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On the computational basis of learning and cognition: Arguments from LSA.

Thomas K Landauer

To deal with a continuously changing environment, living things have three choices. (1)

Evolve unvarying processes that usually succeed. (2) Evolve genetically fixed (possibly

ontologically developing) effector, perceptual, and computational functions that are contingent on

the environment. (3) Learn adaptive functions during their lifetimes. The theme of this chapter is

the relation between (2) and (3): the nature of evolutionarily determined computational processes

that support learning. Examples of this focus are neural mechanism conjectures, connectionist

modeling, and mathematical learnability theory. The somewhat different approach taken here is to

ask what evidence about the world we have access to and what can be done with it. This chapter

cannot offer an exhaustive and rigorous treatment of the issue. It presumes only to present an

example of how its consideration may lead to interesting results and insights. Its main point is to

argue that learning from empirical association, if done right and writ very large, is capable of

much more than often supposed.

What kind of evidence do we animals have from which to induce knowledge? Mostly

observational. We use our limited effectors and perceptors to explore and learn how objects and

events are related to each other. There is some opportunity to arrange what will be observed by

being in the right places at the right times. And there is some opportunity to experiment; to try to

affect the world and see what happens. However, the principal evidence we get is patterns of

stimulation as they occur over time. The vast preponderance of our available raw data is empirical

association: the occurrence of two or more perceptual or effective elements in time: that is,

coincidence, co-occurrence, contingency, or correlation.

The question is for what can this kind of data be used? The British empiricists had it right

in pointing out that associational data must be the fundamental basis of acquired knowledge,

because there isn’t anything else. But they did not (probably could not, given the theoretical tools



Ch. 13. Landauer The computational basis of learning.

2

of the day) rigorously work out what could and couldn’t be done with it. In fact, Locke’s

postulation of similarity as a separate kind of association data, in addition to contiguity, implicitly

assumed, but left unexplained, a computational mechanism by which perceptual data are

combined and compared. A critical missing piece was the basis of similarity, especially similarity

that must be learned, for example that between a car and a truck, or the words “man” and “wife”.

As Goodman (1972) put it, similarity taken as primitive is an imposter, a fact in need of

explanation, not an explanation. How we compute similarity is one of the essential questions in

understanding how the data of experience are made useful. It is intimately related to object

identification and recognition, whether innate or learned, and to generalization, categorization,

induction, prediction, and inference.

In this chapter, I take two psychological phenomena as cases for illustration and discussion,

visual object recognition and verbal semantics. I find the questions and potential answers in the

two cases remarkably similar, and the counterpoint of their joint discussion illuminating. The

fundamental questions in both cases are what the elements of association are and how they are

combined into useful representations and thoughts. However, exploring the problem by

computational simulation has been easier and more revealing for verbal meaning, so my strategy

is to describe some of what has been learned in that way, and then to consider how the lessons

might apply to object recognition.

The discussion is organized in a somewhat spiral fashion. I first raise the issue of the nature

of the basic elements of empirical association and illustrate it by the case of learned object

recognition. This leads to the hypothesis that the choice of optimal elements may provide a

relatively small part of the solution of the problem; what is done with the co-occurring elements

appears to be more important. I then move to the learning of word and passage meaning because

this domain exhibits the problem in a manner that is particularly convenient to model; we can

give a computer the very same mass of perceptual input that literate humans use for much of their

learning. I first show how a different kind of co-occurrence data and a different form of
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computation can yield much more knowledge than has usually been supposed (e.g. by Bloom,

2000, Chomsky, 1991 a & b, Gleitman, 1990, Osherson, Stob and Weinstein, 1984, Pinker,

1994). The co-occurrence data is not of words and words, but of words and contexts. The

computation is not estimation of the probability of sequential contingencies between words, but

rather the use of the algebra of simultaneous equations to induce meaning relations between

words from all the contexts--not only those shared--in which they do and do not appear. Next, I

explain how these ideas are implemented in the Latent Semantic Analysis (LSA) learning model

through singular value decomposition, an efficient matrix algebraic technique that represents

words and passages as high-dimensional vectors in much the way that neural nets represent inputs

and outputs by values on hidden units. I then list a variety of human verbal comprehension

performances that LSA simulates surprisingly well: for example, that it passes multiple choice

final exams in psychology and equals experts ability to score the conceptual content of student

essays on substantive topics.

Importantly, LSA’s success depends critically on sufficient scale and sampling, on the

amount and naturalness of the data that it is given. Its ability to represent word meaning comes

from relating all of tens of thousands words and tens of thousands of contexts to each other in a

mutually consistent manner. It’s success also depends on choosing the right number of underlying

dimensions of meaning to extract. Representing the similarity of millions of local observations by

values on many fewer dimensions induces an enormous amount of “latent” information. This

makes it possible, for example, to compute that two passages have the same meaning even if they

contain no words in common.

The lesson I then take from LSA’s successes is that empirical association data, when

sufficient to accurately induce how all of its elements are related to each other, makes learning

from experience powerful enough to accomplish much, if not all, of what it does. The next main

section of the chapter conjectures about how the same principles might apply to object
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recognition. The aim is not to propose a worked out model, but to suggest that the scope of the

general principles may be quite wide indeed.

The chapter concludes by discussing the implication that relations between thoughts,

words, passages, objects, events, and intentions may all be induced by the same fundamental

process. Along the way, some words are also spent on the varieties and limitations of current

instantiations of models of the kind proposed, some objections to LSA that have been raised by

others, and the future needs and prospects of this line of research and theory.

THE ELEMENTS OF ASSOCIATION.

If we are to learn from empirical association, we need things to associate. To start off with,

some primitive elements given by nature. What are these?. Are they discrete, atom-like elements,

or values of continuous variables? If discrete, are they ordinal valued, and if so, how many

different values do they have? Do they come with structure, relations to each other, ready-made

similarity in the sense that they can substitute for one another in mental computation? How many

different variables are there? Are they independent or correlated? How freely do they combine;

do they have constraints or favoritisms like molecules? Orderly attachments like crystals or

proteins? Other innate structure? How much contextual invariance do they display? A closer look

at these questions is provided by considering how object recognition might be performed by

animals or machines.

Object recognition

Perhaps the most central and difficult question about object recognition is how a three

dimensional object can be recognized as the same, and discriminated from and related to others,

despite changes in viewpoint, lighting, and context. Actually there is a prior question; how can an

object be recognized and distinguished at all? The simplest theory, perhaps, is the template. Make

a spatial record of the object’s shape as it appears on the retina or in the visual cortex. Move the

record over incoming scenes to try to match it point for point. Measure the degree of match. The
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orientation and context problems are attacked by trying all positions, parts, and magnifications of

the template, the lighting problem by normalizing with respect to overall illumination. Pursued

with great diligence and cleverness, machine implementations of this approach work fairly well

for some purposes, such as recognizing printed addresses viewed at the perpendicular. For

irregular solid objects seen a few times, then rotated in three dimensions, it fails badly. But this is

a feat that most animals can do quite well.

What elements of experience are assumed in the template hypothesis? Are they tiny points,

corresponding, say, to retinal receptors? The smaller the points, the more accurately they will

have to be aligned for any old sets of points to match any new ones, but the fewer false positives

they will necessarily generate. By making the points bigger and fuzzier we can get more

generalization; small translations or rotations may leave the match better than competing patterns,

but at a cost to precision.

This is an example of the first possible solution to the unit issue in using co-occurrence

data; use a unit that is an optimal compromise between precision and forgiveness. This solution

sometimes goes by the names of grain size or coarseness of coding. Unfortunately, while helpful,

it is clearly insufficient. A rotated irregular 3-D object will not often have a pattern, no matter

what size and fuzziness the spots, that overlaps discriminatingly with the original.

The next possibility is to replace fuzzy spots with a set of shape-diagnostic and view-,

rotation-, illumination-invariant features. A well-known set is the few dozen “geons” proposed by

Biederman (1987). These constitute an alphabet of proposed elementary shapes that are claimed

in combination to be sufficient to characterize any object in any view so as to differentiate it from

any other with accuracy approaching that of human perception. Edelman (1999) reviews evidence

and arguments that geons are not a complete solution, for example that no one has come close to

automating object recognition with human-like generality by this approach, primarily because the

scheme does not yield adequate interpolation and extrapolation to new viewpoints or occlusions.

Nevertheless, something of the kind is a necessary component of the solution. We need elements
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to combine, and the more discriminating and invariant they are the better. However, it is apparent

that good units alone are not the solution, that we will need more, and that the more will lie in the

combining computations.1

Language

Where visual object recognition can be conceived of as a sequence of operations on

stationary input patterns--one camera image or saccadic scene at a time--the fundamental

elements of spoken language are ephemeral patterns defined by continuous temporal variation.

Printed language discretizes the acoustic stream and turns it into a sequence of visual objects. A

hierarchical organizational scheme apparently characterizes all languages. The acoustic stream is

partitioned into easily articulated and recognized units (phonemes), sequential strings of these

into clusters of various sizes (consonant-vowel clusters, syllables), and these into very large

alphabets of discrete words, which are combined into a virtually unlimited number of objects

(idioms, phrases, sentences, utterances, paragraphs). The language learner needs to be able to

recognize and differentiate units at all these levels.

We will leave aside how people learn to recognize the physical word-form and sub-word-

form units, only mentioning that from phoneme up they all must be mostly learned because they

differ from language to language, whereas we can imagine that innate units are useful farther up

the corresponding hierarchy for vision, essentially up to units useful in the shared environments

of humans over the last ten millennia. The reason for omitting the lower levels here is pragmatic.

Exploratory simulation of the mechanism for combining words into utterances can take advantage

of immense samples of natural language already transcribed into word units and the ability of

computers to deal with them. The form of that recoding is completely natural. It is not a

hypothetical representation of input features created to serve the needs of a theory, but the actual

input code for much of human use and learning of language. To repeat, the hope is that things

discovered here will have relevance elsewhere.

COMPUTATIONS FOR COMBINING ELEMENTS
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One strategy for developing theory about a natural process is to start with very simple

assumptions or models and see how much they explain before introducing what may turn out to

be unnecessary complexity. For combining words into meaningful utterances, perhaps the

simplest model to consider is the unordered set of word tokens in a passage. In a printed passage

each string of characters separated by a space or punctuation-mark may be taken as a word token.

It is helpful to start this analysis by calculating the potential information in the combination (in

the mathematical sense) of words and in their order (their permutation), respectively. To keep the

numbers simple, assume that comprehension vocabulary is 100,000 words, that sentences are 20

words long, and that word order is important only within sentences. Then the contributions, in

bits are log2 (100,000)20 and 20! respectively, which works out to over 80% of the potential

information in language being in the choice of words without regard to the order in which they

appear. Using this observation to justify ignoring word order permits a convenient simplification.

