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Abstract. This paper analyses a game-theoretic model of Hi-Lo Poker.
Bilateral-move N-round games are formulated and explicit solutions are
derived. In the asymptotic case the form of optimal decision rule is derived
and examples are provided.
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1 Introduction

We study the following zero-sum extensive game. First a move of chance de-
termines the values of variables x and y, which are uniformly and in-
dependently distributed in [0, 1]. Player I is informed of the value x and player
II is informed of the value y. Subsequently, the players move alternately. On
his turn, a player may either bet or pass. If the ®rst two moves of the game are
pass, then the game ends; player with the lower hand wins and gets unity from
the opponent. Otherwise, the game ends when a player chooses pass; if it ends
in period t then a player with the higher hand wins and gets the value Atÿ1,
where fAi; i � 1; 2; . . .g is a sequence of real numbers with 1UA1 < A2 < � � �.

A detailed description and discussion on mathematical model of two-per-
son poker is given in Karlin's book [6]. This version of poker relates to the
models of Hi-Lo poker (see Sakaguchi [7, 8], Sakaguchi and Mazalov [10])
and preference (Mazalov [9]) with many rounds. In a model of Karlin [6,
section 9.5] there is an additional possibility of folding. Our model di¨ers from
the model of Karlin without possibility of folding that in case pass-pass the
winner is a player with lower card. Moreover in this model the numbers
fAi; i � 1; 2; . . .g may be arbitrary.
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Notice also, that there is a special case of this game with two rounds where
both players make decisions simultaneously and A2 � 1 and A1 � 1ÿ 2p;
p A �0; 1=2�. This variant has name of the simple exchange game (see Brams,
Kilgour and Davies [1], Garnaev [2, 3], Sakaguchi [4, 5]).

2 Strategies and payo¨

The poker discussed here is played by bilateral moves of the players. Let us
introduce strategies in the following way. Player I moves ®rst and bets with
probability a0, and passes with probability a0 � 1ÿ a0. If z is a probability we
denote here z � 1ÿ z. Then player II is on the move. If player I on his move
made a bet, player II bets with probability b0 and passes with probability b0;
otherwise, player II bets with probability g0 and passes with probability g0. If
the choice was pass-pass, the player with the lower hand wins and gets unity
from the opponent.

If both players made a bet player I has the opportunity to correct his pre-
vious decision by betting or passing again with probabilities a1 and a1, re-
spectively. If he chooses bet, the second player makes a decision with proba-
bilities b1, b1, etc. The process continues until one of the players says pass.

Then the players make showdown. Player with the higher hand wins and
gets the value ANÿ1 if the round was ®nished on N-th step. Thus the payo¨
table is described by:

Notice that the movement may be continued many times. At the beginning
we consider the problem with ®nite horizon N. Later we shall analyse the
asymptotic variant. If in the ®nite case nobody says ``pass'' we break o¨ the
process and suppose that the payo¨ equals AN .

3 Case N � 1 and N � 2

The decision of this game is very simple for N � 1. In this case player II
passes on second step and the expected payo¨ of player I be equal

M�a0� � Ex;y�a0�x�A1sgn�xÿ y� � a0�x�sgn�yÿ x��

� �A1 � 1�
�1
0

�2xÿ 1�a0�x� dx:
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From the form of the payo¨ it follows that optimal strategy of Player I has
form

a�0 �x� �
0; if 0U x < 1=2

1; if 1=2U xU 1,

(

and the value of game is equal V � �A1 � 1�=4.
Case N � 2 was investigated in details in the article Sakaguchi, Mazalov

[10].

Theorem 1 [10]. The optimal strategies for the game are:

a�0 �x� �

0; if 0U x < b0

arbitrary; but satisfies the requirements

0U a�0 �x�U 1 and

� b1

b0

a�0 �x� dx � 1=2ÿ b0; if b0 U xU b1

1; if b1 < xU 1,

8>>>>>>><>>>>>>>:
b �0 �y� � I�yV b1� and g�0 �y� � I�yV b0�;

where

b0 � �A2 ÿ A1�=2�A2 � 1� and b1 � b0 � 1=2

and IA is indicator of A.
The value of the game is ÿ�1=4��A2 ÿ A1��A1 � 1�=�A2 � 1�.

