
DISCRIMINATIVE LEARNING AND SPANNING TREE

ALGORITHMS FOR DEPENDENCY PARSING

Ryan McDonald

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2006

Supervisor of Dissertation

Graduate Group Chair

COPYRIGHT

Ryan McDonald

2006

Acknowledgements

First and foremost I would like to thank my advisor Fernando Pereira. His contribution to

all the sections of this thesis is immeasurable. While at Penn I was very fortunate to work

with Fernando and to be the beneficiary of his vast knowledge and friendly persona.

I am of course grateful to my excellent thesis committee: Eugene Charniak, Aravind

Joshi, Mark Liberman, and Mitch Marcus. I am also indebted toGerald Penn for fostering

my interest in natural language processing and giving me my first opportunity to engage in

research.

I would like to acknowledge my co-authors on work that has contributed largely to this

thesis. In particular, Koby Crammer and I jointly developedmaterial in Chapter 2 and

Chapter 3. Kiril Ribarov and Jan Hajič submitted a joint paper with myself and Fernando

Pereira that covers Kiril’s and my independent formulationof dependency parsing as find-

ing maximum spanning trees, which can be found in Chapter 3. Kevin Lerman helped with

the labeled multilingual dependency experiments described in Chapter 5. Thanks also to

John Blitzer, Nikhil Dinesh, Kevin Lerman and Nick Montfortfor helping with the evalu-

ation in Chapter 9 and to Daniel Marcu for providing data sets.

Discussions with Joakim Nivre, Hal Daumé, Jason Eisner, Charles Sutton, Andrew

McCallum, Libin Shen, Julia Hockenmaier and Mike Collins helped form many of the

ideas presented here. At Penn I had the fortune of spending many hours at the office (and

evenings at the food trucks) waxing poetic with John Blitzer, Nikhil Dinesh, Yuan Ding,

iii

and eventually Liang Huang. I am also grateful to Anne, Christie, Ameesh, Kilian, Andrew,

Kimia, Norm, Sasha, and most importantly Tania, for making Philadelphia an enjoyable

place to spend my graduate studies.

Finally I would like to thank my family. My mom and dad provided an enormous

amount of support and convinced me to stick with school as long as I could. My brother

Neill has always inspired me to better myself and it was through his example that I decided

to pursue my doctoral studies. I dedicate this thesis to them.

iv

ABSTRACT

DISCRIMINATIVE LEARNING AND SPANNING TREE ALGORITHMS FOR

DEPENDENCY PARSING

Ryan McDonald

Supervisor: Fernando Pereira

In this thesis we develop a discriminative learning method for dependency parsing using

online large-margin training combined with spanning tree inference algorithms. We will

show that this method provides state-of-the-art accuracy,is extensible through the feature

set and can be implemented efficiently. Furthermore, we display the language independent

nature of the method by evaluating it on over a dozen diverse languages as well as show its

practical applicability through integration into a sentence compression system.

We start by presenting an online large-margin learning framework that is a generaliza-

tion of the work of Crammer and Singer [34, 37] to structured outputs, such as sequences

and parse trees. This will lead to the heart of this thesis – discriminative dependency pars-

ing. Here we will formulate dependency parsing in a spanningtree framework, yielding

efficient parsing algorithms for both projective and non-projective tree structures. We will

then extend the parsing algorithm to incorporate features over larger substructures with-

out an increase in computational complexity for the projective case. Unfortunately, the

non-projective problem then becomes NP-hard so we provide structurally motivated ap-

proximate algorithms. Having defined a set of parsing algorithms, we will also define a

rich feature set and train various parsers using the online large-margin learning framework.

We then compare our trained dependency parsers to other state-of-the-art parsers on 14

diverse languages: Arabic, Bulgarian, Chinese, Czech, Danish, Dutch, English, German,

Japanese, Portuguese, Slovene, Spanish, Swedish and Turkish.