We assume that the elements are additive. As we will see, it turns out that this “bag of words”

function, if properly realized, can produce surprisingly good approximations.

Learning word meanings and knowing passage meanings

 Here is the way we go about it. The object that we want to account for in language is a

transmittable or thinkable meaning. It is obvious that all the meaning of a passages is contained in

its words, and that all its words contribute to its meaning. If we change even one word of a

passage, its meaning may change. (The meaning of a passage plus its context is not, of course,

contained in just the words, as Bransford and Johnson (1972) pointed out.) On the other hand,

two passages containing quite different words may have nearly the same meaning. All of these

properties are neatly represented by assuming that the meaning of a passage is the sum of the

meanings of its words.

meaning of word1 + meaning of word2 + … + meaning of wordn = meaning of passage.
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 Given this way of representing verbal meaning, how would a learner go about using data

on how words are used in passages to infer how word meanings and their combinations are

related to each other? Just assuming that words that often occur in the same passages have the

same meaning won’t do at all. For one thing, it is usually false; it is the combination of words of

different meanings that makes a passage meaning different from a word meaning. Consider the

following passages, which are represented as equations as specified above:

System 1.

ecks + wye + aye  = foo

ecks + wye + bie  = foo

Ecks and wye always co-occur in the same passages, aye and bie never. Together the two

equations imply that aye and bie must have the same meaning, but nothing at all about the

relation between ecks and wye. Thus, the way to use empirical association data to learn word

meanings is clearly not just to assume that words that have similar meanings to the extent that

they tend to appear together.

Now add two more equations.

System 2.

ecks + wye + aye = foo

ecks + wye + bie = foo

ecks + wye + cee = bar

ecks + wye + dee = bar
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We now know that cee and dee are also synonyms. Finally consider:

System 3.

aye + cee = oof

bie + dee =  rab.

To be consistent with the previous passages, from which aye = bie and cee = dee, these two

passages must have the same meaning (oof = rab) even though they have no words in common.

Here we have the makings of a computation for using observed combinations of elements

that appears more subtle and promising than simple classical conditioning in which one stimulus

comes to act much like another if and only if it occurs soon before it, or by which two passages

are similar just to the extent that they contain the same words (or even the same base forms).

The next step is to formalize and generalize this idea. Doing so is quite straightforward.

Consider every passage of language that a learner observes to be an equation of this kind. Then a

lifetime of language observation constitutes a very large system of simultaneous linear equations.

This set of equations is certain to be highly “ill-conditioned” in mathematical terminology,

meaning that there will be too few equations to specify the value of many of the variables and

some of the subsets of equations will imply different values for the same variable. As a model of

natural language semantics, these deficiencies do not seem out of place; word and passage

meanings are often vague or multiple. Mathematically, such complexities can be dealt with by

abandoning the requirement of finding absolute values, settling for relations among the variables,

and representing them in a richer manner than as real values on a number line (scalars.) One

computational method for accomplishing this is called Singular Value Decomposition (SVD)2.

SVD is a matrix algebraic technique for reducing the equations in a linear system to sums of



Ch. 13. Landauer The computational basis of learning.

10

multidimensional vectors. Good introductions to the mathematics may be found in Berry (1992)

and Reyment and Jöreskog (1996) and its original use in language modeling in Deerwester et al.

(1990).

The Latent Semantic Analysis model (LSA) uses SVD to simulate human learning of word

and passage meaning. The first step is to assemble a corpus of natural language that is as similar

as possible in size and content to that to which a simulated human would have been exposed. The

corpus is parsed into meaningful passages such as paragraphs. A matrix is formed with passages

as rows and words as columns. Each cell contains the number of times that a given word is used

in a given passage. A preliminary transform is customarily applied to the cell values to change

them into a measure of the information about passage identity that they carry, a transform that

resembles first order classical conditioning of two stimuli (in this case a word and its passage

context) as a function of occurrences in multiple contexts (Rescorla and Wagner, 1972). SVD is

applied to re-represent the words and passages as vectors in a high dimensional “semantic space”.

The solution corresponds to the system of equations postulated in the model in that the vector

standing for a passage is the vector sum of the vectors standing for the words it contains. In LSA,

the similarity of any two words or any two passages is usually computed as the cosine between

them in the semantic space; words or passages that are identical in meaning according to the

model have cosines of 1, unrelated ones, 0, and ones of opposite meaning (which never occur in

natural languages), -1.

New SVD algorithms for very sparse matrices (> 99.9% of the cells in an LSA matrix are

typically empty) coupled with high performance computers with great amounts of memory can

now compute SVDs for matrices of >100,000 words by a million passages in > 400 dimensions3.

The number of dimensions (factors) used is an important issue. The original matrix of equations

can be perfectly reconstructed from the SVD solution if enough independent dimensions are

extracted. However, for our (and nature’s) purposes this is not an advantage. Very small

dimensions (small singular values4) represent very small, possibly locally unique components,
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larger ones the components that matter most in capturing similarities and differences. One can

think of the dimensions as abstract features. The features do not correspond to any characteristics

nameable in words. They correspond to the foundation on which words are constructed, not to

words themselves. Like the coordinates that define geographical relations, the dimensions can be

rotated and scaled in any linear manner without changing anything. Dropping dimensions that

don’t matter is an advantage for detecting similarity. For example, a fairly common word may

have been used in an unusual (or erroneous?) way a few times by some author. A learner that

wants to understand a language will do better by ignoring aberrant or statistically unreliable

meanings and focusing on the common core that is shared across contexts (and, thus, speakers).

This is one of the effects of dropping small dimensions. More generally, dimension reduction is

an inductive process that makes things more similar to each other in a well controlled manner; it

is somewhat analogous to decreasing the resolution of an image by lateral integration. The great

appeal of SVD for performing this function is that, in a well defined sense, it supports optimal

dimension reduction. Systematically dropping dimensions from small to large retains aspects that

are most characteristic and deletes aspects that are idiosyncratic or unreliable. Moreover, the

analysis technique itself has discovered what “features” and combinations are most characteristic.

Evaluation of LSA’s validity

A variety of quantitative simulations of human word and passage meaning, including ones

in which choosing the right dimensionality has a dramatic effect, will be described later. First,

some of LSA’s intuitively interesting properties are illustrated. Cosine similarities (cos) are given

between representative pairs of words and phrases based on a 12.6 million word corpus of general

English6.

Intuitive examples. First consider the following pairs of single words selected to illustrate

various properties often exhibited by LSA semantic spaces. Random word pairs in this 300-D

semantic space have cos = .02 +/- .06. (No attempt has been made to sample parts of speech or

word types in a representative or random manner.)
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thing – things .61

man – woman .37

husband – wife .87

woman – wife .54

man – husband .22

chemistry - physics .65

sugar - sucrose .69

sugar – sweet .42

salt - NaCl .61

cold - frigid .44

sun – star .35

sun – bright .39

sun – light .29

mouse - mice .79

doctor – physician .61

doctor - doctors .79

physician – nurse .76

man - men .41

come - came .71

go – went .71

go – going .69

going – gone .54

run – ran .57

run – runs .55

run – running .78

walk – walked .68

walk – walks .59

walk – walking .79

should - ought .51

hot – cold .48

tidy – untidy .56

good – bad .65

yes – no .52

necessary – unnecessary .47

kind – unkind .18

upwards – downwards .17

clockwise –

      counterclockwise .85

black – white .72

red – orange .64

red – green .47

she – her .98

he – him .93

apply – applications .42

compare – comparisons .55

comprehend

- comprehension .59

detect - detectable .69

depend – independent .24

undergraduate – graduate .27

blackbird – bird .46

blackbird – black .04
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Experience with many more such examples leads to the following general

observations. Although no stemming or lemmatizing (reducing or transforming words to

their root forms) is done, past and present verbs, and singular and plural nouns, whether

regular or irregular, are usually represented as closely related, as are words related by

various inflections, derivations, and compounding. Among other things, these

observations raise questions about the extent of morphological analysis needed in human

verbal comprehension. We find very few morphologically related words whose similarity

of meaning is unrecognized by LSA despite its ignorance of morphology. Apparently

inductive association from usage is sufficient in most cases. Obviously, however, it

cannot explain either production or comprehension of novel meanings generated by

morphological composition, which are reputedly quite prevalent in some languages

(although see Tomasello, 2000, for a caution that usages, in his case grammatical

structures, that appear spontaneous may actually be imitative.) The examples illustrate

that semantic similarities as conceived and represented in LSA reflect world knowledge

and pragmatic relations as well as lexicographic and definitional meanings.

One defect in the LSA word representation is illustrated by the antonym pairs.

Antonyms are very closely related in meaning; they can be described as words that differ

in only one semantic feature. Correspondingly, they are usually represented as highly

similar, although further analysis can reveal that, unlike synonyms, there is a local

dimension in LSA semantic space on which they differ strongly. For example, synonyms

of hot and cold are all fairly close to each other but the two sets also form distinct

clusters. However because antonyms are so close in LSA space, their additive effects
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usually do not differentiate passages sufficiently. For example, “A black cat is bad luck.”

and “A black cat is good luck.” have a cosine of .96.

Next, consider some examples of characteristic word-passage and passage-passage

similarities5. In LSA, different senses are not separately represented; a single word-form

is related to all its senses.

“Swallow”  -  "The process of taking food into the body through the mouth by

eating." cos = .57

“Swallow”  - "Small long winged songbird noted for swift graceful flight and the

regularity of its migrations." cos = .30

The same pattern was found in many but not all examples studied by Landauer (in

press). When word forms with multiple senses were compared with definitions of all of

the senses given in WordNet (Felbaum,1998), there was a substantial, on average

significant, cosine with each, even when the different meaning of the different senses was

clearly reflected in relations with other words, or when WordNet definitions for the

differing sentences were relatively unrelated by LSA. For example, consider the word

“ fly”, for which WordNet lists 21 senses. Table 1. shows cosines between “fly” and words

related to two senses. The two words related to each sense are closely related to each

other, and the word “fly” is closely related to them all. However, the average similarity of

words for one sense to those of the other, .09, is not significantly above that for a random

pair. (Note that this set of relations is not possible in only two or even three dimensions.)

Table 1 here

In addition, the WordNet definitions for the two senses are both closely related to

the word “fly”, but the two definitions are less closely related, cos = .24, to each other.

1. "travel through the air" – “fly” cos = .34
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2. "two-winged insect" cos – “fly” = .36

Over all the WordNet definitions for 21 senses of “fly”, the cosines between the

entire definitions (excluding the word itself or any form thereof) and the word “fly” has a

mean of .27, s.d. =.12. These results are typical.

In LSA, phrases sharing no words can sometimes have high similarities, while ones

with most of their words in common can be entirely dissimilar.

