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We introduce a method for discriminating correctly folded proteins
from well designed decoy structures using atom–atom and atom–
solvent contact surfaces. The measure used to quantify contact
surfaces integrates the solvent accessible surface and interatomic
contacts into one quantity, allowing solvent to be treated as an
atom contact. A scoring function was derived from statistical
contact preferences within known protein structures and validated
by using established protein decoy sets, including the ‘‘Rosetta’’
decoys and data from the CASP4 structure predictions. The scoring
function effectively distinguished native structures from all corre-
sponding decoys in >90% of the cases, using isolated protein
subunits as target structures. If contacts between subunits within
quaternary structures are included, the accuracy increases to 97%.
Interactions beyond atom–atom contact range were not required
to distinguish native structures from the decoys using this method.
The contact scoring performed as well or better than existing
statistical and physicochemical potentials and may be applied as an
independent means of evaluating putative structural models.

Solvent effects, including hydrophobic interactions, have long
been seen as the driving force behind protein folding (see ref.

1). The direct or indirect inclusion of solvation effects thus is an
important component of a protein-folding potential. The calcu-
lation of solvent-accessible surfaces (SASs) (2) in particular has
provided a useful approximation for estimating energies of
solvation. Atomic SASs provide a means to quantify solvent
contact in the absence of explicit solvent molecules and are
strongly correlated to experimental solvation energies (3). Direct
methods of incorporating solvation effects into physics-based
potentials include the generalized Born�surface-area method
(4–6), Gaussian approximations (7, 8), and explicit solvent�
surface-area methods (9).

Statistical protein-folding potentials (10–18), extracted from
data on known protein structures, implicitly incorporate solva-
tion effects to some degree. The medium-range attractive po-
tential between hydrophobic residues, for example, is largely due
to the localization of these residues in the interior of the protein,
minimizing their solvent contact. Many statistical scoring func-
tions assume that interatomic or interresidue distances follow a
Boltzmann-like distribution, and the global minimum score
occurs in the vicinity of the lowest energy structure. Alterna-
tively, a scoring function may be viewed as a set of probability
distributions, which can be used to find a maximum probability
structure (19, 20). In practice, both these approaches usually
quantify scores using the log-odds ratio of an observed quantity,
such as interresidue distances, to a specified reference state.
Unfortunately, solvation terms are not readily derived by using
a distance-based methodology, because the positions of solvent
molecules surrounding a protein for the most part are unknown.
Although the theoretical basis of statistical potentials has been
questioned (21), they have proven to be as effective as physi-
cochemical-based folding potentials (8, 22).

The testing and verification of protein-folding potentials has
been facilitated greatly by the availability of protein decoy sets
(20, 23–25). A given decoy set will contain one to thousands or
more simulated protein-like structures, based on the amino acid

sequence from a known structure. These decoy sets provide a
means to independently verify the performance of scoring
functions for protein folding and permit comparisons between
different scoring methods. Within any decoy set, an effective
potential should be able to distinguish native structures from
decoy structures with a high degree of accuracy. It should also
recognize decoys that closely resemble the native structure,
assuming that near-native conformations are sampled suffi-
ciently within the set. It has been suggested that any scoring
function for protein folding should be tested with at least some
of the standardized decoy sets before publication (8).

Two early decoy sets were the CASP1 (Asilomar) and
EMBL�misfold sets (23). Both statistical and physicochemical
potentials have been able to distinguish the native protein
structures from the decoys in these sets (7, 10), with the notable
exception of the hexameric protein NDK from the
EMBL�misfold set, the native isolated subunit of which was not
recognized by either type of potential. Decoys from the
4state�reduced (24), lattice�ssfit (25), and lmds data sets were
used later to evaluate several residue-based potentials (12). In
this comparison, the native structure was ranked first in 42–58%
of the test cases. Similar accuracy was also obtained by using a
residue-based hydrophobic discrimination function (26). The
4state�reduced decoy sets likewise were used for testing scoring
functions based on all-atom representations. Several of these
functions distinguished the native structures from corresponding
decoys (7, 10, 11, 27, 28). More recent decoy sets such as those
generated by the Rosetta method (20) provide a particularly
challenging test of scoring functions, because the decoys are
assembled from fragments of known native structures (8). As of
yet, few data have been published on the performance of scoring
functions using these decoys.