Having built an efficient and accurate discriminative dependency parser, this thesis will

v

then turn to improving and applying the parser. First we willshow how additional re-

sources can provide useful features to increase parsing accuracy and to adapt parsers to

new domains. We will also argue that the robustness of discriminative inference-based

learning algorithms lend themselves well to dependency parsing when feature representa-

tions or structural constraints do not allow for tractable parsing algorithms. Finally, we

integrate our parsing models into a state-of-the-art sentence compression system to show

its applicability to a real world problem.

vi

Contents

1 Introduction 1

1.1 General Parsing Framework .1

1.2 Discriminative Learning and Parsing 3

1.3 Dependency Parsing . 4

1.3.1 Formal Definition . 5

1.3.2 A Brief History . 8

1.3.3 Data-Driven Dependency Parsing10

1.4 Comparison to Other Work . 12

1.5 Thesis . 14

1.6 Summary of Document . 16

2 Online Large-Margin Learning 19

2.1 Structured Classification .. . 19

2.2 Online Learning . 21

2.2.1 Margin Infused Relaxed Algorithm (MIRA) 22

2.3 Empirical Comparison for Sequence Classification 26

2.3.1 Performance versus Training Time 28

2.4 Why MIRA for Dependency Parsing? .29

vii

3 Dependency Parsing 31

3.1 Dependency Structures as Maximum Spanning Trees 31

3.1.1 First-Order Spanning Tree Parsing 31

3.1.2 Second-Order Spanning Tree Parsing 41

3.1.3 Summary: Dependency Parsing as MST 50

3.2 Defining the Feature Space .51

3.2.1 Second-Order Features . 53

3.2.2 Language Generality . 54

3.3 Adding Labels . 54

3.3.1 First-Order Labeling . 55

3.3.2 Second-Order Labeling . 56

3.3.3 Two-Stage Labeling . 57

3.4 Summary of Chapter . 59

4 Dependency Parsing Experiments 60

4.1 Data Sets . 60

4.2 Unlabeled Dependencies .62

4.2.1 Projective Parsing Results .62

4.2.2 Non-projective Parsing Results 64

4.2.3 Lexicalized Phrase-Structure Parsers as DependencyParsers 66

4.2.4 Training Time and Model Size . 68

4.3 Labeled Dependencies . 68

4.3.1 First-Order Results . 70

4.3.2 Two-Stage Results . 71

4.4 Summary of Chapter . 71

viii

5 Parsing 14 languages with One Model 72

5.1 Data Sets . 73

5.1.1 General Properties of the Data .73

5.1.2 Data Sources and Specifics . 74

5.2 Adding Morphological Features .. . 78

5.3 Results . 79

5.4 Summary of Chapter . 80

6 Analysis of Parsing Results 82

6.1 English . 82

6.1.1 Error Analysis . 82

6.1.2 Feature Space Analysis . 93

6.2 All Languages . 99

6.2.1 Quantitative Error Analysis .100

6.2.2 The Benefit of Morphological Features 101

6.2.3 Correlating Language and Data Properties with Accuracy 102

7 Improved Parsing with Auxiliary Classifiers 106

7.1 Improving a WSJ Parser by Combining Parsers 106

7.2 Adapting a WSJ Parser to New Domains 109

8 Approximate Dependency Parsing Algorithms 113

8.1 Second-order Non-projective Parsing 114

8.2 Non-tree dependency structures: Danish 115

8.3 Global Features . 117

8.3.1 Global Non-projectivity Features 118

8.3.2 Grandparent and Other Sibling Features 119

ix

8.3.3 Global Feature Summary . 120

8.4 Summary of Chapter . 121

9 Application to Sentence Compression 122

9.1 Previous Work . 124

9.2 Sentence Compression Model .126

9.2.1 Decoding . 127

9.2.2 Features . 129

9.2.3 Learning . 133

9.3 Experiments . 134

9.3.1 Some Examples . 135

9.3.2 Importance of Dependency Features 137

9.4 Summary of Chapter . 140

10 Discussion 142

10.1 Comparison to Recent Work .142

10.1.1 CoNLL 2006 . 144

10.2 Future Work . 144

11 Summary of Thesis 148

A English Head Percolation Rules 153

B Feature Example 155

B.1 Second-Order Features .157

C Detailed Experimental Results 159

C.1 Arabic . 159

C.2 Bulgarian . 162

x

C.3 Chinese . 164

C.4 Czech . 168

C.5 Danish . 172

C.6 Dutch . 175

C.7 English . 178

C.8 German . 182

C.9 Japanese . 186

C.10 Portuguese . 189

C.11 Slovene . 192

C.12 Spanish . 195

C.13 Swedish . 198

C.14 Turkish . 202

Bibliography 206

xi

List of Tables

2.1 Structured classification experimental results. 28

3.1 Features used by system,f(i, j), wherexi is the head andxj the modifier

in the dependency relation.xi-word: word of head in dependency edge.

xj-word: word of modifier.xi-pos: POS of head.xj-pos: POS of modifier.