Remark 1. We see that the value of the game is positive for N � 1 and nega-
tive for N � 2.

4 Case N � 3

Let us continue the considerations in the case with 3 moves. In this case the
expected payo¨ to I under the strategy collection �a0�x�; a1�x�; b0�y�; g0�y��
will be

M�a0; a1; b0; g0� � Ex;y�fa0�x�b0�y��A3a1�x� � A2a1�x�� � A1a0�x�b0�y�

� a0�x��A1g0�y� ÿ g0�y��gsgn�xÿ y��: �1�

Our task is to ®nd player's strategies a�0 � � �; a�1 � � � and b�0 � � �; g�0 � � � that
constitute the saddle point of this function. We shall prove the following
result.
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Theorem 2. Optimal strategies for the game with payo¨ function (1) are

a�0 �x� �

0; if 0U x < b0

arbitrary; but satisfies the requirements

0U a�0 �x�U 1 and

� b1

b0

a�0 �x� dx � b1 ÿ 2b0; if b0 U x < b1

1; if b1 U xU 1

8>>>>>>><>>>>>>>:
a�1 �x� � I�xV b2� and b�0 �y� � I�yV b1�; g

�
0 �y� � I�yV b0�

where b0 < b1 < b2 and satisfy the relations

�A2 ÿ A1�b1 � �A1 � 1�b0

b2 ÿ b1 � A3 ÿ A1

A2 ÿ A1
b2 � b1 ÿ 2b0 �2�

b2 � �1� b1�
2

:

The value of the game is

V � ÿ b0�A1 � 1�
2

:

Proof. From the side of player II, (1) can be rewritten as

M�a0; a1; b0; g0� � Ey�b0�y�L1�yja0; a1�� � terms independent of b0� � �
� Ey�g0�y�L0�yja0; a1�� � terms independent of g0� � �

where

L1�yja0; a1� � ÿ
� y

0

�
�1

y

� �
a0�x��A3a1�x� � A2a1�x� ÿ A1� dx

and

L0�yja0; a1� � ÿ
� y

0

�
�1

y

� �
�A1 � 1�a0�x� dx

If player II wants to minimize his loss, i.e. wishes to minimize the payo¨
function, given an arbitrary strategy pair �a0� � �; a1� � ��, he has to choose his
optimal strategies in such manner that for all of them the following will be
true
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strategy�i �y� �
0; if Li > 0

arbitrary; if Li � 0

1; if Li < 0

8><>:
It can easily be veri®ed that both L1 and L0 are non-increasing curves sat-
isfying the relation

Li�0ja0; a1� > 0 > Li�1ja0; a1� i � 0; 1

except in the cases a0�x� � 1 and a0�x� � 0. Consequently if we determine b0

and b1 such that

Li�bija0; a1� � 0 i � 0; 1;

i.e.

ÿ
� b1

0

�
� 1

b1

� �
�A3a1�x� � A2a1�x� ÿ A1�a0�x� dx � 0

ÿ
� b0

0

�
�1

b0

� �
a0�x� dx � 1ÿ 2b0

�3�

we see that the optimal response to I's strategy �a0� � �; a1� � �� is

b ��y� � I�yV b1� and g�0 �y� � I�yV b0�:

Notice that if a0�x�; a1�x� have the same form as in Theorem the system (3)
is equivalent to� b1

b0

a0�x� dx � b1 ÿ 2b0

� b1

b0

a0�x� dx � b2 ÿ b1 � A3 ÿ A1

A2 ÿ A1
b2:

�4�

which is true in view of (2).
On the other hand ± from the side of player I, (1) can be rewritten as