"the radius of spheres" - "a circle's diameter" = .55

"the radius of spheres" - "the music of spheres" = .01

Correspondence with intuition is usually good for words and paragraphs, but is

often poor for phrases and sentences, especially where local syntactic effects are large.

About the nature of LSA word and passage representations

 Words and passages represented as dimension-reduced vectors in a high dimensional

space have many of the empirical, intuitive, and introspective properties whose nature

and explanation has concerned philosophers and psychologists. For example, a word

never has a single deterministic meaning that can be fully and accurately transferred from

one person to another by a definition. Rather, a definition of one word by other words can

only provide a rough guide to its place in semantic space. A few contextual examples can

help for a recipient who has good background knowledge, but are still insufficient.

Before a word is well-known, it must be met several times (LSA simulating a high school

graduate on average needs to have seen a word about eight times to get it right on a

multiple choice test, although sometimes once will do), and the learner must have

previously experienced tens of thousands of verbal contexts without it (below, and

Landauer & Dumais, 1997). The meaning effect of a word is slightly different in and is

changed somewhat not only by every context in which it appears, but potentially by every

passage the person has ever experienced. The meaning of a word for one person is at least

slightly different from its meaning to anyone else, and slightly different today from
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yesterday. Wittgenstein (1953) is of course the most famous worrier about those

properties.

However, LSA also offers an explanation of how two people can agree well enough

to share meaning. If their language experience is sufficiently similar, the relations among

words in their semantic spaces will be too. Taking word meaning to be relations of all

words to all words (and all percepts, as discussed later), removes the necessity for any

absolute referent or meaning for a word to have the same effect for you and me.

Passage vectors are the sum of their word vectors. They represent the gist of the

passage, not its verbatim form (as noted by psychologists as far back and repeatedly as

Bartlett, 1932, Bransford and Franks, 1971, and Sachs, 1967). Thus, after LSA or LSA-

like processing, recall of a passage will not be word for word, it will be an attempt to

convey the meaning as interpreted, that is, as represented by coding into a single high-

dimensional vector in the recipient’s semantic space.

These properties and others have often been taken to show that the meaning of a

passage is greater than the sum of its parts. Here they emerge from a model in which the

meaning is the sum of its word parts, but of a special kind. The LSA combining

computation does not exhaust all of a passage’s meaning, and can get it wrong for several

reasons. Some of these reasons, such as dynamic syntactic effects, appear (but, I believe,

are not yet provably) nonlinear. The analogical implication for object recognition is clear.

Perhaps, much of that process is linear too, the assumption of whole greater than the sum

of parts equally vulnerable to demotion.

Systematic and quantitative evidence

More rigorous evidence about how well LSA represents human meaning comes

from simulation of human performance. For example, after training on general English,

LSA matched college applicants from foreign countries on multiple-choice questions
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from the Test of English as a Foreign Language. After learning from an introductory

psychology textbook it passed the same multiple-choice final exams as university

students. Differences in knowledge from before to after reading a technical article, and

between students in different school grades, were reflected more sensitively by grades

based on LSA than by grades assigned by professional readers. The following two sub-

sections give more detail.

Multiple-choice vocabulary and domain knowledge tests. In all cases, LSA was first

applied to a text corpus intended to be representative in size and content of the text from

which the simulated humans gained most of the semantic knowledge to be simulated. In

one set of tests, LSA was trained on a 12.6 million word systematic sampling of text read

by American school-children,6 then tested on multiple choice items from the Educational

Testing Service Test of English as a Foreign Language (TOEFL) (Landauer and Dumais,

1997). These test questions present a target word or short phrase and ask the student to

choose the one of four alternative words or phrases that is most similar in meaning.

LSA's answer was determined by computing the cosine between the derived 300-vector

for the target word or phrase and that for each of the alternatives and choosing the largest.

LSA was correct on 64% of the 80 items, identical to the average of a large sample of

students from non-English speaking countries who had applied for admission to U. S.

colleges. When in error, LSA made choices correlated with the frequency of choices by

students (product-moment r = .44) approximately as the average correlation between a

single student and the group distribution. Importantly, when the number of dimensions

was either much less or much greater than 300, the model performed much less well. At

either the three dimensions of the semantic differential or the 66,000 dimensions of the

original word-passage co-occurrence matrix, it got only one-fourth as many questions

right.
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In a second set of tests, LSA was trained on popular introductory psychology

textbooks and tested with the same four-alternative multiple choice tests used for students

in large classes (Landauer, Laham and Foltz, 1998). In these experiments, LSA's score

was about 60%—somewhat lower than class averages but above passing level. LSA

generally had most difficulty with the same kinds of items that college students do. It got

more questions right that were rated easy by the test authors than ones rated of medium

difficulty, and more of those rated medium than difficult. It did better on items classified

as factual than conceptual. As expected, it was handicapped by questions expressed in

complex sentences or containing partially irrelevant verbal content. In this case the

nonmonotonicity with dimensionality was much less dramatic, but performance

nevertheless decreased rather than increased after about 500-1,000 dimensions.

Essay exams. In these tests, students were asked to write short essays—varying from

around 50 to 500 words over the various tests--to cover an assigned topic or to answer a

posed question. The experiments have involved a wide variety of topics, including heart

anatomy and physiology, neuroscience and neuropsychology, experimental psychology

of learning and child development, American history, business, sociology, information

technology, and others. In one case elementary school students wrote open-ended

creative narrative stories constrained only by a scene-setting sentence fragment. In each

case, LSA was first trained on a large sample of text from the same domain as the

question. The intent is to give it text as much as possible like that from which a student

writing the essay or a human evaluating it would or could have acquired the necessary

knowledge of words and concepts. Each essay is represented as the vector sum of the

vectors for the words it contains. Properties of these essay vectors are then used to

measure the quality and quantity of knowledge conveyed by an essay, usually: (1) the

semantic similarity (cosine of the angle between vectors) between the student essay and

previously graded essays, and (2) the total amount of domain specific content, measured
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by the essay’s vector length in the semantic space for the domain. The idea is to use the

way experts have scored or commented upon very similar essays to predict how they

would score a new one, just as a teaching assistant may learn how to score essays by

reading ones scored by the teacher. This is how the content of the essay is scored. The

full essay grading system uses additional variables based primarily on other statistical

language modeling techniques to reflect aspects of style, mechanics, and word order, but

these measures never contributed more than 25% of the predictive variance in simulating

human essay quality judgments.

In each of the experiments, two or more human experts independently rated the

overall holistic quality of the knowledge reflected in each essay on a five or ten point

scale. The judges were either university course instructors or professional exam readers

from Educational Testing Service or similar professional testing organizations. The LSA

measures have been calibrated with respect to the judges' rating scale in several different

ways, but because they give nearly the same results only one will be described here7. In

this method, each student essay is compared to a large (typically 100-500) set of essays

previously scored by experts, and a subset of the most similar identified by LSA. The

target essay is then assigned a content score consisting of a weighted combination of the

scores for the comparison essays. In experiments, training and calibration is always

performed on training data other than those used to test the relation between LSA and

expert ratings.

The most notable result was that overall the LSA-based measure correlated as

highly with a single human’s scores as one human’s scores correlated with another. On

over 15 topics and a total of over 3,500 individual student essays, the LSA score were

correlated 0.81 with a single average human expert, while two independent human expert

scores were correlated .83 (Pearson product-moment correlation coefficient, computed on

continuous LSA score values against whatever human scores were reported. It is not a
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percent agreement score by grade categories.). Thus there is almost no difference

between the reliability and accuracy of the LSA-based evaluation, based on its simulation

of human passage meaning similarities, and that of human judges. The larger the number

and variety of essay grades there were to mimic, the better the humans graders agreed

with each other, and the better the training data approximated the source from which

humans would have learned, the better LSA simulated the humans. All this implies that

LSA and human judgments in these applications must reflect primarily the same qualities

and quantities.

It is possible for machine learning technique to outperform humans, for example,

because they can compare every essay to every other no matter how many. However,

superior machine performance is difficult to demonstrate so long as the criterion is

agreeing with human judges. If there is such a thing as a “true score” for an essay, and

each human grader produces an independent noisy approximation thereto, the machine

might correlate more highly with the true score than either human, and thus more highly

with each human than one correlates with another. However, differences between human

essay graders may be largely real differences in criteria as well as random errors in

accuracy. This, together with the high reliabilities desirable and obtained in such

experiments, leaves little room for demonstrating superiority of machine grading in this

way. In no case has there been a p <. 05 statistically significant advantage for the system

as evaluated in this manner.

Another way to make such comparisons is to determine how well the method

separates groups known to be different in the characteristics being tested. For example,

the narrative essay exam was intended to be used to qualify students for promotion to a

higher school grade. Therefore, we determined how well the machine scores classified

students by their current grade as compared to human scores. Here, the machine was the

clear winner. Measured by the pooled within-group standard deviation, the differences
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between average scores of essays by students in different school grades were 50% larger

by machine than human, p < .001. One must, of course, ask whether the machine might

have achieved its superiority by sensitivity to clues—perhaps age-specific vocabulary or

sheer length—that are not desirable bases of promotion. The very high correlation

between machine and human scores in this case (.9) is reassuring, but a more definitive

answer would require more extensive construct validity research. (More detail on

machine essay grading psychometrics can be found in Landauer, Foltz and Laham, in

press).

An especially interesting aspect of these results is that the machine version of

verbal comprehension takes almost no account of word order; each training passage and

each essay is treated as a "bag of words". Human readers presumably use syntax as well

as the mere combination of words, yet they are no better at agreeing on an essay's quality.

The most dramatic case was scoring creative narrative essays. One would expect order

dependent syntactic factors, as in “John’s small white cat chased away the large black

dog lying behind the barn” to be important in human judgments. It is possible that in

some cases such as this syntactic factors were so nearly equal across individuals and

groups that they contributed too little to be measured. That seems unlikely if syntax and

word skills are learned or applied with any independence. In any event, for the human

graders, information about relative student performance conveyed by word order must

have been almost entirely redundant with information that can be inferred from the

combination of words alone.

H3. A theoretical issue

These findings raise an important theoretical question. The widespread

preoccupation on matters of sentential and discourse syntax in linguistics,

psycholinguistics, and most natural language processing in artificial intelligence research

would appear to assume that complex non-linear relations in the order of words are



Ch. 13. Landauer The computational basis of learning.

22

necessary for adequate representation of verbal meaning. However, by any reasonable

interpretation of "meaning", human judges of the knowledge content of an essay rely on

meaning, and any system that can do as well as the humans using the same evidence

should be considered as doing so too. It is true that superficial features of student essays

that are nearly meaningless, such as the number of words, the length of sentences, the

distribution of punctuation marks, capitalization, or balancing of parentheses, through

correlation over individual differences in various aspects of writing ability, can generate

scores that are also well-correlated with those of human graders. However, LSA uses

none of these, nor any other indicator that would be little influenced by a change of

meaning. It uses only the student's total choice of words for a whole essay of typically 50

to 500 words. Note that it is the vector for the total mix of words in an essay that must be

right, in the sense of being correctly related to the vector for the total mixes in other

essays, even though the actual words are different. Larding an essay with jargon words

used out of context, for example, can sometimes make an essay score lower rather than

higher, just as it sometimes does for human judges.