xi-pos+1: POS to the right of head in sentence.xi-pos-1: POS to the left

of head.xj-pos+1: POS to the right of modifier.xj-pos-1: POS to the left

of modifier. b-pos: POS of a word in between head and modifier. 52

4.1 Unlabeled projective dependency parsing results.Accuracyis the percent-

age of words modififying the correct head.Completeis the percentage of

sentences for which the entire predicted dependency graph was correct. . . 63

4.2 Evaluation ofk-best MIRA approximation. These experiments were run

on a 2.4GHz 32-bit machine with 2G of memory.64

4.3 Unlabeled non-projective dependency parsing results.. 65

4.4 Results comparing our system to those based on the Collins and Char-

niak parsers.Complexityrepresents the computational complexity of each

parser andTimethe CPU time to parse sec. 23 of the Penn Treebank. 66

4.5 Improved WSJ parsing performance using auxiliary parsing features. 67

4.6 First-order labeling results for English. 70

xii

4.7 Two-stage labeling results for English. 71

5.1 Properties of the data for the 14 languages. This table has been taken and

modified from [13], with permission. .. 73

5.2 Dependency accuracy on 14 languages. Unlabeled (UA) andLabeled Ac-

curacy (LA). 80

6.1 English parsing errors relative to part-of-speech tagging errors. 83

6.2 English parsing errors by sentence length. 85

6.3 English parsing errors relative to permutations of sentence order in the

training set. 86

6.4 Head modification accuracy by modifier part-of-speech tag. UA is unla-

beled accuracy, labeling accuracy is the percentage of modifiers whose in-

coming edge has the correct label (though not necessarily the correct head),

and LA is labeled accuracy. 91

6.5 Labeled precision/recall of dependency edges by edge label. 92

6.6 English parsing accuracy results using various subsetsof features. 95

6.7 Error analysis of parser components averaged over Arabic, Bulgarian, Dan-

ish, Dutch, Japanese, Portuguese, Slovene, Spanish, Swedish and Turk-

ish. Normal: Reported result, Projective: Only allow projective edges,

No-Morph Features: Only features over words and POS tags, Atomic La-

beling: Do not use sequence labeling. Each cell contains theunlabeled and

labeled accuracy values (UA/LA). .100

7.1 Results comparing our system to those based on extensions of the Collins

and Charniak parsers to Czech. 108

xiii

8.1 Approximate second-order non-projective parsing results for Czech dis-

playing the importance of learning relative to the approximate parsing al-

gorithm. 114

8.2 Parsing results for Danish. .. . 116

8.3 Benefit of additional global non-projective features. 119

8.4 Benefit of additional global sibling and grandparent features. 120

9.1 Sentence compression results. 134

9.2 Example compressions for the evaluation data. 136

9.3 Compression system comparison with and without syntactic features. . . . 138

9.4 Compression system comparison with and without phrase-structure features. 140

xiv

List of Figures

1.1 Outline of generic syntactic parsing framework. 2

1.2 An example dependency graph. .. 6

1.3 A non-projective dependency graph. 6

1.4 An example of a labeled dependency graph. 8

2.1 Generic online learning algorithm. 22

2.2 An example incorrect dependency parse relative to that in Figure 1.2. The

loss of this parse is 2 sincewith andbat are incorrectly identified as modi-

fiers ofball. 24

2.3 Handwriting recognition (degree 2 kernel), named-entity recognition and

noun-phrase chunking. The plots show performance on testing vs. training

time in CPU minutes. 28

3.1 Cubic parsing algorithm of Eisner [45]. 34

3.2 Pseudo-code for bottom-up Eisner cubic parsing algorithm. 36

3.3 Chu-Liu-Edmonds algorithm for finding maximum spanningtrees in di-

rected graphs. 38

xv

3.4 An extension of the Eisner algorithm to second-order dependency parsing.

This figure shows howh1 creates a dependency toh3 with the second-order

knowledge that the last dependent ofh1 wash2. This is done through the

creation of asibling item in part (B). 44

3.5 Pseudo-code for bottom-up second-order Eisner parsingalgorithm. 45

