cases the original single
sequence was used for the prediction. The number of
alignments varied considerably depending on the se-
quence. For some sequences, the BLAST program pro-
duced more than 2,000 sequences, whereas for some
other sequences, only a few alignments. We first used
all alignments generated by the BLAST algorithm and
then we tried to select the range of the identity of the
alignments with the query sequence that gave the best
accuracy of the prediction. He have found that a small
improvement in the prediction is obtained by removing
the alignments that are too similar to the query se-
quence. We have tried various sequence identity thresh-
olds and found that the best results are obtained by
skipping all alignments that have identity greater than
97% to the query sequence. The effect of cutting off the
alignments that are too similar to the query sequence is
relatively strong, probably because the BLAST pro-
gram produces a large number of such alignments.
However, cutting off the alignments with low identity to
the query sequence did not improve the prediction
results, because the number of such alignments is
small, so we include even very dissimilar alignments.
Besides the identity threshold, we tried to use various
methods of weighting of the alignments in the calcula-
tion of the accuracy of the prediction. Various weighting
schemes related to the identity of the alignments with
the query sequence gave almost similar predictions, so
we treated all alignments similarly, except those with
similarity more than 97% which were rejected.

The methodological procedure was the same as in our
previous work44 for the set of 12 protein chains, based
on the calculation of the matrices of the probabilities of
various (H, E, and C) secondary structure elements
PH(i, j), PE(i, j), and PC(i, j) for each j-th residue in the
i-th alignment (with the inclusion of alignment gaps).
The gaps were skipped by the GOR program in the
calculation of the probabilities of various secondary
structure conformations, but the information about
them was retained for averaging purposes. Then we
calculated the averages over alignments ^PH(j)&, ^PE(j)&,
and ^PC(j)& at the j-th position in the alignment by
summing PH(i, j) [and similarly PE(i, j) and PC(i, j)] over
i, by dividing this sum by the number of alignments,
excluding (in the alignment count) alignments with
gaps at the j-th position. We have also skipped in the
alignment matrix columns containing gaps in the query
sequence, contracting the size of the matrix to the
original length of the query sequence. The prediction of
the secondary structure conformation for the j-th resi-
due was based of the set of three probabilities {^PH(j)&,
^PE(j)&, ^PC(j)&}. In our previous study of the secondary
structure prediction using the multiple sequence align-
ments for a set of 12 protein chains, the secondary
structure of the j-th residue was assigned to the confor-
mation with the largest probability value max{^PH(j)&,
^PE(j)&, ^PC(j)&}. We have modified this assignment
procedure by introducing decision constants, as de-
scribed above in this section. The original GOR IV
program over-predicted the coil (C) state, instead of the
(H) or (E) state when the calculated probability of the
coil state was slightly larger than the probabilities of
(H) or (E). We have therefore introduced the decision
constant thresholds. The coil state is now being pre-
dicted only if the calculated probability of the coil
conformation is greater then the probability of the other
states (H, E) plus the imposed thresholds (0.15 for E
and 0.075 for H). The value of the threshold for the
b-sheets is larger than for a-helices, because strands
were more often erroneously predicted as coils.

We have performed all calculations for the translation of
the eight-state DSSP assignments into the three second-
ary structure states H, E, and C the same as that used by
the Frishman and Argos.5 This means that DSSP states H
and E were translated to H and E in the three-state code,
and all other letters of the DSSP code were translated to
coil (C). Additionally, similar to Frishman and Argos, we
treated helices shorter than five residues (HHHH or less)
and sheets shorter than three residues (EE or E) like coils.
The main reason behind the application of the Frishman
and Argos DSSP translation was that the GOR algorithm
has a built-in correction scheme, which removes secondary
structure segments that are too short (helices shorter than
four residues, and sheets shorter than three residues),
treating them as the most likely prediction errors. The
Frishman and Argos assignment scheme is therefore
highly compatible with the GOR program performance. It
is however known that the Frishman and Argos transla-
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tion of the secondary structure gives slightly higher accu-
racies of prediction, than the strict translation that main-
tains short helices and strands.