Other evidence

LSA has been directly compared with human verbal knowledge in several

additional ways. For examples: (1) Overall LSA similarity between antonyms equaled

that between synonyms in triplets sampled from an antonym/synonym dictionary, with

cosines more than three standard deviations above those of randomly chosen word pairs.

For antonym but not synonym pairs, a dominant dimension of difference could also be

identified by computing similarities between each member of the pair and an additional

set of related words from a standard thesaurus and extracting a first principal component

from the intra-set similarities. (2) When people are asked to decide that a letter string is a

word, they do so faster if they have just read a sentence that does not contain the word

but implies a related concept. LSA mirrors this result with significant similarities and



Ch. 13. Landauer The computational basis of learning.

23

corresponding effect sizes between the same sentences and words (Landauer &

Dumais,1997). (3) Anglin (1993) had children and adults sort words varying in concept

relations and parts of speech. LSA similarities correlated with the group average sorting

as well as individual sorts correlated with the group average. (4) When LSA cosines were

used in place of human judgments of the semantic similarity between pairs of words,

virtually identical category structures were obtained with hierarchical and

multidimensional scaling (Laham, 2000).

Sample applications. I view the use of cognitive models to stand in for a range of actual

practical human performances as an important test of their adequacy and completeness.

LSA has been used in a variety of experimental applications--including the essay scoring

techniques--which were originally conceived as assessments of the model, but which

have become practical applications. Here are some other examples.

(1) The technique has been used to improve automatic information retrieval, where

it produces 15-30% gains in standard accuracy measures over otherwise identical

methods by allowing users' queries to match documents with the desired conceptual

meaning but expressed in different words (Dumais, 1994, Berry, Dumais & O’Brien,

1995). Matching queries to documents in such a way as to satisfy human searchers that

the document has the semantic content they want involves an emulation of human

comprehension. Surprisingly, the field of information retrieval research has never

developed a technology for comparing the accuracy of machine and human performance

in this task, so we do not know whether the LSA enhancement meets this objective.

(2) By training on overlapping sets of documents in multiple languages, LSA has

been able to provide good retrieval when queries and documents are in different

languages. The overlap need not be extremely large. Here is an example of how it works.

One of two 300 dimensional semantic spaces would be derived from a year’s worth of

English newspaper stories, and the other from newspaper stories in Chinese for the same
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year, with around a thousand stories in Chinese translated and added to the English

corpus. Then the two spaces would be rotated into maximum correspondence of vectors

for the subset of corresponding translated and original stories. The rest of the English

stories would then be close to ones in Chinese that recount similar events, and rest of the

English words close to Chinese words of similar meaning. Results tend to be somewhat

noisier than those of LSA-based information retrieval on a single language. There are

several reasons, among which two are of some interest. First, when one considers the

different ambiguity of words and their translations, e.g. room and chambre, their relative

positions in their respective semantic spaces should not be identical because not all of

their “senses” (i.e., by LSA, their semantic space loci relative to other words) are the

same. Second, it is often claimed that there are words or passages in one language that

cannot be translated adequately into another. The LSA representation makes this intuition

concrete. An “untranslatable” word is one which, when two spaces are aligned, is not

near any in the other language and cannot be well approximated by the vector sum of any

small number of other words. An “untranslatable” passage would likewise be one whose

position is very difficult to approximate.

The other side of this coin is an hypothesis about second language learning. Human

learning of a second language by immersion might go on in much the same way;

inducing a separate semantic space for the second language and aligning it with the first

by the overlap of a relatively small number of explicitly equivalenced passages. For the

human, the equivalences could be constructed by the person’s own first-language

rendering of an event and that of a speaker of the second language. Such a process would

make second-language learning much more rapid than first because the second borrows

the structure of the semantic space of the first.

(3) LSA-based measures of the similarity of student essays on a topic to

instructional texts can predict how much an individual student will learn from a particular
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text (Wolfe et al., 1998, Rehder et al., 1998). The principle involved is a version of

Vygotsky’s zone of proximal development that we have dubbed “the Goldilocks

Principle”. A first-order technique finds the optimal absolute difference between the

semantic content of the essay and an instructional text. This narrows choice to better

candidates, but it does not distinguish texts that are optimally more sophisticated than the

student from ones that are the same degree less sophisticated. A more advanced technique

uses unidimensional scaling to place all the texts and essays on a common dimension.

(This still doesn’t specify which direction on the line is more and which less, but that is

trivially determined by inspection.) Experiments estimated that using LSA to choose the

optimal text for each student rather than assigning all students the overall best text (which

LSA also picked correctly) increased the average amount learned by over one standard

deviation (Rehder, et al. 2001).

(4) LSA-based measures of conceptual similarity between successive sentences

accurately predicted differences in comprehensibility of a set of experimentally

manipulated texts (Foltz, Kintsch and Landauer, 1998). The LSA method predicted

empirical comprehension tests results with college students as well as the hand coding of

propositional overlap used in creating the differentially comprehensible paragraphs.

Prediction by literal word overlap between sentences had a near zero correlation.

(5) LSA has been used to evaluate and give diagnostic advice to sixth-grade

students as they write and revise summaries of text they have read (E. Kintsch et al.,

2000). Use of the system resulted in one standard deviation better summaries as measured

by blind ratings, and the effect generalized to writing summaries a week later without the

system’s help (Steinhart, 2000)..

(6) LSA has been used to assess psychiatric status--schizophrenic or depressed

patients compared to normal controls--by representing the semantic content of answers to

psychiatric interview questions (Elvevåg, Fisher, Weinberger, Goldberg & Foltz,
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unpublished). Accuracy was as good as those that have been reported for clinical

diagnostic reliabilities of mental health professionals (e.g. Regier, et al.,1998).

Some comments on LSA representation

 LSA’s high-dimensional representation of meaning has intuitive appeal both

psychologically and neurologically. A word has a graded degree of similarity to every

other word, and it can be similar to two words that are quite dissimilar to each other. The

same is true of passages. The meaning of a word or passage will be slightly different for

any two people because they will have different language experience, but will be

sufficiently similar that they can understand each other’s utterances if their experience

has been sufficiently similar. The dimensions or features that one person has used to

construct a semantic space need not be the same as those used by another; they need only

generate nearly the same angles between their vectors.

The pattern of dimension values (like factor loadings) that characterize a word or

passage translate readily into patterns of neural activity generated either locally as

synaptic conductances between neurons, or as neuronal connections between cell

assemblies. Indeed, miniature LSA problems can be computed by certain kinds of

unsupervised auto-associative neural network models, which compute an SVD on a

single hidden layer. Dimension reduction is accomplished by converging inputs,

analogous to that between retinal receptors and optic nerve fibers. While the brain surely

does not use the same SVD algorithm as Berry’s Linear Algebra Package (LAPack),

there is no obvious reason that it can’t do something equivalent using its massively

parallel computational powers.

Some limitations, criticisms, and rejoinders concerning LSA

LSA as used to date has taken its input exclusively from electronic text. Obviously,

most human language learners have other sources of information. They hear many more

words than they read, and spoken language is considerably different from printed. They
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have important perceptual inputs from the world around them and within them that

accompany much of the word usage they observe. Humans also practice producing

language and observing its effects on human receivers. And they get some direct tuition

about word meanings. The lack of these sources of information must limit LSA’s ability

to model the human capability.

Grounding

An important function of language is to communicate and think about non-

linguistic objects and events. LSA trained on electronic text knows about the “real world”

only vicariously, by how it has been written about, perhaps somewhat akin to the visual

world knowledge that a blind person has (Landau and Gleitman, 1985). We have seen

that it does remarkably well with this impoverished input, much better than most people

would have thought possible. This can be taken as a testimony to the power of language;

language alone is able to teach a large portion of what needs to be known to mimic

important parts of language and knowledge. Nevertheless, LSA surely misses, not just

something, but much.

What does it miss? Some psychologists and philosophers have been especially

worried by the lack of “grounding” and “embodiment” in computer models of language

and thought. Grounding apparently refers to connecting language and thought to objects

and events either as they “really are” or as perceived without the mediation of language.

Embodiment refers to experiences concerned with states and operation of one’s own

body. These theorists justifiably attach special significance to these experiences and their

mechanisms. The evolutionary and current adaptive success of living things is deeply

concerned with maintaining bodily states in the external environment, and many of the

perceptual events that inform us about them are either essentially private, unique to

animal or human body and mind, pragmatically difficult to share, and/or unverbalizeable.
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However, while these factors make grounding and embodiment special, and may

make it more difficult, perhaps even impossible, to simulate human cognition completely

with a machine, their existence in no way implies that the computational mechanisms by

which they operate are different from those that deal with easier to observe or less

adaptively ancient or important matters. Indeed, it is a commonplace of evolution that

organic functions tend to be conserved and re-purposed rather than replaced. Moreover,

there is no a priori reason to suppose that the mechanisms used to induce similarity

between word and passage meanings is newer, less important than, or different from that

used to relate the perception of external objects and internal body workings to words and

thoughts. All must have evolved together from the time Homo sapiens had more than one

word in its vocabularies.

Suppose we could get at raw perceptions and motoric intentions to encode in

ASCII. We could put them into equations along with the passages of words--spoken as

well as printed if we could—in whose company they do and don’t appear in nature. Most

would emerge from dimension-reduced SVD as very close to words; the words

“headache”, “fireplace”, “throw” and “kiss”, for example, would surely have quite high

cosines with their perceptual equivalents. “Unverbalizeable” cognitions about the “real

world” would be represented in semantic space as points not easily approximated by a

sum of words.

LSA is, of course, incomplete as a theory of language, or even as a theory of verbal

semantics. It includes no model of language production, or of the dynamic processes of

comprehension. Nor does it deal with discourse and conversation conventions, or with

pragmatic factors in semantics. That no current theory is more complete, and none as able

to model full-scale vocabulary learning, is no excuse. We need more. However, LSA

provides a good base camp for further exploration. It gives an example of an effective
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computation for some important aspects of the problem and opens up paths that were

previously closed by incorrect assumptions.

Some defects that LSA does and doesn’t have.