3.6 Approximate second-order non-projective parsing algorithm. 47

4.1 Converting a phrase-structure tree to a labeled dependency tree. 69

4.2 Labels extracted from WSJ using [106]. 69

6.1 Feature selection tests comparing feature count cut-off to information gain.

The top dashed line represents the parser when all of the roughly 7,000,000

English features are included. .. 99

6.2 Plots of unlabeled dependency parsing accuracy versus properties of the

data for each language. (a) Average conditional entropy of head offset dis-

tribution. (b) Average sentence length. (c) Percentage of unique tokens

in normalized training set. (d) Percentage of unseen tokensin the test set

relative to normalized training set. (e) Normalized least-squares linear re-

gression of a, b, c, and d. 105

7.1 Adapting a WSJ parser to biomedical text.WSJ:performance of parser

trained only on WSJ.Biomed:performance of parser trained on only biomed-

ical data.Biomed+WSJ:parser trained on biomedical data with auxiliary

WSJ parsing features. Figure plots dependency accuracy vs.number of

biomedical training instances. .. 110

8.1 An example dependency tree from the Danish Dependency Treebank (from

Kromann [79]). 115

xvi

9.1 Two examples of compressed sentences from the Ziff-Davis corpus. The

compressed version and the original sentence are given. 123

9.2 An example dependency tree from the dependency parser and phrase struc-

ture tree from the Charniak parser [16]. In this example we want to add

features from the trees for the case whenRalphandafter become adjacent

in the compression, i.e., we are dropping the phraseon Tuesday. 130

xvii

Chapter 1

Introduction

Part of the material in this chapter has been drawn from [91, 95].

1.1 General Parsing Framework

Computational methods for the syntactic parsing of sentences have been at the forefront

of natural language processing research since its inception [74, 42, 70, 25, 16]. There are

many questions one must address when conducting research onsyntactic parsing. Amongst

them are,What formalism will be used? How will a parser be constructed? How will new

sentences be parsed to produce their syntactic representations?In Section 1.3 we describe

dependency graphs, which is the syntactic representation of sentences we willbe concerned

with throughout this work.

To answer the latter questions, Figure 1.1 graphically displays the framework we will

assume. First, a system must define alearning algorithmthat takes as input thetraining

data, which is a parsed set of sentences, and outputs aparsing model. This process of a

learning algorithm producing a parsing model from a training set is usually calledtraining

or learning. The parsing model (sometimes simply called themodel) contains the parameter

1

Figure 1.1: Outline of generic syntactic parsing framework.

settings as well as any feature specifications. The learningalgorithm is generic and will

produce different parsing models when different training data is given as input. In fact,

we will show empirically that the learning algorithms presented in this work are language

independent. That is, if given training data in English, thelearning algorithm will produce

an English parsing model. Similarly, if given training datain Spanish, it will produce a

Spanish parsing model. The class of learning algorithms used in this work are described in

Chapter 2.

The learned parsing model is part of theparser. The parser consists of both the model

and aninference algorithm(or parsing algorithm), which specifies how to use the model for

parsing. That is, when a new sentencex is given to the parser, the inference algorithm uses

the parameter specifications in the model to produce a syntactic representationy. In many

cases, the parsing model defines the inference algorithm. For example, if the model is a

Probabilistic Context Free Grammar, then the inference algorithm will most likely by CKY

[152] or Earley’s [42]. Both the parsing models and corresponding inference algorithms

are described in Chapter 3.