Given the strong correlation between atomic surface areas
and solvation energy (3), it is reasonable to assume that the
energy of desolvation (i.e., the hydrophobic effect) may be
approximated by loss of SAS. Interatomic contact areas addi-
tionally might be used to determine statistical contact prefer-
ences between atoms, where a contact preference approximates
a sum of energetic interactions and structural constraints. To test
this hypothesis, we conducted a statistical assessment of atom–
atom and atom–solvent contact areas within known structures
extracted from the Protein Data Bank (29) and used this data to
generate atom–atom contact potentials. Contacts were quanti-
fied by using a constrained Voronoi tessellation procedure (30),
which permits atom–atom and atom–solvent contacts to be
treated as similar statistical quantities. It is assumed that by
explicitly including atom–solvent contacts, the solvation�
desolvation energies will be approximated better within the
scoring function, leading to a more accurate potential.
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Methods
Calculation of Contact Potentials. The presented potential is based
on an assessment of contact preferences for the 167 standard
residue-specific ATOM types within Protein Data Bank records
(29). For each atom type there are 168 possible contact types,
representing 167 possible atom contacts plus solvent contact.
The complete potential may be represented as an array of 167 �
168 contact parameters �a(b). The completely unfolded protein is
used as the reference state, in which all atoms are initially in
contact with solvent. From this state it is assumed that the
protein folds into a configuration that maximizes favorable
atomic contacts.

To quantify contact surfaces, a procedure based on a Voronoi
tessellation (see ref. 31) is used to create a polyhedron surround-
ing each nonhydrogen atom within a protein. The faces of the
polyhedron surrounding a given atom are projected to the
surface of a sphere, and SASs and atom contacts are calculated
from the surface areas of the projected faces (ref. 30; Fig. 1). The
radius of the sphere is the atomic van der Waals radius plus the
radius of a solvent molecule, giving a maximum sphere radius of
3.3 Å for the defined atom types. The theoretical maximum
separation distance between two contacting atoms thus is 6.6 Å,
although in practice the majority of contacts occur at �5-Å
separation. In this representation, the sum of the SAS, covalent
contacts, and noncovalent contacts is a constant for an atom of
a given radius. The total atom–atom contact area gained on
moving a solvent-exposed atom into the core of the protein is
equal to the loss of SAS, and thus the SAS and atom–atom
contact areas may be treated as comparable quantities.

Contact potentials are derived from atom–atom contact pref-
erences within the training set of experimentally determined
structures. The contact data are transformed into a potential by
using the log-odds distribution of contact area probabilities,

�a�b� � �K log �Pa�b�obs

Pa�b�exp
� , [1]

where �a(b) is the potential for atom type a with contact type b,
Pa(b)obs is the observed contact area probability, Pa(b)exp is the
expected contact probability based on a random distribution,
and K is a proportionality constant. Because we are concerned
with only relative quantities, K is set to 1. For an isolated protein,
Pa(b)obs is the fraction of the total nonbonded contact area of type
a atoms with type b contacts,

Pa�b�obs � Aa�b���
j

Aa�j�, [2]

where Aa(b) is the total area of type a in contact with type b, and
j is an index summing over all contact types, giving �j Aa(j) as the
total nonbonded contact area for all type a atoms. The expected
contact probability Pa(b)exp is estimated based on the distribution
of contact areas within the protein and is equal to the ratio of
total area in contact with type b to the sum of total available
contacts,

Pa�b�exp � �
i

Ai�b���
i, j

Ai�j�, [3]

where i sums over all atom types and j sums over all contact types.
�i Ai(b) thus is the sum of areas making contact with type b,
and �i,j Ai(j) is the sum of all available nonbonded contact areas
including solvent. The available solvent-contact area is estimated
from the unfolded (reference) state. In this state, all nonco-
valently bonded atom surfaces are in contact with solvent, and
the maximal solvent contact of the protein is equal to the sum
of nonbonded surface areas for protein atoms. The available
solvent-contact area therefore scales linearly with the protein
size, and Pa(solvent)exp � 0.5 for all atom types.

In calculating the scoring function from the training set,
potentials were corrected for differences in composition be-
tween proteins. The potentials obtained from individual proteins
were weighted according to the total area of the given atom type
within the protein,

�a�b� � �K log �
�
k

�
j

Aa�j�
k P a�b�obs

k

�
k

�
j

Aa�j�
k P a�b�exp

k �, [4]

where the index k indicates the kth protein in the training set.
Contacts within a residue or between adjacent residues were not
included in calculating contact areas and probabilities. The
derived potentials are used to score protein and decoy structures,
where the total score is the product of the atom-contact area and
the potential coefficient, summed over all contact areas,

score � �
i, j

Ai�j��i�j�. [5]

If the functional unit of a protein is a dimer or higher-order
oligomer, scores are calculated for both the fully solvated sub-
unit and the subunit including contacts within the quaternary
structure.