 Some of LSA’s current incompleteness is due to technical or practical issues, not

failures in principle, while others are inadequacies in need of remediation in future

theory. Some examples of the former are found in Glenberg and Robinson’s (2000)

purported tests of LSA, which used LSA as instantiated by the University of Colorado

public-access web-site tool and its general English corpus. The researchers constructed

sentences in which imaginal perceptual reconstructions of real-world events were

presumed to play an important role. They reported that LSA often failed to make

distinctions between sentences that human subjects did. As discussed both above and

later, LSA’s lack of direct perceptual experience, its insensitivity to sentential syntax, and

other problems as well, insure that such examples can be found. Thus, I do not doubt that

LSA’s representation may be faulty in this respect. However, the data that were alleged to

demonstrate this particular inadequacy were badly flawed in a manner that I would like to

forestall in future research. At least ten important words in Glenberg and Robinson’s test

sentences did not appear at all in the database. These included six words whose

interpretation was the critical focus of an experiment. For example, one of their sentences

was “Kenny slimed his sister.” LSA read this as “Kenny his sister.” Most of the missing

words were inflections of words that the LSA corpus contained only in another tense

(although neither “Newsweek nor Newsweeked”, two of their critical words, appears at

all.) LSA does not deal with generative morphological meanings, a genuine

incompleteness, but not a basis for a test of this nature. In addition, recently popular

usage of some of the Glenberg and Robinson words, e.g. “floppy disk” post-date the

corpus. Moreover idioms and other frozen expressions were not treated as special lexical

items with non-compositional meanings in the LSA analysis.
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Putting aside such obvious errors, however, it is nevertheless the case that many

LSA word-word and passage-passage similarities will not correspond to human intuition.

LSA is dependent on the probabilistic content of the corpus it learns from, to date at most

approximating the print input for just one person, not the average or range of people, and

always smaller and different from the total language exposure of even any one person.

And, of course, even educated humans often have the “wrong” meaning for words.

Whether the frequency of errors in LSA is really, as it often appears, greater than

comparable human rates, or different in principle, is hard to evaluate.

LSA performs in low human ranges on vocabulary tests, but has never been given

exactly the same data to work with. Still, even with just the right data, it would remain

only an approximation. For one thing, issues such as passage size and composition, how

passage equations are formed, whether passages overlap, the correct pre-processing

transform, and so forth, are not resolved. In visual object recognition, it is clear that

wired-in neural/computational architectures upstream to memorial representation

influence the process strongly. I argue that these are less important for verbal meaning

representation, but not that they are non-existent.

Syntax, LSA’s most important lack

The clearest in-principle problem with LSA is that word-order dependent syntactic

effects on meaning are not representable in its additive combining function. Strong

effects of this kind are sometimes apparent in metaphorical expressions, and in sentences

with potentially ambiguous binding, attachment, quantification, predication, or negation.

In these cases, errors in LSA’s representations, as measured, for example, by the

similarity of two sentences are quite obvious. For example John hit Mary, and Mary hit

John have cosines of 1, as do Mary did hit John and John did not hit Mary. (“not” has

very little meaning—a very short vector—in LSA, presumably because its effect is not

additive but multiplicative and syntax dependent) These are significant errors.
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However, it needs noting that all four of the above sentences tell us about a violent

altercation involving John and Mary. I do not mean to make light of LSA’s inadequacies,

but I want to continue to emphasize the other side of the coin, how much empirical

association can already account for if treated appropriately. It would be good to know

how often and how much LSA goes wrong relative to corresponding rates of error,

misinterpretation, or indeterminacy of human comprehension of normal discourse.

Unfortunately, we do not as yet have an adequate means to answer such questions.

It is also worth noting that the possibilities of a machine learning system, even of

linear ones, are not exhausted by the current LSA implementation. For example, one

could relatively easily add higher order multiple-word items, both contiguous and

separated, as input components, as well as other essentially associative relations of which

human learning is clearly capable. It remains very much to be seen how much more can

be accomplished in the same spirit as current LSA..

Let us dwell a little more on the incompleteness issue. The Glenberg and Robinson

article also raises this issue. Their purpose in the research reported and the arguments

presented was to compare high dimensional semantic theories such as HAL and LSA

with “embodied theories of meaning”. Their test paragraphs and sentences, most of which

are discursively fairly complex, are all ones whose meaning depends strongly on both

syntax and pragmatic knowledge about characteristics and functions of physical objects,

human bodily actions involved in their use, and outcomes of those uses. They were able

to compose pairs of paragraphs and sentences in such a way that there was no appreciable

difference by LSA measures but obvious differences in meaning for college students. If

we ignore the technical deficiencies noted above—I’m sure results like theirs could be

obtained with flawless methods—the results provide a clear existence proof that LSA is

incomplete as a theory of verbal meaning8. No argument here. If any of my presentations

of LSA have given cause to believe that LSA is a to be considered a complete theory of
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language and knowledge, or even lexical semantics, I regret it profoundly. LSA is a

theory of (about) those things, but not of everything about them.

However, Glenberg and Robinson take their results as a general disproof of

theories of the kind, saying “Because the symbols are ungrounded, they cannot, in

principle, capture the meaning of novel situations.” What they have shown is that LSA

can fail to match human judgments of complex, syntax-dependent passages about matters

that depend on perceptual, intentional, and motor experiences to which LSA has so far

had no direct access. (LSA deals correctly with the meaning of novel situations as

described in novel text in most of its applications.) We simply do not know whether or

how well LSA or an LSA-like model would perform with Glenberg and Robinson’s

materials if it had learned from the same experience as University of Wisconsin college

students. Therefore, it is gratuitous to conclude that it is wrong in principle from the

observation that it is sometimes wrong as implemented and trained. We seek theories are

about general properties and fundamental mechanisms of how things work, not about

details and exceptions arising from variables not covered by theory, even if they are

sometimes interesting or important.

It is also interesting to consider Glenberg and Robinson’s alternative to high

dimensional semantic models in contrast to LSA. They claim that meaning is based on

cognition that “evolved to coordinate effective action”, that the “meaning of a particular

situation is a cognitive construal” that is the “meshed (i.e. coordinated) set of actions

available…in [a] situation”, “which depends on affordances of the situation”, which in

turn “are based on the relation between objects and bodily abilities.” They also appeal to

Barsalou’s notion of “perceptual symbols”, direct representations of objects that retain

perceptual information. Finally, they propose that the meaning of a sentence consists of

“meshing” the analogical construal of the situation with the syntax and words in a way

that represents a possible action. If I understand this correctly the idea is that one can
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model in the mind the possible actions that a sentence describes in a form that

analogically represents the execution of a (first or second order) simulation of the

intentional and perceptual event, drawing on first-hand knowledge of what actions with

what objects are possible and likely. This is an appealing idea; it offers the beginnings of

a way to explain the relation between some important aspects of thought, language, and

action that appear to capture analog properties of the cognition of experience (See Moyer

and Landauer 1967, for an early related hypothesis.)

What it does not do, however, in any sensible way, is disprove HAL and LSA.

Whether comparable representational power would or would not emerge from combining

perceptual and intentional experience into these models using their fundamental

computational principles (see more below on object recognition), especially if temporal

order and syntax were mastered, is not addressed by making this proposal. Moreover,

none of the proposed components of this hypothesis have been implemented in any way

and seem impossible to implement absent more explicit statement. As they stand, the use

of these ideas to oppose HAL and LSA is a case of what Dennett calls an “intuition

pump”, pushing the introspective mystery of a mental phenomenon to discredit a

mechanistic explanation.

However, the most important aspect of this supposed debate for the purposes of the

present chapter, is the issue of incompleteness. LSA is not very good at representing the

meaning of passages where they depend strongly on word order dependent syntax or real-

world perceptual knowledge that is not well represented in the text corpus from which it

learns. And the Glenberg-Robinson-Barsalou hypotheses does not appear to apply very

well to learning to represent the tens of thousands of abstract words (like indexical), most

of which college students have met only in print. Their claim that LSA is wrong in

principle because they can make sentence pairs whose relations it does not account for is

roughly equivalent to a claim that a the co-ordinate system used for a map of Colorado is
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in principle wrong because distances between Madison, Milwaukee and Green Bay have

not been represented.

Some old arguments and their resolution

Chomsky (19635) showed that natural language often displays systematic syntactic

constructions that could not be generated by word-to-word transition probabilities. This

indisputable conclusion has since somehow transmogrified into a widely accepted

postulate that co-occurrence cannot explain language acquisition, and thence into part of

the basis for asserting the so-called “poverty of the stimulus,” the belief that the

information available from observation of language is insufficient for learning to use or

understand it. The assertion is most firmly and often made about learning syntax, but has

also been authoritatively applied to learning word meanings (Bloom, 2000; Chomsky,

1991 a, b; Gleitman, 1990, Perfetti, 1998; Pinker, 1994). Perfetti, for example, in critical

commentary on a set of LSA papers (1998), after rightly pointing out LSA’s in-principle

failures, as listed above, and adding discourse pragmatics such as focus and rhetorical

structure to the list of incompletenesses, asserts that LSA could not be considered a

theory of mind just because it is based on co-occurrence. Perfetti says “Co-occurrence

learning is desperately needed for the establishment of human knowledge, including

knowledge about language. But more than co-occurrence is needed because of a range of

human abilities that center on the representation of non co-occurring units, especially in

language.” The misunderstanding may be my fault. Both in the primary statement of the

LSA theory (Landauer and Dumais), and in the papers reviewed by Perfetti, the

dependence of LSA on co-occurrence data as input was made clear, but how the

mathematics of SVD uses these data to infer “representation of non co-occurring units,

especially in language”, was apparently not well communicated. I hope that the

derivation of LSA from SVD as a means of solving systems of simultaneous equations as

presented here will help to forestall this particular objection in the future
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However, the anti-learning position on verbal meaning has deeper roots than

Perfetti’s complaint or Glenberg, Robinson, and Barsalou’s alternative views. Chomsky

stated it in no uncertain terms in several places. For example in (Chomsky, 1991a), he

wrote, “In the study of the lexicon, Plato’s problem [the asserted fact that we know much

more than experience could have taught us] arises in very sharp form, and the

conclusions have to be more or less the same as elsewhere: the growth of the lexicon

must be inner-directed, to a substantial extent [Plato believed we remembered knowledge

from a previous life.]. Lexical items are acquired by children at an extraordinary rate,

more than a dozen a day at peak periods of language growth.” He goes on to point to the

infrequency of explicit dictionary-like definition of words and their insufficiency for

learning without a great deal of tacit prior knowledge. Moreover, he says, word meanings

are “shared knowledge; children proceed in the same way, placing lexical entries in the

same fixed nexus of thematic and other relations and assigning them their apparently

specific properties.” Therefore, he concludes, “barring miracles, this means that the

concepts must be essentially available prior to experience, in something like their full

intricacy. Children must be basically acquiring labels for concepts they already have…”

In a companion article (1991b), Chomsky also says “ It is in fact doubtful whether

conditioning is any more than an artifact, an odd and not very efficient method of

providing an organism with information.” And, “one may ask, in fact, whether the

category of learning even exists in the natural world.” These were strong words, and

given Chomsky’s brilliant insights on other matters of linguistics and his outstanding

intellectual reputation, words capable of widespread persuasion.