2

1.2 Discriminative Learning and Parsing

Most recent work on producing parsers from annotated data has focused on models and

learning algorithms for phrase-structure parsing. The best phrase-structure parsing models

represent generatively the joint probabilityP (x, y) of sentencex having the structurey

[16, 25]. These models are easy to train because all of their parameters are simple func-

tions of counts of parsing events in the training set. However, they achieve that simplicity

by making drastic statistical independence assumptions, and training does not optimize a

criterion directly related to parsing accuracy. Therefore, we might expect better accuracies

from discriminatively trained models that set their parameters typically by minimizing the

conditional log-loss or error rate of the model on the training data. Furthermore, discrimina-

tive models can easily handle millions of rich dependent features necessary to successfully

disambiguate many natural language phenomena – a feat that is computationally infeasi-

ble in generative models. The advantages of discriminativelearning have been exploited

before, most notably in information extraction where discriminative models represent the

standard for both entity extraction [142] and relation extraction [153]. The obvious ques-

tion the parsing community has asked is,can the benefits of discriminative learning be

applied to parsing?

Perhaps the earliest work on discriminative parsing is the local decision maximum en-

tropy model of Ratnaparkhi [111], which is trained to maximize the conditional likelihood

of each parsing decision within a shift-reduced parsing algorithm. This system performed

nearly as well as generative models of the same vintage even though it scores individual

parsing decisions in isolation and as a result it may suffer from the label bias problem [80].

A similar system was proposed by Henderson [63] that was trained using neural networks.

Only recently has any work been done on discriminatively trained parsing models that

score entire structuresy for a given sentencex rather than just individual parsing deci-

3

sions [24, 30, 113, 138]. The most likely reason for this is that discriminative training

requires repeatedly reparsing the training corpus with thecurrent model to determine the

parameter updates that will improve the training criterion. This general description ap-

plies equally for extensions to parsing of standard discriminative training techniques such

as maximum entropy [5], the perceptron algorithm [116], or support vector machines [10],

which we call herelinear parsing modelsbecause they all score a parsey for a sentencex

as a weighted sum of parse features,w · f(x, y). The reparsing cost is already quite high for

simple context-free models withO(n3) parsing complexity, but it becomes prohibitive for

lexicalized grammars [25] withO(n5) parsing complexity. The prohibitive cost of training

a global discriminative phrase-structure parser results in most systems employing aggres-

sive pruning and other heuristics to make training tractable. Consequently, these systems

have failed to convincingly outperform the standard generative parsers of Charniak [16]

and Collins [25].

Another line of discriminative parsing research is parse re-ranking, which attempts to

alleviate any computational problems by taking thek-best outputs from a generative parsing

model and training a post processing ranker to distinguish the correct parse from all others.

The advantage of re-ranking is that it reduces parsing to a smaller multi-class classification

problem that allows the classifier to condition on rich features spanning the entire structure

of each parse. This approach has been applied to both the Collins parser [28] and the

Charniak parser [17] and typically results in a10% relative reduction in error.

1.3 Dependency Parsing

In this work, we wish to explore central questions in discriminative parsing. To do this we

turn to dependency representations of natural language syntactic structure. A primary rea-

son for using dependency representations over more informative lexicalized phrase struc-

4

tures is that they are simpler and thus more efficient to learnand parse while still encoding

much of the predicate-argument information needed in applications. As a result, depen-

dency parsing has seen a surge of interest lately in applications such as relation extraction

[38], machine translation [40], synonym generation [122] and lexical resource augmen-

tation [130]. Thus, dependency parsing represents a syntactic formalism whose compu-

tational complexity will allow us to explore discriminative training to its fullest, while at

the same time providing a usable representation of languagefor many natural language

processing tasks.