Identification of Putative Cation Sites. If an ion site is scored in the
absence of the ion, contacts between the ion-ligating atoms are
frequently unfavorable and can bias scores away from the native
structure. To reduce this source of error, a method was intro-
duced to identify putative ion sites. Binding sites of the common
constitutive cations Mg2�, Ca2�, Zn2�, Fe2�, and Fe3� were
tentatively located by using information generated by the
Voronoi procedure used for scoring. If a vertex within the
Voronoi tessellation occurred at the intersection of four ion-
ligating atoms (defined as either four oxygens or any four of cys
Sg, his Nd�Ne, asp Od1�Od2, or glu Oe1�Oe2), the vertex was
treated as a putative ion site. Because contact scores for ions
were not parameterized, a score was not assigned to an ion
contact, but instead unfavorable contact scores between the

Fig. 1. Definition of atom–atom contacts (shown in two dimensions for
clarity). (Left) A Voronoi tessellation procedure is used to divide the protein
into cells. The cell volume is restricted to within a sphere, which also defines
the atom SAS. Atom–atom contacts are calculated from the projection of the
cell faces to the surface of the sphere. (Right) The contact areas for atom A.
This contact definition corrects for differences in cell size and partitions the
surface between atom contacts and the SAS. (The figure was adapted from
ref. 30.)
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ion-ligating atoms were set to zero. This method was used in
scoring all decoys and native structures.

Protein Training Set. An initial set of 1,520 proteins with �25%
pairwise sequence identity was obtained from the September
2001 version of the PDB�select�25 list of representative protein
structures (32). This set was reduced to 648 proteins by excluding
structures with a resolution poorer than 2.5 Å or unknown
resolution (i.e., NMR structures), those having R factors 	0.24,
or those with 	4% heteroatoms or nonstandard residue atoms.
Proteins with incomplete side chains or missing atoms also were
omitted from the training set as well as proteins present within
any of the decoy sets used for testing. All structures were
obtained from the Protein Data Bank (29).

Decoy Test Sets. Publicly available decoy sets were used to test the
derived scoring function. The EMBL�misfold and CASP1 sets
were obtained from the Prostar web site (http:��prostar.carb.
nist.gov), the lattice�ssfit, 4state�reduced, and lmds sets from the
Decoys ’R’ Us web sites (http:��dd.stanford.edu and http:��
dd.compbio.washington.edu), and the Rosetta decoys from the
Baker laboratory web site (http:��depts.washington.edu�
bakerpg). Additional decoy sets were generated from submis-
sions to the Fourth Critical Assessment of Protein Structure
Prediction, CASP4 (http:��predictioncenter.llnl.gov�casp4)
(33). These latter decoys are unlikely to be biased toward any
particular scoring function, because the decoy structures repre-
sent the best models of numerous protein structure prediction
teams using a variety of methods.

Target proteins were selected from the decoy sets by using
similar criteria to that used for the training set. Targets were

omitted if they did not have a corresponding x-ray crystal
structure, had 	10% difference in the number of atoms between
target and decoy structures, or contained constitutive ligands
(e.g., heme groups or iron-sulfur clusters). An exception is the
inclusion of NMR target structures within the 4state and
lattice�ssfit decoy sets to permit comparison with published data.
The complete list of target structures used is shown in Table 2,
which is published as supporting information on the PNAS web

Fig. 2. Calculated atom–atom contact potentials. Favorable contacts (blue) are shown as negative values, and unfavorable contacts (red) are shown as positive
values, similar to energetic potentials. Backbone atom potentials are shown as averages, and side-chain atoms are grouped according to similarity. Groupings
are for presentation purposes and are not used in calculating the scoring function.

Table 1. Performance of atom–atom contact scoring on
decoy sets

Decoy
source

Average no. of decoys
per target

Solvated
subunits

Quaternary
structure

Rank 1 Z score Rank 1 Z score

EMBL 1 25�25 n�a 25�25 n�a
CASP1 7 5�6* 2.4 6�6 3.7
4state 665 7�7 3.9 7�7 4.1
lattice�ssfit 2,000 8�8 8.2 8�8 9.2
lmds 453 6�8* 5.0 8�8 7.8
Rosetta 1,042 19�23* 3.6 21�23† 4.4
CASP4 53 23�27* 2.6 26�27† 3.0
Totals 103�114 111�114

Average Z scores are calculated as the distance from the score of the native
structure to the mean score of the decoy set in standard deviations. Scores
were calculated for both solvated subunits and the subunit including quater-
nary contacts.
*Missed subunits: CASP1, NDK; lmds, 1b0n-B and 1fc2-C; Rosetta, 1gvp, 1msi,
1utg, and 5icb; CASP4, T0098, T0106, T0118, and T0123.