RESULTS

The results obtained are shown in two tables. Table I
shows all elements of the accuracy matrix A and the
parameter Q3 [defined by Eq. (3)] and two kinds of
parameters Q for the individual correctness of prediction
for each secondary structure class (H, E, and C), Qpred and
Qobs. The parameter Qobs is defined by Eq. (5), whereas
Qpred has similar functional form [such as Eq. (5)], with the
Ni [defined by Eq. (2)] replaced by ni [from Eq. (1)]. The
analysis of the results in Table I shows that the GOR V
program is most successful in the prediction of coils, quite
good in the prediction of helices, but less successful in
specifying of b-sheets. The average value Q3 5 73.4 for the
GOR V algorithm with multiple alignments is much better
than the accuracy of the GOR IV method based on single
sequences Q3, which was around 65%. Cuff and Barton30

cross-validated the accuracy of the GOR IV algorithm
using their earlier database of 396 non-redundant se-
quences and a similar translation of the eight-letter DSSP
assignment code into the three-letter secondary structure
code. They reported 64.6% accuracy (see Table XIII in
Ref.30). The accuracy of the GOR V algorithm based on
single sequences is Q3 5 66.9 (per residue) and 67.5 per
chain. This represents more than a 2% increase attribut-
able to various optimizations applied in the GOR V
version.

Table I shows the accuracy of prediction per residue.
Another way of presenting the results is to calculate
averages over the total number of chains in the database.
The advantage of this method is the possibility of calcula-

tion of statistical mean square deviations (s2) of the
averaged quantities. The results of these calculations are
shown in Table II, where the average values are shown
together with the root-mean-square deviation (s).

We have calculated the following quantities for Table II:

1. The Q3 prediction value per chain (averaged over 513
chains) and its root-mean-square deviation.

2. The average segment overlap Sov (as recently redefined
by Zemla et al.9) and the root-mean-square deviation of
the segment overlap Sov.

3. The average segment overlap J1
score and its root-mean-

square deviation.
4. The average segment overlap J2

score and its root-mean-
square deviation.

The segment overlap Sov is defined in reference9, and
the two new segment overlap measuring scores J1

score and
J2

score will be defined later in this section. The accuracy of
prediction measured by Q3 based on the Frishman and
Argos translation of the DSSP assignments to the three
secondary structure states is 73.5% per chain for all 513
non-redundant sequences. The average per chain is slightly
higher than per residue (73.4) because the performance of
the GOR program is better for short- and middle-sized
length chains in the database, than for very long ones. It
should be noted that Frishman and Argos5 reported an
accuracy of 74.8% (75% in the title of their publication), by
using the PREDATOR algorithm and the 125 sequences
from the Rost and Sander18 database. The cross-validation
of the performance of various prediction algorithms on the
database of the 396 non-redundant sequences developed

Fig. 1. Dependence of the accuracy of the predictions on the upper
sequence identity (to the query sequence) cutoff threshold for sequences
from the multiple-sequence alignment. The accuracy of prediction im-
proves when we remove alignments more similar than 95–97% to the
query sequence, but removing all sequences with identity more than 90%
lowers the accuracy of the predictions.

TABLE II. The Parameter Q3, Segment Overlap (Sov),
J1

score and J2
score Averaged Over 513 Sequences in the

Database and Their Corresponding Root-Mean-Square
Deviations (s)

Average over 513 sequences s

Q3 73.5 9.8
Sov 70.8 14.4
J1

score 78.4 12.1
J2

score 79.5 12.5

TABLE I. Global Results for Secondary Structure
Prediction, the Accuracy Matrix, and Parameters Q

(for Each State) and Q3 Per Residue

Observed

Predicted

H E C Total

H 18,376 849 5,616 24,841
E 1,788 8,526 6,526 16,840
C 4,759 2,812 34,855 42,426
Total 24,923 12,187 46,997 84,107

Qpred 73.7 70.0 74.2
Qobs 74.0 50.6 82.1
Q3 73.4

PROTEIN SECONDARY STRUCTURE PREDICTION 161



by Cuff and Barton30 has demonstrated drops in the
prediction levels (in comparison to the Rost and Sander
database) from 1.3% to 2.7%, depending on the prediction
program. The application of the full jack-knife methodol-
ogy additionally lowers the reported accuracies.