Another advantage of dependency parsers is the existence ofnumerous large annotated

resources. The Prague Dependency Treebank [56, 57] contains tens of thousands of human

annotated dependency representations for Czech. The Nordic Treebank Network [100] is

a group of European researchers that have developed many tools for dependency parsing

including treebanks for Danish [79] and Swedish [44]. Thereare also Turkish [107] and

Arabic [58] dependency treebanks available. Recently, theorganizers of the shared-task

at CoNLL 2006 [13] standardized data sets for 13 languages: Arabic, Bulgarian, Chi-

nese, Czech, Danish, Dutch, German, Japanese, Portuguese,Slovene, Spanish, Swedish

and Turkish [58, 124, 123, 19, 9, 79, 148, 11, 73, 2, 41, 23, 102, 107, 4]. Furthermore,

most phrase-structure treebanks typically have common tools for converting them into de-

pendency treebanks including both the English and Chinese Penn treebanks [84, 150].

1.3.1 Formal Definition

Dependency graphs represent words and their relationship to syntactic modifiers using di-

rected edges. Figure 1.2 shows a dependency graph for the sentence,John hit the ball with

the bat. This example belongs to the special class of dependency graphs that only contain

projective (also known as nested or non-crossing) edges. Assuming a unique root as the

left most word in the sentence, a projective graph is one thatcan be written with all words

5

root

hit

John ball with

the bat

the

root John hit the ball with the bat

Figure 1.2: An example dependency graph.

in a predefined linear order and all edges drawn on the plane above the sentence, with no

edge crossing another. Figure 1.2 shows this construction for the example sentence. Equiv-

alently, we can say a dependency graph is projective if and only if an edge from wordw to

wordu implies that there exists a directed path in the graph fromw to every word between

w andu in the sentence.

Due to English’s rigid word order, projective graphs are sufficient to analyze most En-

glish sentences. In fact, the largest source of English dependencies is automatically gen-

erated from the Penn Treebank [84] and is by construction exclusively projective [151].

However, there are certain examples in which a non-projective graph is preferable. Con-

sider the sentence,John saw a dog yesterday which was a Yorkshire Terrier. Here the

relative clausewhich was a Yorkshire Terrierand the noun it modifies (thedog) are sep-

arated by a temporal modifier of the main verb. There is no way to draw the dependency

graph for this sentence in the plane with no crossing edges, as illustrated in Figure 1.3. In

languages with flexible word, such as Czech, Dutch and German, non-projective depen-

dencies are more frequent. Rich inflection systems reduce the demands on word order for

expressing grammatical relations, leading to non-projective dependencies that we need to

represent and parse efficiently.

Formally, a dependency structure for a given sentence is a directed graph originating out

of a unique and artificially insertedroot node, which we always insert as the left most word.

6

root John saw a dog yesterday which was a Yorkshire Terrier

Figure 1.3: A non-projective dependency graph.

In the most common case, every valid dependency graph has thefollowing properties,

1. It is weakly connected (in the directed sense).

2. Each word has exactly one incoming edge in the graph (except the root, which has
no incoming edge).

3. There are no cycles.

4. If there aren words in the sentence (includingroot), then the graph has exactlyn−1
edges.

It is easy to show that 1 and 2 imply 3, and that 2 implies 4. In particular, a dependency

graph that satisfies these constraints must be a tree. Thus wewill say that dependency

graphs satisfying these properties satisfy thetree constraint, and call such graphsdepen-

dency trees. For most of this work we will be addressing the problem of parsing dependency

graphs that are trees, which is a common constraint [103]. InSection 8.2, we address the

problem of more general dependency graphs.

Directed edges in a dependency graph represent words and their modifiers, e.g., a verb

and its subject, a noun and a modifying adjective, etc. The word constitutes theheadof the

edge and the argument themodifier. This relationship is often called thehead-modifieror

thegovernor-dependentrelationship. The head is also sometimes called the parent and the

modifier is also sometimes called the child or argument. We will always refer to words in

a dependency relationship as the head and modifier.

7

root

hit

John ball with

the bat

the

S

SBJ OBJ PP

NP

Figure 1.4: An example of a labeled dependency graph.