†Missed quaternary structures: Rosetta, 1msi and 5icb; CASP4, T0123.
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site, www.pnas.org. Root mean square deviations between native
structures and decoys were calculated by using the PRO FIT
protein structural alignment tool (34), if not provided with the
decoy structures.

Clustering of Atom Types. For presentation and comparison of
atom-contact scores, a clustering algorithm was used to group
atom types by similarity. The scores for each atom type i
are treated as a vector �i 
 [�i(1), �i(j), . . . , �i(168)], and an
area-weighted Cartesian distance was calculated for each pair of
atom types,

dab
2 � �

j
� �

i

Ai�j�� ��a�j� � �b�j��
2��

i, j

Ai�j�. [6]

Distances were weighted by area to account for both differ-
ences in frequency and in nonbonded surface area. The
distance measure dab was used in an iterative pairwise-

clustering procedure to group side-chain atom types. The
distance between two groups was taken as the maximum dab

between members of the two groups, and the closest pair of
groups was combined at each iteration. From an initial 167
groups of one atom per group, the clustering procedure was
continued to give 12 final groups. Backbone atoms were not
included in the clustering procedure.

Results
Contact Potentials. The contact potentials �i(j) between protein
atoms are presented in Fig. 2. The side-chain contact potentials
were assigned to groups 2–13 based on similarity by using a
Cartesian distance measure (Eq. 6). Group 14 represents solvent
contact, and the potentials for backbone atoms C�, C, N, and O
are shown as averages (group 1). Factors affecting atom-contact
preferences can be inferred from the clustering of atom types. As
expected, atoms mostly grouped according to chemical similar-
ity, with side-chain carbon atoms separating by residue hydro-

Fig. 3. Atom–atom contact scores for all-atom CASP4 decoys. For dimers and higher-order structures, native proteins are scored both as the solvated subunit
and as the subunit within the quaternary structure, with the quaternary structure score lower on the y axis.
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phobicity into predominantly hydrophobic (groups 2 and 3),
predominantly hydrophilic (group 4), positively charged (group
11), and negatively charged (group 12). There was also an effect
of position within the side chain, with hydrophobic atoms being
split into those near the backbone (group 3) and near the
side-chain terminus (group 2). Bonding arrangement had a
noticeable effect, with the isolation of sp2 carbons bonded to
three nonhydrogen atoms into groups 5, 6, and 9. Atom classes
were not strictly divided by chemical similarity, with the mostly
carbon-containing group 4 also having some of the less polar
oxygen and nitrogen species. The influence of adjacent atoms
within a side chain is seen within group 10, which contains mostly
H-bond donor nitrogen and oxygen but also lys Cd and lys Ce due
to the effect of the neighboring lys Nz.

The complete set of 167 � 168 contact potentials, subdivided
by amino acid type, is presented in Table 3, which is published
as supporting information on the PNAS web site.

Recognition of Native Protein Structures. Table 1 summarizes the
decoy testing data. The results are presented as the number of
first-ranked native structures within the decoy sets and as the
Z score (the difference between the native score and mean of

the decoy set in standard deviations). For the five earlier decoy
sets (EMBL�misfold, CASP1, 4state�reduced, lattice�ssfit, and
lmds), the scoring function correctly identifies all native
structures if contacts within the quaternary protein structure
are considered. Although the quaternary structure provides a
more accurate representation of native proteins, isolated
subunits are more often the output of prediction algorithms.
Therefore, the performance of the scoring function on isolated
subunits was investigated. Within the earlier five decoy sets, 3
of 54 isolated native subunits (protein NDK from CASP1 and
amino acid chains 1b0n-B and 1fc2-C from the lmds set) were
not ranked first among the decoys. In the hexameric state of
NDK, each subunit has a large portion of its surface (32%) in
contact with other subunits, severely affecting the solvation
component of the subunit score. (We note that in the absence
of solvent interactions the function does rank the native
subunit first.) Subunits 1b0n-B and 1fc2-C are both small
chains of heterodimers, and the solvation score is poor for both
structures in the absence of the larger chain. However, the
scores of the subunits without the solvation component were
insufficient to recognize the native structures; recognition
required contacts with the larger subunit to be included in the
score.