We have found that the accuracy of the prediction
actually increases if we remove from the multiple sequence
alignment those chains that are almost identical to the
query sequence. This is illustrated in Figure 1 where the
accuracy of the prediction is plotted against the values of
an upper identity percentage cutoff. The upper identity
cutoff means that all sequences with identity (to the query
sequence) higher than this upper limit are removed during
the GOR prediction process. Figure 1 shows the interest-
ing result that the removal of sequences with an identity
larger than about 95–97% improves the prediction, whereas
removing sequences that have identity lower than 90% to
the query sequence lowers the accuracy of the prediction.
We have also studied the opposite effect of a lower identity
cutoff that removes from the multiple sequence alignment
chains that have very low identity to the query sequence.
The results are shown in Figure 2 where the accuracy of
the prediction is plotted against the lower identity cutoff.
We have found that the removal of the most dissimilar
sequences does not influence the accuracy of the predic-
tion, because of the small number of such sequences. These
results show that all PSI-BLAST alignments (except the
most identical ones) should be included, if possible, in the
secondary structure prediction process. The neglect of the
alignments with low identity to the query sequence will
not help, but to the contrary may hinder the accuracy of
the prediction. We have also tried various schemes of

weighting the multiple sequence alignments depending on
their identity to the query sequence in the process of the
calculation of the averages over alignments ^PH(j)&, ^PE(j)&,
and ^PC(j)& (for the j-th position in the alignment). We have
found the accuracy of the predictions is almost the same
for various weighting schemes, except for removing the
sequences with highest similarity to the query sequence.

The accuracy of the GOR prediction is additionally
increased if we limit prediction to chains having a suffi-
ciently large number of alignments. We have tried to run
the GOR program for various alignment number thresh-
olds. The results are shown in Figure 3 where the accuracy
of the prediction is plotted as a function of the minimum
number of alignments Nmin required for the query se-
quence. This means that all sequences from the Cuff and
Burton database of 513 non-redundant domains, which
have less than Nmin PSI-BLAST produced alignments are
skipped in the process of the calculation of the accuracy of
prediction. Of course, the increase in the Nmin threshold
limit decreases the number of sequences (from the set of
513) that satisfy this limit. The value Nmin 5 0 corre-
sponds to the case when all 513 sequences (even those that
have no PSI-BLAST alignments) are used to calculate the
accuracy of the prediction. The best prediction results were
obtained for sequences having at least 50 PSI-BLAST
alignments. There are 375 chains among the 513 domains
in the database for which the PSI-BLAST program finds at
least 50 alignments. The value of the Q3 coefficient calcu-
lated for these 375 chains has increased to 74.3% (per
chain) and 74.2% per residue.

It should be noted that all these results are very close to
the accuracies obtained by using GOR V algorithm without
the jack-knife procedure. The calculated value of Q3 for
513 sequences without the jack-knife method was 74.9%

Fig. 2. Dependence of the accuracy of the predictions on the lower
sequence identity (to the query sequence) cutoff threshold for sequences
from the multiple sequence alignment. The removal of the sequences with
very low identity to the query sequence does not improve the accuracy of
the predictions, but neither does including them reduce the quality of the
predictions.

Fig. 3. The accuracy of the prediction as a function of the minimum
number of PSI-BLAST alignments Nmin used for the prediction. The best
predictions are obtained for sequences having at least 50 alignments.
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(per chain) and 74.7% (per residue). For 375 sequences
having at least 50 alignments, the Q3 calculated without
the jack-knife procedure was 75.2% (per chain) and 75.1%
per residue. The difference between the prediction based
on multiple sequence alignments obtained with the full
jack-knife and without the jack-knife procedure is less
than 1.5%. This is much less than the prediction for single
sequences (without multiple alignment) where the imposi-
tion of the jack-knife requirement leads to a significant
decrease of about 5% in the prediction accuracy.

Besides Q3, we have calculated the segment overlaps
(Sov) using the recent re-definition of Sov by Zemla et al.9

This new definition of Sov ensures that the segment
overlap is properly normalized (0 # Sov # 100). The old
definition of Sov sometimes gave values of Sov larger than
100. The calculated values of Sov was 70.8 and its root-
mean-square deviation [s(Sov)] was 14.4. These results
are shown in the second row in Table II.

We think, however, that the segment overlap Sov does
not properly measure all aspects of the quality of overlaps.
The Sov puts a great weight on the requirement that the
predicted segments should not be disjoint. Every disrup-
tion in the continuity of the predicted sequence leads to
large penalties. This is illustrated in Table III showing the
observed sequence and four different predictions (Predic-
tion 1–4).