Dependency structures can be labeled to indicate grammatical, syntactic and even se-

mantic properties of the head-modifier relationships in thegraph. For instance, we can add

syntactic/grammatical function labels to the structure inFigure 1.2 to produce the graph in

Figure 1.4.

We should note that we are interested in producingsyntacticdependencies in this work

and not semantic ones. A distinction that will be made clearer in the next section.

1.3.2 A Brief History

Dependency grammars and dependency parsing have a long history in both the formal

linguistic and computational linguistic communities. A common starting point on modern

linguistic theories of dependency representations is thatof Tesnière [140] who, in 1959,

wrote:

The sentence is an organized whole, the constituent elements of which are words. Ev-

ery word that belongs to a sentence ceases by itself to be isolated as in the dictionary.

Between the word and its neighbors, the mind perceives connections, the totality of

which forms the structure of the sentence. The structural connections establish de-

pendency relations between the words. Each connection in principle unites a superior

term and an inferior term. The superior term receives the name [head]. The inferior

8

receives the name [modifier]. [Translation by Joakim Nivre [103]]

The definition given earlier for dependency graphs is clearly evident in this passage.

After the work of Tesnière there was a number of studies in the theoretic linguistics com-

munity on dependency representations and their relationships to other formalisms, most

notably by Hays [61] and Gaifman [53]. However, it would be another quarter of a century

before dependency representations of sentences became wide spread in the computational

linguistics community. Perhaps the two most well known works in this respect are Hud-

son’s Word Grammar [67] and Mel′čuk’s Meaning Text Theory [96]. Since then, a vari-

ety of computational syntactic dependency formalisms havebeen proposed. Most notable

amongst them is the work on constraint based dependency parsing [85], which treats the

parsing of dependency graphs as a constraint satisfaction problem. This framework has

been extended theoretically [85, 60] as well as applied in practical evaluations [51, 149],

providing some of the best empirical support for any grammar-based dependency formal-

ism. Another important framework is Functional GenerativeDescription [119], which pro-

vides the core theoretical foundation for the Prague Dependency Treebank [9] – the largest

dependency treebank currently in use. Finally, work on context-sensitive formalisms such

as those in the TAG family [70] or CCGs [131] can also be viewedas producing depen-

dency graphs of sentences through their derivation trees. However, these trees typically

represent semantic dependencies, not syntactic ones.

When constructing a dependency graph there are many issues one must address. Chief

amongst them is the definition of theheadandmodifier in a relation. Some classes of

relations are relatively easy to define. For instance, it seems clear that both subjects and

objects are modifying a verb (or sets of verbs). Similarly, adjectives and adverbials play

the obvious role of modifier. However, what about prepositions or relative clauses? Does

the preposition/complementizer govern the noun/verb? Vice-versa? In this case it is often

the word whose identity determines the syntactic category of the subgraph that is chosen

9

as the head (i.e., the preposition/complementizer). Thereis disagreement on this issue, in

particular in the empirical parsing community where data sparseness must be traded off

against informative features. Treating a preposition as the head would result in less sparse

parameter estimation. However, having the noun as the head would naturally provide more

information.

Most theories assume a distinction between various levels of dependency representa-

tion. Meaning Text Theory argues that there are essentiallythree layers of representation,

the morphological, syntactic and semantic. Similarly, theFunctional Generative Descrip-

tion framework assumes both syntactic and semantic layers.This distinction can be bene-

ficial when determining the head-modifier relationship. Forinstance, at the syntactic level,

the preposition would govern the noun since it is the preposition that determines the syntac-

tic category of the relationship with the verb. However, at the semantic level the opposite

is true since it is the noun that is filling the semantic template of the verb.

Another important question is whether one word may modify two words in a depen-

dency graph, which would break the tree constraint. For example, Hudson’s word grammar

allows for this when dealing with conjunctions or relative clause constructions. However,

the common argument against this representation is that such phenomena should be repre-

sented in the semantic dependency graph and not the syntactic.

Nivre [103] presents a more detailed discussion on the history and aspects of formal

dependency parsing, on which this section has been based.