M�a0; a1; b0; g0� � Ex�a0�x�K0�xja1; b0; g0�� � terms independent of a0� � �
� Ex�a1�x�K1�xja0; b0; g0�� � terms independent of a1� � �

where

K0�xja1; b0; g0� �
� x

0

ÿ
�1

x

� �
�a1�x��A3 ÿ A2�b0�y� � A2b0�y� � A1b0�y�

ÿ A1g0�y� � g0�y�� dy �5�
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and

K1�xja0; b0; g0� � a0�x�
� x

0

ÿ
�1

x

� �
�A3 ÿ A2�b0�y� dy:

Player I would of course like to maximize his expected gain from the game,
given an arbitrary set of strategies of the second player. Before we determined
two functions ± strategies of player II ± which minimize the payo¨ function
from his side. Now we shall temporally assume that b�0 �y� � I�yV b1�;
g�0 �y� � I�yV b0� with b0; b1 satisfying relations (2) and 0U b0 < b1 U 1 and
try to maximize the payo¨ function. Player II's optimal strategies, together
with (4) give us

K0�xja1; b
�
0 ; g

�
0 � �

2�A1 � 1�xÿ �A2 ÿ A1�b1

ÿ �A1 � 1�b0 ÿ a1�x��A3 ÿ A2�b1; if x < b0

ÿ �A2 ÿ A1�b1 � �A1 � 1�b0

ÿ a1�x��A3 ÿ A2�b1; if b0 U x < b1

2�A2 ÿ A1�xÿ �A2 ÿ A1��b1 � 1�
� �A1 � 1�b0

� a1�x��A3 ÿ A2��2xÿ b1 ÿ 1�; if xV b1

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
�6�

and

K1�xja0; b
�
0 ; g

�
0 � � a0�x��A3 ÿ A2�

b1 ÿ 1; if x < b1

2xÿ b1 ÿ 1; otherwise.

(

From the form of the function K1�xja0; b
�
0 ; g

�
0 � we see that independently of

a0�x� the optimal response of player I is

a�1 �x� � I xV
b1 � 1

2

� �
:

Now we can rewrite (6) as

K0�xjb �; g�� �

�A1 � 1��2xÿ b0� ÿ �A2 ÿ A1�b1; if x < b0

ÿ�A2 ÿ A1�b1 � �A1 � 1�b0; if b0 U x < b1

�A2 ÿ A1��2xÿ b1 ÿ 1� � �A1 � 1�b0; if b1 U x<
b1�1
2

�A3 ÿ A1��2xÿ b1 ÿ 1� � �A1 � 1�b0; if xV
b1 � 1

2
.

8>>>>>>>><>>>>>>>>:
The form of the function K0�x� is shown in Figure 1.
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The condition

K0�b0jb �; g�� � 0; i � 0; 1;

i.e.

�A2 ÿ A1�b1 � �A1 � 1�b0

follows from (2). Therefore the optimal strategy a�0 is

a�0 �x� �
0; if x < b0

arbitrary; if b0 U x < b1

1; if xV b1.

8><>:
Finally we have to compute the value of the game. From (1) we obtain

M�a�0 ; a�1 ; b �0 ; g�0 � �
�1

b1

K0�x� dx�
�1
0

�1ÿ 2y��A1g�0 �y� ÿ g�0 �y�� dy:

After simpli®cation we have as the value of the game

V � ÿ�A1 � 1�b0=2;

which completes the proof of the theorem.

5 Finite horizon case

The aim of this section is to prove a general result for any ®xed N. For con-
veniency we suppose that N � 2n� 2, i.e. that player II makes the ®nal move
(case N � 2n� 1 is completely analogous).