Fig. 4. Atom–atom contact scores for Rosetta decoys. For dimers and higher-order structures, native proteins are scored as both the solvated subunit and as
the subunit within the quaternary structure, with the quaternary structure score lower on the y axis.
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The results from the CASP4 and Rosetta decoy sets (Figs. 3
and 4) also show quaternary structure to be important in native
structure recognition. The total number of missed first-rank
targets decreases from 8 of 50 to 3 of 50 when contacts between
subunits are included (Table 1). Thus, desolvation and�or in-
tersubunit contacts contribute to the stability of the multimeric
targets T0098, T0106, and T0118 (Fig. 3) and proteins 1gvp and
1utg (Fig. 4). The three native quaternary structures that were
not ranked first by the scoring function are 1msi (Rosetta), 5icb
(Rosetta), and T0123 (CASP4), although in the last case the best
scoring decoy had the same fold as the native structure.

Figs. 3 and 4 indicate that in both the CASP4 and Rosetta data
sets, there are relatively few globally near-native decoy struc-
tures. Only 9 of the 23 Rosetta sets tested and 7 of 27 CASP4 sets
tested contained decoys within 5-Å C� root mean square
deviation of the native structures. Of the latter, all had homol-
ogous structures from which to construct decoys, providing a
greater degree of sampling in the vicinity of the native structure.
These seven CASP4 targets, T0111 (1e9i), T0112 (1e3j), T0113
(1e3w), T0117 (1j90), T0122 (1geq), T0123 (1exs), and T0125
(1gak), also had their highest-ranked decoy within 5 Å root mean
square deviation of the native structure (Fig. 3).

Discussion
The contact-based scoring function was able to distinguish native
proteins from corresponding decoy structures with a high degree
of accuracy. Consideration of intersubunit contacts was impor-
tant for a number of targets, and it is likely that the structures
of these subunits are partly determined by contacts within the
quaternary structure. The presented methodology is distinct
from scoring functions currently used with protein-folding al-
gorithms, and as such it can provide an independent test of
putative protein models.

Three of 114 native structures, 1msi (CASP4), 5icb (Ro-
setta), and 1exs (Rosetta), were not ranked first among the
decoys. There is no common structural feature shared by these
proteins that would explain why these structures were not
top-ranked. 1msi is a small antifreeze protein (35) with little
helical or �-sheet structure. The protein has a planar face with
evenly spaced atoms capable of forming hydrogen bonds with
an ice lattice, mostly from the protein backbone. 1exs is an
unusual �-sheet dimer, in which the amino acid chains from
each subunit intertwine in the interface between them. This

would explain the poor score of the isolated monomers,
because the intertwined portion of the chain would be mostly
solvated, but it does not explain why the dimer was ranked
second among the decoys. 5icb (calbindin) is a calcium-binding
protein, containing two Ca2� ions in the native structure. It is
possible that the removal of negative contact scores for atoms
surrounding the Ca2� ions was insufficient to account for the
effect of the ion. In general, the use of the ion site locating
procedure slightly improved the numerical score of the native
structure but did not affect the native ranking for structures
other than 5icb.

It is somewhat surprising that the scoring function is as
accurate as it is, given that only a single coefficient is used to
quantify a given atom contact. No explicit energetic terms are
used, and only short-range interactions are considered. The
accuracy of the method may be due to the correlation of
solvation�desolvation energies with SAS areas. It is possible
that the area-based methodology provides a better quantifica-
tion of hydrophobic interactions than analogous distance-based
methodologies.

A possible area for improvement of the scoring function is
the estimation of interactions for polar or highly spatially
constrained atoms such as backbone oxygen and nitrogen. The
calculated contact potentials for backbone atoms are more
likely to be an artifact of structural constraints than a ref lec-
tion of energetic interactions. Although structural constraints
are an important consideration, a better estimation of ener-
getic interactions for these atoms could improve results,
particularly for atypical structures such as the antifreeze
protein 1msi.

The presented scoring function is an intermediate resolution
potential. An all-atom representation of protein structures is
used, but there is insufficient detail within the scoring function
to determine precise interatomic distances. It may be possible
to combine the form of this function with a van der Waals type
potential, resulting in a potential that can optimize interatomic
distances as well as atom–atom contacts. The addition of a
short-range repulsive interaction such as this would also
permit the scoring function to be used in dynamic procedures
such as minimization and structural refinement. Validation of
hybrid potentials such as these will require additional decoy
sets with a high degree of sampling in the vicinity of the native
structure.
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