LSA does just what Chomsky thought impossible. It acquires linguistically and

cognitively effective, shared, relationally embedded, representations of word meanings

without any pre-existing specific knowledge. And it does so by learning entirely from

experience. There can be no longer be any doubt that sweeping anti-association
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generalizations such as Chomsky’s were made too hastily, before the possibilities had

been sufficiently explored, were accepted too widely and readily, and are still too

persistent.

The ubiquity and tenacity of the error may relate to one of the ways in which the

position has often been stated. To paraphrase: “It is impossible/difficult to imagine any

way in which co-occurrence/association could account for the properties of

language/syntax/word meaning.” Assuming local word-to-word conditioning to be the

combining function apparently shunted many minds away from thinking about other

ways to use the data of experience. Of course, the failure of current LSA to account for

syntax and production is fatal to its status as a complete and correct theory of language

and cognition, and there may be no way to use co-occurrence data to achieve that goal.

However, there is still no proof of even that at hand, no proof that a comparable method

for induction of the meaning relations among syntactic patterns from their observation

cannot exist. Recent work by Tomasello (2000) shows that syntactic patterns of language

production develop gradually in children, at least largely as mimicry of verbatim

utterances followed by generalization through iterative substitution of terms and addition

of new copied patterns. This shows at least that much more is accomplished by the use of

experiential data to learn syntax than has been supposed by Chomsky and followers.

Another version of the poverty of the stimulus argument comes from mathematical

learnability theory. Gold (1967) and followers have shown that language, conceived as a

set of deterministic rules that specify all and only a certain infinite set of word strings,

cannot be learned perfectly by observing samples of the language. Informally, the proof

says that because there are an unlimited number of rule sets that are consistent with all

the observed instances up to now, the next sentence may violate any one currently being

held. Now, of course, LSA is mute about word order, so the only rules that would be
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relevant are ones that specify what words are to be used together in sentences no matter

in what order.

 LSA models the representation and comprehension of meaning rather than the

process by which passages are produced. Nonetheless, its nature has some conceptual

relevance to production, and to this proof. A language production theory in the spirit of

LSA would not assume generation by deterministic rules. Instead, one could conceive of

word choice as a process of finding a set of words whose vector sum approximates the

vector for an idea, itself a vector in a person’s semantic space. In this case, each person’s

partially random exposure to the world and to language samples would make location of

ideas and the content of every passage somewhat different. No determinant rules are

followed, only a statistical process that results in a passage that is understood

approximately as intended. This is a fundamentally different conception of how language

works. It does not assume that there are any such things as ideal semantic systems or

underlying semantic competences distorted by performance limitations. It is, in this

conception, a statistical cultural process that, coupled with a quite general individual

learning mechanism, produces sufficient coincidence in the representation of relations

among words and objects to support useful communication and thought. Whether the

same variety of machinery can be found behind the ordering of words after or in concert

with their choice remains, or course, to be seen.

What is syntax for? The combinations of words on which LSA bases its version of

comprehension are not entirely devoid of grammar. Word choice includes selection of

appropriate parts of speech, case, gender, tense, number, and the like. What LSA

necessarily does without is local ordering of the words. To some extent our surprise at

LSA’s abilities may be a function of familiarity with English, a language that uses word

order relatively strictly. Other languages, such as ancient Latin and modern German, are

much more tolerant of variation.
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Moreover, although different grammatical forms of individual words, for example

run and ran, his and hers, goose and geese, are highly similar in LSA representations,

they are not identical, and can have different effects in different contexts, independent of

order, as a consequence of high-dimensional vector addition. These considerations do not

reduce to zero the meaning-bearing effects of word order that LSA lacks. Nonetheless,

the remaining role of word order in meaning representation does not seem sufficient to

explain the ubiquity, complexity, and compulsory nature of syntactical conventions in

languages such as English. Thus it is worth considering what other roles order-dependent

syntax plays in language. Two of these are transmission accuracy and style.

Consider a message passing scheme in which no order is required for meaning. A

trivial example is taking class attendance. Calling off student names in alphabetic order

makes it easier for students to understand and for the teacher to note those missing. But

using alphabetic order does not change the composition of the class list, its meaning; it

just facilitates its transmission and use. Order functions as an error reducing code, akin to

a check sum. More generally, language users will find it easier to produce the next word

if they have learned conventions for utterance order; and hearers or readers will find it

easier to comprehend if words come in an expected order

Clothing, body decoration, dwelling, dance, and art styles are dictated by cultural

consensus that can be both highly arbitrary and strictly enforced without being deeply or

intrinsically functional. The same is obviously true of linguistic syntax.

Again, this is not to say that order dependent grammar and syntax are insignificant

in language, or that their explication is either an unimportant problem or one that has

been even nearly solved. Finding a computational model to explain them is a major

outstanding scientific challenge.
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Implications to this point

 I believe that the success of LSA carries important lessons for the science of

learning. On the most general level, it suggests that abandoning the search for a general

mechanism by which experience can be turned into knowledge of any sort is premature.

It has been fashionable this decade and the last to assume that any complex appearing

psychological phenomenon is only to be explained by multiple modules, “stores”,

responsible brain regions, or mechanisms. Dividing a phenomenon into separate pieces,

one for each thing that it can do, and assuming each to result from a separate process, can

lead to progress if the analysis is correct, but it can also obscure the truth by preventing

strong inferences about general mechanisms from the fact that a system does more than

one thing. A different function for heart and liver may be warranted. A different

biochemical process for their cellular energetics may not. The recent learning and

cognition literature is replete with assertions that the idea of a general learning

mechanism for all purposes is wrong. I think that conclusion may be based on the failure

to discover what it is rather than there not being one. In any event, dividing the

phenomena of learning into pieces by what they accomplish could only be a first step. It

might push back the fundamental issue, or replace one difficult problem with several

others, but the problem of finding the computations by which it all works remains

unsolved.

There is also a tendency to act as if the problem of learning has been solved when it

has been analyzed into separate named functions, especially if the different functions and

their interaction can be separately modeled. To take a currently debated case, the fact that

damage effects and activity in hippocampus and frontal cortex are different at different

stages of learning is taken by some to imply two separate modules with different

mechanisms. The hippocampus is said to be responsible for short term memory with

rapid learning and forgetting, and for passing memories to the cortex for slow, long-
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lasting storage. Different neural net models that learn quickly and slowly have been

created and shown to mimic many interesting properties of learning and performance (in

turn sometimes modeled by dividing the phenomenon into pieces along lines of different

things it does; for example list item-recognition memory into those things for which

learners can report the circumstances of learning and those they can’t.) This solution may

well be correct, but it also may have inhibited a computationally and physiologically truer

solution. Perhaps the hippocampus is really a way station and amplifier that modulates a

single cortical learning function in such a way that memories are formed quickly and fade

quickly unless the hippocampus amplifies their consolidation or the events are

appropriately repeated (and implicit and explicit memories are qualitatively different

functions or states of the integrated process.)

Theories and models of how humans produce and comprehend language provide

more egregious examples. The worst offender, in my opinion, is explanation by positing

rules. It is not that rule-based thinking or behavior is in principle an impossible

mechanism; all computational operations can be characterized as execution of rules. The

problem is where the rules come from and how they are executed. In AI “natural

language processing” the “natural” refers only to the modeled language, not the process.

The rules are stated in highly advanced, culturally invented and transmitted languages,

and executed in discrete steps applied to named entities in an artificial language. How the

simulated human is implanted with equivalent rules and entities is either not of interest or

conveniently finessed. Unfortunately, the issue is addressed only marginally better in

linguistic and psycholinguistic theories where its answer is an essential goal. When rules

are invoked in these disciplines, efforts are usually made to show that certain rules would

or wouldn’t produce or understand language the way humans do. But how the culture-

dependent rules get into the mind and how they are computationally executed is still

neglected. We are often told that the rules are innate, and that only a modest amount of



Ch. 13. Landauer The computational basis of learning.

41

learning is needed to parameterize them for a given language. This could well be true.

Evolution can sometimes invent organs and processes that learning can’t or doesn’t.

However, we still want to know how the rules work and how the learning that is left to do

is done. In addition, given this state of theoretical affairs--that is, absent a mechanism for

their action--it is impossible to decide whether the posited rules are anything more than

descriptions of the phenomenon—akin to how many petals of what color various flowers

have—rather than processes that minds execute. Neural net models of language take us

some distance beyond that level of understanding, primarily by proving that some

portions of the process are in principle learnable or executable in some fashion (see, e.g.,

Christiansen and Chater, 1999; Seidenberg. 1997). Unfortunately, to date, most of these

demonstrations start with inputs, and are supervised by feedback from failure and

success, that require a kind of human intervention that normal human language learners

do not have.

Summary of LSA’s contribution to theory of language and cognition

What the LSA work has contributed to this scene is a demonstration that a system

that learns from the same empirical association input as its simulated humans can acquire

a very substantial portion of the human ability to deal with verbal meaning. What is

important about this is not that it constitutes a complete theory of language or

cognition—it falls far short of that goal--but that it demonstrates that a portion of the

problem that has been long and widely believed to be beyond the power of associative

learning is not. Moreover it does its job using only linear computations, albeit ones of

considerable complexity. This is sufficient to call into question all the other claims about

what learning and association are incapable of because all the rest have been based on the

adage “it is impossible to imagine an associative mechanism that would…”.

Believers in the received wisdom will object that what remains, for example syntax

and non-linear logic, have not been shown vulnerable to this renewed learning-based
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attack; it is only the easiest problem, merely vocabulary, that has been cracked, and that

without real-world grounding, etc. The point is that LSA offers incontrovertible proof

that the strong form anti-associationism, that association can’t explain really important

things about human cognition, is wrong. To which a reasonable further rejoinder would

be that the postulate needs weakening only to exempt one aspect; that it doesn’t do the

rest of the job justifies skepticism that it is right about anything. Agreed. However, what

is equally justified is to continue to explore computational theories of cognition based on

empirical association data. Some avenues for exploration will be sketched later. It is now

time to return to object recognition.

More on object recognition

Some conjectures about object recognition are suggested by the LSA research. As

discussed earlier, the identity of most objects must be based on learning, just as are the

meanings of words and passages. Indeed, words and passages can be thought of as

physical objects whose identity is their meaning. The power of LSA to represent the

meaning of any word or passage depends on its representation of all the other words and

passages it has experienced. The more words it has learned, the better is its mapping of

every word in semantic space. For large training corpora, experimental variation of the

number of passages containing a word and the total number not containing it showed that

about three fourths of the information needed to specify a word well enough to pass a

multiple choice test comes from experience with passages in which it does not occur

(Landauer and Dumais, 1994, 1995). This accounts for the fact that the daily rate of

growth of reading vocabulary in middle school children per paragraph of reading is about

four times the number of newly learned words that actually appear in the text they read

each day.