Hence the expected payo¨ of player I takes the form

Fig. 1.
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M�a; b; g0� � Ex;y��a0�x�fb0�y�fa1�x� � � � �bnÿ1�y�fan�x�fbn�y�A2n�2

� bn�y�A2n�1g � an�x�A2ng � bnÿ1�y�A2nÿ1� � � � � � a1�x�A2g

� b0�y�A1g � a0�x�fA1g0�y� ÿ g0�y�g�sgn�xÿ y��: �7�

Theorem 3. The optimal strategies in the game with payo¨ function (7) take the
form

a0�x� �
0; if 0U xU b0,

arbitrary; if b0 < x < b1; ai�x� � I�xV b2i�; i � 1; . . . ; n,

1; if b1 U xU 1,

8><>: �8�

g0�y� � I�yV b0�; bi�y� � I�yV b2i�1�; i � 0; . . . ; n; �9�

with bi; i � 0; . . . ; 2n� 1, satisfying the system of equations

b2n�1 � 1� b2n

2

�A2n�2 ÿ A2n�1��1ÿ b2n�1� � �A2n�1 ÿ A2n��2b2n ÿ b2nÿ1 ÿ 1�
..
.

�A2i�2 ÿ A2i�1��1ÿ b2i�1� � �A2i�1 ÿ A2i��2b2i ÿ b2iÿ1 ÿ 1�
..
.

�A4 ÿ A3��1ÿ b3� � �A3 ÿ A2��2b2 ÿ b1 ÿ 1�
�A3 ÿ A2��1ÿ b2� � �A2 ÿ A1��2b1 ÿ 2b0 ÿ 1�
�A2 ÿ A1��1ÿ b1� � �A1 � 1�b0

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

�10�

and� b1

b0

a0�x� dx � b1 ÿ 2b0: �11�

The value of the game is V � ÿ A1�1
2

b0.

Proof. Before we prove theorem let us ®nd the solution of system (10).

Lemma. The solution of system (10) exists and satis®es the relation:

0 < 2b0 < b1 < b2 < � � � < b2n�1: �12�

The Proof of the above lemma follows from the presentation of the equa-
tions in system (10) in recurrent form bi � xi � yibiÿ1.
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b2n�1 � 1

2
� 1

2
b2n

b2n �
1
2

D2n�1 � D2n

2D2n � 1
2

D2n�1
� D2n

2D2n � 1
2

D2n�1
b2nÿ1

..

.

bi � xi � yibiÿ1

biÿ1 � �1ÿ xi�Di � Diÿ1
2Diÿ1 � Di yi

� Diÿ1
2Diÿ1 � Di yi

biÿ2

..

.

b2 � �1ÿ x3�D3 � D2

2D2 � D3y3
� D2

2D2 � D3 y3
b1

b1 � �1ÿ x2�D2 � D1

2D1 � D2y2
� 2D1

2D1 � D2 y2
b0

b0 � �1ÿ x1�D1

D0 � D1y1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�13�

where we have used the notation Di � Ai�1 ÿ Ai;D0 � A1 � 1.
yi determine all bi uniquely, and for yi we have the following recurrent

formulas

yi �
Diÿ1
Di

1

yiÿ1
ÿ 2

� �
; i � 3; . . . ; 2n� 1;

y2 �
D1

D2

2

y1

ÿ 2

� �
;

8>>><>>>:
and

y1 �
2D1

2D1 � D2
2

2D2 � D2
3

2D3�

. .
.

� D2
2n

2D2n � 1
2 D2n�1

�14�

from where we deduce the existence and uniqueness of the solutions of system
(10).

Notice that geometrically the relations

bi � xi � yibiÿ1; xi � yi � 1; xi > 0; yi > 0; i � 2; . . . ; 2n� 1;
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mean that the value bi lies between biÿ1 and 1. Therefore 0 < b1 < b2 < � � � <
b2n�1 < 1.

From (13) it follows that for i � 1 b1 � x1 � �1ÿ x1�2b0. Hence b1 lies
between 1 and 2b0, i.e. 0 < 2b0 < b1. Thus we have proven the inequalities
(12).

Now let us prove the theorem. First consider the problem from the side of
player II. Let us suppose that player I uses strategies of the form (8) with bi

satisfying (10) and try to ®nd the optimal response of player II. His aim is to
minimize the payo¨ (7).