The third column in Table III shows Sov calculated for
each prediction. Sov for Prediction 1 is 65.2% and for
Prediction 2 is 77.9%, only because the Prediction 1
contains the one C residue disrupting the helical sequence.
It does not matter that the first prediction has the correct
prediction of seven of the nine residues in the H state,
whereas the second one has only five of the nine H
residues. Additionally, the Sov values reflect little about
the relative positions of overlapping segments as illus-
trated by comparing the observed sequence with Predic-
tions 3 and 4 in Table III. The Sov for Predictions 3 and 4
are almost the same: 67.9% and 68.6%, respectively.
Prediction 4 is, in our opinion, better than Prediction 3
because centers of helices for the observed and predicted
sequence are close, and should be given a much better
overlapping score.

To cope with these problems, we introduce two new
coefficients J1

score and J2
score measuring the quality of

segment overlaps (Di Francesco et al., unpublished re-
sults). Both coefficients are defined similarly by Eq. (12)
with the only difference being in the definition of weights
Wi.

Jscore 5

O
i 5 1

n

Widij

O
i 5 1

n

Wi

100 (12)

Each residue in secondary structure segment is given a
weight, depending on the position of the residue in the
segment. The residues on both ends of a secondary struc-
ture segment are given weights of 1, next residues are
given weights 2, 3, 4…, growing in the algebraic series
form (1, 2, 3, 4, 5, 6…). While calculating the J1

score, we sum
up the weights for residues having the same secondary
structure in the observed and predicted sequence [corre-
sponding to the Kronecker dij in Eq. (12), which is one, if
residue i in the observed sequence and j in the prediction
are in the same state and at the same position, i 5 j,
otherwise dij is zero] and divide this sum by the sum of all
weights in the observed sequence of n residues. The
illustration of this method is given in Table III by showing
weights for calculation of these coefficients for Prediction
1. The values of J1

score for each prediction is given in the
fourth column of Table III. For the J2

score, the weights are
similarly defined, except that instead of growing in the
algebraic series form (1, 2, 3, 4, 5, 6…) from each end of the
segments, they have the geometric series form for the first
four members, and then they grow like the J1

score, i.e., they
form a series (1, 2, 4, 8, 9, 10, 11…) for the each end of a
segment, as shown in Table III for Prediction 1.

The calculated values of J2
score for each prediction are

shown in the last column of Table III. It should be noted
that the definition of J1

score and J2
score is much simpler than

the definition Sov and these coefficients account for the
problems mentioned above. The calculated average values
of coefficients J1

score and J2
score for the database of 513

sequences are shown in Table II together with their
corresponding root-mean-square deviations. The J2

score

(79.5) is slightly higher than the J1
score (78.4).

Single average coefficients are not, however, a good
measure of the quality of the secondary structure predic-
tion. Much more information is contained in the distribu-
tion of segment lengths of various secondary structure
elements. Figure 4 shows the observed distribution of
lengths of helices in the database (solid line) and the
similar distribution of lengths of helices for the GOR V
predictions. We count the number NL of segments in the
database having length L. A similar count is done for the

TABLE III. Observed Sequence and Four Different Predictions With Weights Illustrating the Calculation of
Coefficients J1

score and J1
score for Prediction 1

Observed CCHHHHHHHHHCCC Sov J1
score J2

score

Prediction 1 CCCHHHCHHHHCCC 65.2 80.6 77.8
Weights for calculation of J1

score for Prediction 1 11123454321121
Weights for calculation of J2

score for Prediction 1 11124898421121
Prediction 2 CCCCHHHHHCCCCC 77.9 80.6 86.7
Prediction 3 CCHHHHCCCCCCCC 67.9 51.6 46.7
Prediction 4 CCCCCHHHHCCCCC 68.6 71.0 77.8
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segments from the secondary structure predictions. Figure
4 shows that the distribution of lengths of helices is rather
well predicted by the GOR program. The main difference is
the segment length at the maximum of the distribution,
the observed value is L 5 10, whereas the GOR program
predicts the maximum at L 5 7, but nonetheless the
breadth of the predicted and observed distributions are
extremely close to one another.

Figure 5 shows similar distributions for lengths L of
b-sheets (E). Because sheets are usually much shorter
than helices, the length L scale in Figure 5 differs from the
distribution of Figure 4. Figure 5 shows that the GOR
program is less successful in the prediction of strand
lengths. Whereas the maximum of both distributions
observed (solid line) and predicted (dashed line) coincide at
L 5 4, the shapes of the distributions in Figure 5 differ
substantially. The predicted distribution is too narrow and
highly over-predicts the number of segments with the
length 4 and 5, and under-predicts the number of seg-
ments longer than 5. This interesting result indicates
where, in the future, improvement to the GOR algorithm
can be made, by implementing decision constants based on
the length of the b-sheet segments.