The powerful inferential property of optimal dimension reduction for word learning

depends on very large amounts of representative experience with words used in passages.
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It would not do to use only a hundred randomly chosen passages, the few hundred word

types they contained, and two dimensions9. While every word and passage could be

identified, the relations among them would not accurately represent those that a literate

human would perceive. The representational space on which a word’s meaning is defined

must be induced from empirical associations among tens of thousands of words and tens

of thousands of passages (and for perceptual grounding, presumably tens of millions of

percepts) before the meaning of the average word can be distinguished from others,

categorized, or combined into passages, well enough for its bearer to function normally in

a linguistic community.

If the linguistic analog of a visual scene or object is one or several paragraphs, then

a change in wording is the linguistic analog of a change in visual view or scene. Some

passages can be “viewed” from an entirely new stance, that is have all or almost all of

their component words different, and still be far more similar to the original than to any

other passage likely to be encountered. Their nearest neighbor will almost always be the

original. The extreme sparseness of semantic space insures that most words and passages

are so isolated that they act very nearly as discrete entities. For example, in a typical 300

dimensional LSA semantic space, half of the word-word cosines were below .012, that is,

their meanings were essentially orthogonal, while 99% were below .16, and 99.9% were

below .40.

What would a visual semantic space look like? We can, of course, only speculate.

Let us suppose that the vocabulary words for vision are the outputs of retinal ganglion

cells, which number about a million, and visual passages are single-saccade scenes. At

two or three saccades per second 15 hours a day for 20 years there would be about 109

scenes. A matrix of size 106 * 109, in this case dense, is far beyond current SVD for even

the largest multiprocessor supercomputer installations, and the implied number of matrix

cells is an order of magnitude greater than the usual estimate of the number of synapses
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in the brain. So the brain would have to be doing a great deal of input compacting.

However, something akin to incremental SVD is obviously needed for both language and

vision because the capabilities of both accrue gradually throughout life. Thus we need

only be interested in the size of the reduced dimension solution. Suppose that the

representation of the preserved semantics of a saccadic scene takes only a small multiple

of the number of dimensions needed for a passage describing it (something like a

thousand words, a page full of small type). For simplicity, let’s say there are 1,000

dimensions. We would thus need to keep (106 + 109 )* 103 = O(1012) real values, at about

ten bits each, to represent every view ever seen. This is a large, but not inconceivable

number. However, one estimate (Landauer, 1986) of the rate of long term memory gain

for visual information based on recognition experiments would place the lifetime number

of stored bits for representing scenes at only O(108), implying a very high degree of

dimension reduction by preprocessing prior to representation in memory. This also seems

plausible given what we know about the early stages of visual processing. The result

would be an ability to represent in long-term memory hundreds of millions of different

views of the world, each by 1,000 orthogonal abstract features.

What would be the properties of such a space? We are positing that it could be

modeled by an SVD solution, the similarity of two scenes computed as the cosine

between their vectors. Such a space is fantastically sparse. The only scenes that would

have cosines much above zero would be ones that contained regions that are highly

predictive of each other. Predictiveness would come from the solutions of enormous

systems of linear equations in which a scene is the sum of its preprocessed inputs.

Representation is of not by, as Edelman puts it, the relations between scenes. A scene

containing a previously seen head in a new orientation is similar to the original and very

few others. The computational problem and solution are the same. What is similar to

what depends on vast numbers of experiences with scenes and on the empirical
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associations—correlations—that make it possible to induce a space of only 1,000

dimensions from an input of a million dimensions, such that the vectors standing for all

the inputs and scenes are consistent with each other.

A number of systems for face recognition have been constructed by methods of

essentially the kind proposed here, but with very much smaller training corpora and

representation spaces (See Valentine, Abdi, & Otoole, 1994 for a review.) The technique

even has a name, “eigenface” coding, and is usually carried out with principal

components analysis (PCA) or an autoassociator neural network. Images are converted

into bit strings much as I have just described, subjected to PCA, and the largest

components retained. These models have been limited to images of less than hundreds of

different faces, each in only a small number of views, and represented by fewer than 50

dimensions. Moreover, they often involve preprocessing to normalize location and/or the

extraction or filtering out of selected input features. But even without pre-processing,

they work reasonably well at identifying faces they have been trained on, even when seen

in new views, or with new expressions (e.g. John Vokey, personal communication, used

SVD with no pre-normalization and 20 dimensions, with very good results.). The

resulting eigenvector representations can be used to code new faces in a compact form

from which reconstruction yields faces that humans identify with high precision. What I

propose here, then, is not a new idea in the field of image recognition. The addition is the

conjecture that, as in verbal meaning representation, a very much larger and

representative sample of objects and views, millions instead of hundreds, from which to

learn, and substantially more dimensions, could produce qualitatively better performance.

Visual scene representation might have an advantage over verbal LSA in the fact

that successive saccadic scenes are of a more stable universe. Abstracting useful

dimensions from scenes whose differences often come prepackaged in monotonic

changes brought about by slow view changes, smooth object movements, and multiple
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saccadic images of a constant scene, should be easier than understanding language with

its erratic jumps in meaning. Empirical associations over time are also simpler and more

reliable in vision. That objects have permanence allows us to have object permanence;

the system can learn to predict that an object that is here now will probably still be here

after the next saccade or after an occlusion.

Thus, the world that vision represents would seem to have more useful constraints

to take advantage of than the world of language. Presumably, that is why evolution has

been able to hardwire a large portion of the dimension reduction of vision into universally

useful preprocessing analyses.

Perhaps the most important point here is that if this analogy holds, then to have

object and scene recognition, generalization, and categorization work well, the system

needs large amounts of representative experience to construct and populate the visual

semantic space. LSA may not represent two synonyms as having nearly the same

meaning until it has formed a verbal semantic space based on experience with tens of

thousands of other words in context. In the same way, a visual semantic space may not be

able to correctly represent the similarity of two views containing the same object until it

has developed a sufficient set of dimensions along which differences for scenes

containing similar objects are well represented. Thus, for faces, for example, it is to be

expected that invariance will not be nearly as good for rotation in the vertical plane as in

the horizontal because there is much more opportunity to learn to represent the common

changes in face images that are caused by horizontal rotation than by inversion. Bin

Laden’s face should be easier to recognize with his head turned than upside down. On the

other hand, a fighter pilot with thousands of hours of flying experience should show

much more invariance in recognition of terrain objects from different views.
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Let’s return for a moment to the verbal grounding problem by which researchers in

computational semantics have been beleaguered. If LSA computed on a large corpus of

words can infer that both "travel through the air" and "two-winged insect" are as similar

to the word “fly” as synonyms are to each other, it does not seem much of a leap to

believe that if coded images containing multiple foveal views of flies had been included

in contextually appropriate passages, the system would have induced a representation of a

fly that generalized across views and had a high cosine with the word “fly”. The system

would know what flies look like, and its language for flies (and other insects, their habits,

and bites, etc) would be influenced by what flies look like relative to other objects.

This conception of the computational basis of learning in visual perception does

not depend on the particular mathematics of SVD. Other dimension reducing

computation--wavelets or innate support vectors or mathematics yet to be invented—will

undoubtedly do a better job or be more realistic vis-a-vis the nervous system. The

conception is, rather, a philosophical stance on the nature of the process. In Edelman’s

terms, the claim is that representation is representation of similarity, rather than

representation of structures or properties. Among other things, this stance does away with

the homunculus problem; no agent or executive function has to see an image in the mind,

and no impossible reconstruction of the geometry of solid objects from 2-D projections is

required. It yields what animals and humans need, recognition, identification,

generalization, categorization, by computations on the available evidence: empirical

association in space and time.

H2. Connecting verbal, geometric and physical reality

“But,” you may say, “the way the world looks to us is the way the world is, at least

to a useful approximation, not like a list of similarity values.” Not really or not quite; or

really, but in another sense. The retinal projection of the physical world does, of course,

capture the geometry of seen objects, and binocular vision adds some information from
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which shape can be inferred (essentially a tiny rotation in the horizontal plane to use and

learn from) and collicular and cortical projections preserve it. This means that, for the

kind of system postulated here, things with similar physical shapes—down to pine

needles and branches, up to skyscrapers and mountains—and conglomerates thereof, are

appropriately similar to each other. As a result anything we learn or inherit about the

property of a kind of physical object will be represented by a vector similar to the vector

for a perception of it. The mechanism is the same as that posited earlier for grounding the

meaning of words. A pine tree will be perceived as solid, its trunk as round, its needles

and branches as occupying spaces in geometric relation to one another.

“Oh but” you may still complain, “the world really looks like the world really is.”

Here, I think, we come face to face with the stubborn philosophical “qualia” problem in

consciousness. We know that what we perceive is just one version of what the world is

really like, just the inferences we can make from the restricted range of electromagnetic

energies and their focusing on and detection by the retina. And we know that we can’t

prove that a pine tree looks the same to you and me, beyond what we agree on with

respect to relations and identities. But we are still rightly impressed with the accuracy of

perception. Almost always we can tell which of two branches is longer, bushier, greener,

and verify our accuracy. We tend to forget that our absolute judgments and memories of

just how long, bushy, and green are limited to three bit accuracy, that we can’t recall

what’s on the two sides of a penny, and that the detailed content of the last saccadic scene

is gone when the eyes move. Nonetheless, we retain the conscious experience of seeing

the world as it is and moves. How this state of mind could be related to a vector space of

1,000 dimensions appears mysterious at best. However, it must be related to something

like that because that’s all there is.

I leave it at that. My mission here is not to solve the riddles of consciousness, but to

suggest that a general computational method can explain both the learning of perceptual
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meaning and of verbal meaning. Because vision came before language, and is often used

to ground it in a different representation of reality, it would not be unlikely that the basic

computational method for turning empirical association into meaning in language was

adapted from that in vision.

What about trying to test this analogy by a simulation method like the one used

for verbal LSA? The needed input resolution is available; digital cameras already boast

half a million pixels and we could combine them. However, three things stand in the way.

One is that the human, along with other animals, has additional machinery for adaptively

selecting its visual input that is difficult to emulate; a mechanically centerable higher

resolution fovea (the differential resolution is itself functional for such a process, but

could be mimicked) and adjustable focus in service of a cognitive apparatus for directing

attention. This would help it learn by the posited mechanism, as well as help it process,

because it keeps related things like views of the same object in the same retinal locus,

thus reducing the generalization power needed. The second is that, as noted earlier, a

large part of the dimension reduction must be accomplished by wired-in preprocessing

that we probably don’t know enough about to implement. Finally, the matrix that we

might have to feed the system to simulate human performance, a dense matrix of rank of

perhaps a million, is beyond current artificial computational capability.