Let us rewrite (7) in the form

M�a; b; g� �
� 1
0

g0�y�L0�y� dy�
Xn

i�0

�1
0

Yi

j�0
bj�y�Li�y� dy; �15�

where

L0�y� �
�1
0

�A1 � 1�a0�x�sgn�xÿ y� dx � �A1 � 1� ÿ
� y

0

�
�1

y

� �
a0�x� dx

Ln�y� � �A2n�2 ÿ A2n�1� ÿ
� y

0

�
�1

y

� �Yn

0

aj�x� dx;

Li�y� � �A2i�3 ÿ A2i�2� ÿ
� y

0

�
�1

y

� �Yi�1
j�0

aj�x� dx

� �A2i�2 ÿ A2i�1� ÿ
� y

0

�
� 1

y

� �Yi

j�0
aj�x� dx; i � 1; . . . ; nÿ 1: �16�

Notice that L 0i �y�U 0, hence Li�y� is non-increasing. Because
Q i

j�0
aj�x� � ai�x� it follows from the choice of b2i�1 (see (10)) that

Li�b2i�1� � �A2i�3 ÿ A2i�2� ÿ
� b2i�1

0

�
�1

b2i�1

� �
ai�1�x� dx

� �A2i�2 ÿ A2i�1� ÿ
� b2i�1

0

�
� 1

b2i�1

� �
ai�x� dx

� D2i�2�1ÿ b2i�2� � D2i�1�1ÿ 2b2i�1 � b2i� � 0:

The graph of Li�y� is shown in Fig. 2.
From here it follows that the optimal response of Player II is bi�y� �

I�yV b2i�1�, i � 0; . . . ; n. Analysis of the function L0�x� shows that g0�y� �
IfyV b0g. Using the same argument for Player I we can rewrite (7) in the fol-
lowing form

M�a; b; g� �
Xn

i�1

�1
0

Yi

j�0
aj�x�Ki�x� dx�

�1
0

a0�x�K0�x� dx

where
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Ki�x� � �A2i�2 ÿ A2i�1�
� x

0

ÿ
�1

x

� �Yi

j�0
bj�y� dy

� �A2i�1 ÿ A2i�
� x

0

ÿ
�1

x

� �Yiÿ1
j�0

bj�y� dy; i � 1; . . . ; n;

and

K0�x� � �A2 ÿ A1�
� x

0

ÿ
�1

x

� �
b0�y� dy

ÿ �A1 � 1�
� x

0

ÿ
� 1

x

� �
g0�y� dy� �A1 � 1�

� x

0

ÿ
�1

x

� �
dy:

The functions Ki�x� are increasing and crossing the line Ox in the point b2i.
This means that the optimal response of Player I is the collection of strategies
(8).

Fig. 2.
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Lastly, it remains to ®nd the value of the game. In the region d0 the payo¨
of player I equals sgn�yÿ x�, in regions di payo¨ is Aisgn�xÿ y�; i �
1; 2n� 1. Therefore the expectational payo¨ in these regions equals 0.

Let us calculate the payo¨ in regions P1;P2;S0;S1. In the region P1 the
payo¨ equals aA1 ÿ a, in P2 ÿ aA2 ÿ aA1, in S0 ÿ A1 and in S1A1. Therefore
the expectational payo¨ in these regions is

V0 � b0�A1 � 1�
� b1

b0

a�x� dxÿ b0�b1 ÿ b0� ÿ �1ÿ b1��A2 ÿ A1�
� b1

b0

a�x� dx

ÿ A1�1ÿ b1��b1 ÿ b0� ÿ A1�1ÿ b0�b0 � A1�1ÿ b1�b1:

By using (10) we obtain

V0 � �b0�A1 � 1� ÿ �1ÿ b1��A2 ÿ A1��
� b1

b0

a�x� dxÿ �A1 � 1�b0�b1 ÿ b0�

� ÿ�A1 � 1�b0�b1 ÿ b0�:

In the region Si the payo¨ equals �ÿ1� iÿ1Ai, i � 1; . . . ; 2n� 1. Finally we
obtain

V �M�a�; b�; g�� � ÿ�A1 � 1�b0�b1 ÿ b0� � �A3 ÿ A2��1ÿ b2��b2 ÿ b1�
� � � � � �A2nÿ1 ÿ A2nÿ2��1ÿ b2nÿ2��b2nÿ2 ÿ b2nÿ3�
ÿ �A2n ÿ A2nÿ1��1ÿ b2nÿ1��b2nÿ1 ÿ b2nÿ2�
� �A2n�1 ÿ A2n��1ÿ b2n��b2n ÿ b2nÿ1�
ÿ �A2n�2 ÿ A2n�1��1ÿ b2n�1��b2n�1 ÿ b2n�:

and by substituting bi from the system (10), we get

V � ÿA1 � 1

2
b0;

which completes the proof of the theorem.
The examples of the optimal strategies and the value of game for N � 4

and various values of fAig are given in Table 1.

Remark 2. The value of game is negative. This re¯ects that Player I stands at a
unfavorable condition since he leaks some information about his true to his
opponent by moving ®rst. Notice also that he is able to make blu¨ taking
a�0 �x� arbitrary satisfying condition (11) (for example a�0 �x� � �b1 ÿ 2b0�=
�b1 ÿ b0��. It means that after player I has chosen on ®rst step bet (pass),
player II has to guess whether I's hand is truly high (low) and he has made the
choice, or I's hand is truly low (high) and he wants to mislead his opponent's
choice.
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Remark 3. We see from Table 1 that it is pro®table for player I to increase the
increment between A2 and A3. In this case the value of game tends to zero and
the interval of blu½ng dilates.

6 The asymptotic case

We constructed above the optimal behavior of players in case of ®nite hori-
zon. But in real situations the movement may be continued many times with-
out a well-stated maximum bound. It is interesting to analyze the asymptotic
behavior of the optimal decisions.

6.1. Uniform increments

Let us suppose here that the increment in the awards in every step has the
same value Ai ÿ Aiÿ1 � D. In this case we obtain the system of equations

D�1ÿ b1� � �A1 � 1�b0

�1ÿ b2� � �2b1 ÿ 2b0 ÿ 1�
�1ÿ b3� � �2b2 ÿ b1 ÿ 1�
..
.

�1ÿ b2i�1� � �2b2i ÿ b2iÿ1 ÿ 1�
..
.

�1ÿ b2n�1� � �2b2n ÿ b2nÿ1 ÿ 1�

b2n�1 � 1� b2n

2
:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

�17�

Let us consider the case for large N. If N !y and there exists a limit
value of b� � lim

N!y
bN it follows from the last equation in (17) that b� � 1.

To solve the system (17) we can use method of ®nite di¨erences (Gelfond

Table 1.

Ai A1 � 2 A2 � 3 A3 � 4 A4 � 5 V
bi b0 � 0:10870 b1 � 0:67391 b2 � 0:86957 b3 � 0:93478 ÿ0:16304

Ai A1 � 2 A2 � 3 A3 � 6 A4 � 7 V
bi b0 � 0:08228 b1 � 0:75316 b2 � 0:88608 b3 � 0:94304 ÿ0:12342

Ai A1 � 2 A2 � 3 A3 � 11 A4 � 12 V
bi b0 � 0:05093 b1 � 0:84722 b2 � 0:92593 b3 � 0:96296 ÿ0:07639

Ai A1 � 2 A2 � 5 A3 � 6 A4 � 7 V
bi b0 � 0:24194 b1 � 0:75806 b2 � 0:90323 b3 � 0:95161 ÿ0:36290
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[11]). First we have to solve the uniform equation

b2i�1 � 2b2i ÿ b2iÿ1 � 0; i � 2; . . . ; 2n:

For it we construct the characteristic equation

l2 � 2lÿ 1 � 0:

Its roots are l1 �
���
2
p ÿ 1; l2 � ÿ

���
2
p ÿ 1. Consequently

bt � C1l
t
1 � C2l t

2 � 1;

and by using the condition lim
t!y

bt � 1 we obtain the general solution in the
form

bi � 1� C1�
���
2
p
ÿ 1� i: �18�

The ®rst two equations in (17) say that

�A1 � 1�b0 � ÿDC1�
���
2
p ÿ 1�

ÿC1�3� 2
���
2
p � � 2C1�

���
2
p ÿ 1� ÿ 2b0 � 1

(

from where we compute

b0 � D� ���2p ÿ 1�
A1 � 1� 2D� ���2p ÿ 1�

C1 � ÿ A1 � 1

A1 � 1� 2D� ���2p ÿ 1� :

8>>>><>>>>: �19�

Below in Table 2 we calculate using (17) the optimal strategies for players
and the value of game for various ®nite N. In ®nal line there are optimal
strategies for assymptotic case (see formulas (18)±(19)).

Table 2. Case A1 � 1;D � 2

N b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 V

2 0.250 0.750 ÿ0:250
3 0.222 0.778 0.889 ÿ0:222
4 0.227 0.773 0.909 0.955 ÿ0:227
5 0.226 0.774 0.906 0.962 0.981 ÿ0:226
6 0.227 0.773 0.906 0.961 0.984 0.992 ÿ0:227
7 0.227 0.773 0.906 0.961 0.984 0.994 0.997 ÿ0:227
8 0.227 0.773 0.906 0.961 0.984 0.993 0.997 0.999 ÿ0:227
9 0.227 0.773 0.906 0.961 0.984 0.993 0.997 0.999 0.999 ÿ0:227
10 0.227 0.773 0.906 0.961 0.984 0.993 0.997 0.999 1.000 1.000 ÿ0:227

y 0.227 0.773 0.906 0.961 0.984 0.993 0.997 0.999 1.000 1.000 ÿ0:227
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6.2. Geometric increments

Let us consider now the case where the increments appear in the form of a
geometric sequence, Ai � kAiÿ1; k > 1. Here we obtain the system of equations

k�1ÿ b1� � �A1 � 1�b0

k�1ÿ b2� � �2b1 ÿ 2b0 ÿ 1�
k�1ÿ b3� � �2b2 ÿ b1 ÿ 1�
..
.

k�1ÿ b2i�1� � �2b2i ÿ b2iÿ1 ÿ 1�
..
.

k�1ÿ b2n�1� � �2b2n ÿ b2nÿ1 ÿ 1�

b2n�1 � 1� b2n

2
:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
and by employing the same arguments as above we get

bi � 1� C1

�����������
1� k
p ÿ 1

k

� �i

with C1; b0 satisfying the equations:

�A1 � 1�b0 � ÿA1�k ÿ 1�C1

�����������
1� k
p ÿ 1

k

ÿkC1

�����������
1� k
p ÿ 1

k

� �2

� 2 1� C1

�����������
1� k
p ÿ 1

k

� �
ÿ 2b0 ÿ 1

8>>><>>>:
We have here

b0 � A1�k ÿ 1�
�A1 � 1� �����������1� k

p � 2A1k ÿ A1 � 1

C1 � ÿ �A1 � 1��1� �����������
1� k
p �

�A1 � 1� �����������1� k
p � 2A1k ÿ A1 � 1

8>>>><>>>>:
We present in Table 3 the optimal strategies for players and the value of

game for various ®nite N. Compare with assymptotic values in ®nal line.

Remark 4. In table 2 and 3 A1 � 1, consequently, the value of game V co-
incides with b0 and negative. We see quick convergence of the decisions and
the value of game to limiting values.
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Remark 5. In both cases 4.1 and 4.2 b0 is an increasing function of D and k.

Hence the value of game V � ÿ�A1 � 1�
2

b0 is a decreasing function of these

parameters. It means that from the side of player I(II) it is pro®table to min-
imize (maximize) the increments between betting values.
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