DISCUSSION

We have shown that the GOR prediction algorithm
based on information theory and incorporating multiple
sequence alignment information is quite successful in its
accuracy of secondary structure prediction. The calculated
accuracy of the prediction was based on the Cuff and
Barton database of 513 non-redundant domains (contain-
ing 84,107 residues) with a rigorous application of the
jack-knife procedure. The prediction accuracy is near the
accuracy that we found in our earlier work44 on a set of 12
protein chains, which shows that that small set was
surprisingly well chosen to represent accurately much
larger groups of proteins.

The accuracy of the prediction with the GOR method
seems to be 2–3% less than the published accuracies of
prediction for the most successful prediction methods
based on neural networks but the actual comparison of the
accuracy of the prediction to other prediction methods
should be done by the existing automatic evaluation of
server predictions on the same series of proteins, such as
project EVA45 or LiveBench46 (although the LiveBench
project is mainly dedicated to the three-dimensional predic-
tions).

The advantage of the GOR method in comparison to
neural network based predictions is that all parameters of
the algorithm are fully controllable, have direct physical
meanings, and provide us with insights about the relation
between sequence and the structure. The neural network
methods work like “black boxes,” providing no understand-
able relation between the input and the output, and
therefore do not have the advantage of the present method.

The GOR method benefits from its relative simplicity
and low computational resource requirements, which
makes it possible to do predictions in real time without
long waits for results. The GOR method predicts the
probabilities of the three conformational states for each
residue in the sequence, and this information can be used
for further analyses or simulations. Most of the other
prediction methods do not provide so much information,
and usually the most they give is a confidence level of the
prediction for a given position in the sequence. The prob-
abilities of various secondary structure conformations give
us direct information about the confidence level of the

Fig. 5. The observed distribution NL of the lengths L of b-sheets in the
Cuff and Barton database of 513 non-redundant sequences (solid line)
and the distribution predicted by the GOR V program (dashed line) for
these same sequences.

Fig. 4. The observed distribution NL of the lengths L of H in the Cuff
and Barton database of 513 non-redundant sequences (solid line) and the
distribution predicted by the GOR V program (dashed line) for these same
sequences.
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GOR prediction. We have initiated earlier studies on this
problem with a set of 12 proteins with multiple sequence
alignment information.44 We analyzed the relation be-
tween the accuracy of the prediction and the strength of
the prediction measured by the difference D (0 , D , 1)
between the probability of the predicted state (with the
highest probability) and the probability of the next-most
probable state. The probabilities of the GOR prediction are
normalized to 1 [Eq. (11)]. Figure 6 shows the results of
calculations with varying values of the parameter D. The
solid line shows the accuracy of the prediction for strongly
predicted residues (satisfying the threshold D require-
ment) as a function of the parameter D. If the threshold D
is large enough (D ' 0.4), the prediction accuracy reaches
almost the 89% accuracy level. The broken line shows the
percentage of residues with indeterminate states (weakly
predicted) that do not satisfy the D threshold requirement.
The imposition of the D threshold increases significantly
the accuracy of the prediction, but the percentage of
residues predicted with high confidence level expectedly
diminishes with the increase in D. We are planning in the
future to incorporate the information about the residues
predicted with high confidence into the GOR program as
an input for the next level of prediction, built upon those
firmly predicted residues. This approach may improve the
performance of the GOR algorithm, because the secondary
structure segments can be viewed to be built around those
strongly nucleating residues.

The main failure of the GOR method is the very low
accuracy (about 50%) in the prediction for b-sheets (E). In

future work, we will try to combine the GOR method with
the global composition-based prediction methods47–51 to
improve the accuracy of the prediction of b-sheets and
hence the total accuracy of the prediction.

It is worth mentioning that because the GOR method is
computationally simple, it allows use of the full jack-knife
procedure and computation of the prediction in real time
on a personal computer. The neural network based predic-
tion methods require substantially larger computational
resources during the network learning process, so that the
jack-knife is almost always done by removing not a single
sequence but a whole group of sequences from the data-
base. The accuracy of the prediction for the new GOR V
method with multiple sequence alignments is nearly
(within the 2–3% accuracy limit) as good as neural net-
work predictions. This demonstrates clearly that the GOR
information theory based approach—a method with more
than 20 years’ history—is still viable and at the front line
of secondary structure prediction methods.
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