Nonetheless, both tests of the principle and practical applications could be

achieved by applying high-dimensional representation methods to easier problems than

full-scale human simulation. The best examples we have of that to date are experiments

like those of Edelman, Valentine, Abdi & Otoole (1994). and Vokey (2000). What the

analogy with language suggests is that to make such systems much more flexible and

general they may primarily need much more empirical association data. They may need

to be trained on several orders of magnitude larger and more representative samples of

visual input. Rather than a few hundred selected views of isolated objects, they may need
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experience with millions of images of thousands of kinds of natural scenes from which to

induce the kind of high dimensional spatial structure that would make objects embedded

in scenes similar to themselves despite change in context and view. With this sketch of

how the ideas behind LSA might apply, apparently quite different, domain of learning, as

an example, I return to consideration of more general issues.

MORE ON IMPLICATIONS

Some of the persistent problems in the philosophy and modeling of cognition seem,

if not resolved, at least narrowed by these conjectures. For example, take the so-called

“frame” problem, how the meaning of a passage or recognition of an object can depend

on its context. The mystery appears less deep if one thinks of stimuli as combinations of

millions of elements in a space of 10^5! (! meaning factorial) possible combinations. A

given word or object can then have a characteristic effect on the meaning of a whole

complex experience, and several words or objects can simultaneously have several

independent effects, essentially by moving the vector of an experience in orthogonal

directions. The effect of a given word or object on the current experience is thus always

both different from that of any other word or object and different from its effect in other

contexts. Similarly the problem of “the individual”, which is central to many arguments

about consciousness, appears less deep. A red ball is not just a red ball, it is a red ball in a

context. Despite the ability to recognize it as the same with a change of context, if the

perceiver keeps track of the similarity of the ball-plus-contexts in which one red ball and

another have been seen, it will represent them as different, although if it loses track or the

context is ambiguous it may get confused. The philosophical move is to think simple but

big--very, very big--about the space for representation, rather than to think small and

marvelous of individual objects.

Of course, in both word and object instances, there can be a requirement to trace

the history of contexts, a matter that has not been dealt with in the models discussed here.
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Following the advocated approach, one would look for the answer in associations by

temporally sequential coincidence, again in the large. For the case of words, this would

take the form of computations based on words-to-following-words association matrices,

as is done in the HAL model of Lund and Burgess (1996), the SP model of Simon Dennis

(2001), and the language models used in automatic speech recognition (e.g. Rabiner,

1969; Rosenfeld,1996), in addition to the word-to-passage equations of LSA. There is

every reason to believe that empirical associations go on simultaneously at a wide

spectrum of different temporal scopes, and the brain seems eminently suited to doing that

in the very large. However, none of this has been cashed out in testable computational

simulations, and may be too difficult to do—because of the size of system required to

generate the desired properties—until there has been a great deal more expansion in

computational power.

CONCLUSION

My principal goal here has been to suggest that high dimensional vector space

computations based on empirical associations among very large numbers of components

could be a close model of a fundamental computational basis of most learning in both

verbal and perceptual domains. More powerful representational effects can be brought

about by linear inductive combinations of the elements of very large vocabularies than

has often been realized. Success of one such model to demonstrate many natural

properties of language commonly assumed to be essentially more complex, non-linear,

and/or unlearned, along with evidence and argument that similar computations may serve

similar roles in object recognition, are taken to reaffirm the possibility that a single

underlying associational mechanism lies behind many more special and complex

appearing cognitive phenomena. Learning from vast amounts of empirical association

data coupled with dimension reduction may turn out to be a technique universally used by

animal and human brains. Past counter-arguments and modeling failures from Rosenblatt,
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Chomsky, Minsky and Papert, and Newell, through claims for and against connectionism

have been based on the empirical insufficiency of systems of small scale and the apparent

nonlinearity of many cognitive phenomena. It is well-known that non-linear functions

and systems can be approximated to any degree by linear systems with sufficient

numbers of components or parameters. This could mean that the linear models discussed

here succeed only by hammer-and-tongs approximation to real underlying mechanisms

that are complexly nonlinear. However, it is equally true, mathematically, that

determinate solution of large systems of nonlinear equations is anywhere from extremely

difficult to impossible10. Many of the techniques of artificial intelligence and the posited

mechanisms of rule-based theories--including ones based on logic, theorem proving, or

heuristic search—to achieve realistic complexity implicitly require the solution of huge

systems of nonlinear equations. Doing that has to be equally hard for biological systems

as it is for mathematics. Therefore, it does not seems unlikely that nature has adopted the

same trick as applied mathematicians; where the world is highly complex and non-linear,

approximate it with high-dimensional additive computations on huge numbers of

parameters. Fortunately, for many of the important problems animals need to solve there

is plenty of data available to allow the empirical fitting of huge numbers of parameters.

This is not to claim that the biological cognitive apparatus is entirely additive down

to its roots and up to its highest levels of glory. Synaptic transmissions combine

nonlinearly (although possibly as an emergent function of additive combination at the

molecular level), and some people do sometimes think non-monotonic logical thoughts.

Linguistic syntax may be fundamentally non-linear, although I think the question is less

settled than it used to appear. It would not surprise me if it turns out that the three-fourths

additive, one-fourth more complex properties that have often suggested themselves in our

attempts to model linguistic phenomena with LSA is close to representative. Whether that

is because the underlying system is nonlinear and only partially approximated by a linear
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model, or because the underlying system is built on linear foundations on top of which

some local non-linear capabilities are constructed, remains to be seen. I favor the latter

because it seems easier to implement and therefore more evolutionarily plausible. Even if

the actual computations are basically nonlinear, as certainly is not denied by the

arguments presented here, the use of a very high, but greatly reduced, dimensional

embedding space based on enormous amounts of empirical association data would

remain a good candidate for a computational scheme to meet the needs of cognition.

Among other important properties, such a system offers to support the ubiquitous and

extensive context-dependence and inductive nature of perception and language.

Nonetheless, perception, language, and thought all evince phenomena that appear

nonlinear, such as symbolic reasoning and hierarchical concept structures, and rather than

these being functions derived out of and on top of a basic linear system, they may be

symptoms of a fundamentally different scheme, perhaps, for example, one that grows

very rich tree-structures rather than co-ordinate spaces. The chief drawback of a seriously

non-linear version of our model is its present computational intractability. If such a

method is used by the brain, it must be computable, so the problem is not impossibility,

but “merely” complexity. However, discovering the brain’s mathematical tricks and

matching its computational and storage capacities would be a much more daunting

challenge.

Of course, these ideas are not entirely new; similar arguments used to be made by

behaviorists, albeit without recourse to any adequate theory of how complex learning

might work, and is still commonly made by and for connectionist modeling. To repeat,

what is added here, is argument for the power of scale. Instead of scale being the enemy

of learning and cognition, both in nature and for theory, so long as an appropriate lower

dimensional representation can be computed, and there is sufficient data, it is a friend
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Footnotes

1. There are, of course, other approaches and theories for object recognition, for

example the physical structure inference procedures proposed by Marr. My principal goal

here being the presentation of a different way of thinking about associative learning, I do

not discuss alternative object recognition theories any further. Edelman (1999) presents a

good review of the field that is consistent with the present discussion.

2. SVD is a form of eigenvector/eigenvalue decomposition. The basis of factor

analysis, principal components analysis, and correspondence analysis, it is also closely

related to metric multi-dimensional scaling, and is a member of the class of mathematical

methods sometimes called spectral analysis that also includes Fourier analysis.

3. State of the art at this writing is a newly released parallel SVD program by

Michael Berry of the University of Tennessee running on a multiprocessor system with

multiple gigabytes of  RAM.

4. Singular value = square-root of eigenvalue.

5. The distribution of cosine values for words to passages and passages to passages

is different from that for words to words. It is difficult to construct a proper representative

sample for these cases because they depend on the length of the passages. However, for

purposes of the examples and arguments in this chapter, it is sufficient to assume that

both mean and s.d. are about twice that of word-word cosines, i.e. around  .04 and .12.

6. This text corpus was generously provided by Touchtone Applied Science

Associates, Newburg, NY, who developed it for data on which to base their Educators

Word Frequency Guide.

7. In one interesting variant of the calibration method, only the essays themselves

are used to establish the quality score. The distance between each essay and each other is

subjected to unidimensional  scaling, an analysis that derives the best single line on
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which to locate each essay so as to maximally preserve the full set of inter-essay

distances. The linear position of the essays is then taken as the content score. This

procedure is analogous to a human grader who is not expert in the domain reading all of

the essays, comparing each one to all the others, then ranking them from best to worst  on

the quantity and quality of consensual content. The procedure requires roughly three

times as many essays for comparable accuracy,  again much as a human might.

8. There are other defects in the Glenberg and Robinson research. (a) The subjective

composition by the experimenters of  passages  that did not differ on LSA measures but

were obviously different to college students is both highly selective, producing special

examples whose representativeness is unknown, and capitalizes on the noisiness of the

small-corpus dependency of the LSA. Thus, they may have used passages whose LSA

representations were wrong “in principle”—LSA principle. This kind of research  is more

useful if words and passages are selected from natural sources by an unbiased,

systematic, and objective method. (b) The suitability of sentences and word meanings,

and the meaning of paraphrases used as outcome measures in their Experiment 3, were

based on subjective judgments of the authors and their undergraduate research

collaborators. (4) Some of the important statistical tests comparing humans and LSA

made the common error of concluding a difference because one comparison was

significant and the other not, instead of the correct procedure of a direct test of the

difference in effects. Nonetheless, I do not think the methodological problems, separately

or combined, vitiate the results; it remains clear enough that, as to be expected, LSA can

often go wrong with materials of this kind.

9. Some research and knowledge engineering efforts have tried to shortcut the need

for large corpus training in applying LSA, using only  passages of direct interest. In most

cases this has led to very poor results.
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10. Recent developments in other decomposition techniques, such as Fourier

wavelets, open the possibility of eventually building sufficiently constrained non-linear

models for dealing with the phenomena in which we are interested. They have already

enjoyed considerable success in representing visual objects for purposes of compression.

Wavelet methods require ex-cathedra imposition of structure on the domain of analysis.

Perhaps something of the sort is what the innate readiness to learn language and objects

consists of. I stress linear systems here only because we know how to solve them at the

needed scale and messiness. I certainly do not rule out the possibility that nature has

discovered another way.
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insect mosquito soar pilot
fly .26 .34 .54 .58

.61 .27
.09

Table 1. In LSA a word with multiple “senses” is similar to them all, even when they

are not similar to each other.

Here Fly has high similarity to all four words (top row), insect and mosquito are

highly similar to each other, as are soar and pilot (middle row), while the average

similarity of insect and mosquito on the one hand to soar and pilot on the other is quite

low (bottom row).