1.3.3 Data-Driven Dependency Parsing

The formal properties of dependency-based representations depend entirely on the under-

lying grammar that produces them. For instance, many dependency grammars that enforce

projectivity are easily shown to be context-free [53, 127],whereas constraint dependency

grammars [60] and discontinuous grammars [78] have been shown to be formally more

10

powerful in terms of strong generative capacity since they can model non-projectivity.

In this work we focus on parsing models that discriminate between better and worse

parses for a given input sentence1. Thus, there is no notion of a parser accepting the lan-

guageanbn or anbnanbn. In fact, our parser uses a grammar that accepts the set of all

possible strings. The goal of parsing will be to search the set of all valid structures and

return the structure with highest score – it is given that thesentence under consideration

should be accepted. The Collins parser [25] is a well known model of this form. It searches

the entire space of phrase-structures for a given sentence without the use of an underlying

grammar. For dependency parsing, this translates to searching the space of projective or

non-projective trees and returning the most likely one. This form of parsing is often re-

ferred to asdata-driven parsing, since parsing decisions are made based on models trained

on annotated data alone without an underlying grammar. Notealso that this relieves us

of making any of the difficult decisions about the nature of the head-modifier relationship

discussed in the last section since we assume this information is contained implicitly in the

annotated data.

The data driven view of parsing is also application-oriented. We are concerned with

finding syntactic representations for sentences that will provide a relevant structure for fur-

ther processing in information extraction, machine translation or other common language

processing applications. However, even in the applicationview of parsing there are in-

stances when the ability to accept a sentence under some linguistically motivated grammar

is beneficial. Most notably, the language generation problem, which arises in translation

and summarization, requires a measurement of a sentence’s linguistic plausibility. It is pos-

sible to block certain analyses within our parsing framework by artificially assigning them

a score of−∞. However, we can only restrict parsing decisions within thelocal context

that the parser considers while searching. This is also trueof CFG-based phrase-structure

1In fact the parsing models discussed in this work really provide a mechanism for ranking parses.

11

parsers.

1.4 Comparison to Other Work

Our discriminative learning algorithms for dependency parsing are closely related to those

of Collins and Roark [30] and Taskar et al. [138] for phrase-structure parsing. Collins

and Roark [30] presented a broad coverage linear parsing model trained with the averaged

perceptron algorithm. However, in order to use parse features with sufficient history, the

parsing algorithm must prune away heuristically most possible parses. Taskar et al. [138]

formulate the parsing problem in the large-margin structured classification setting [137],

but are limited to parsing sentences of 15 words or less due tocomputation time. Though

these approaches represent good first steps towards discriminatively-trained parsers, they

have not yet been able to display the benefits of discriminative training that have been seen

in information extraction and shallow parsing.

The following work on dependency parsing is most relevant tothis work. Eisner [45]

gave a generative model with a cubic parsing algorithm basedon a graph factorization

that very much inspired the core parsing algorithms for thiswork. Yamada and Mat-

sumoto [151] trained support vector machines (SVM) to make parsing decisions in a shift-

reduce dependency parser for English. As in Ratnaparkhi’s parser [111], the classifiers

are trained on individual decisions rather than on the overall quality of the parse. Nivre

and Scholz [105] developed a memory-based learning model combined with a linear-time

parser to approximately search the space of possible parses. A significant amount of work

has been done by the researchers at Charles University led byJan Hajič and Eva Hajičová.

In addition to developing the Prague Dependency Treebank [56], there has also been ex-

tensive research on parsing Czech at that institution [29, 112, 154].

One interesting class of dependency parsers are those that provide labels on edges.

12

Two well known parsers in this class are the link-grammar system of Sleator and Tem-

perly [127] and the system of Lin [82]. Nivre and Scholz [105]provide two systems, one

a pure dependency parser and the other a labeled model that labels edges with syntactic

categories. Wang and Harper [149] provide a rich dependencymodel with complex edge

labels containing an abundant amount of lexical and syntactic information drawn from a

treebank. Though we focus primarily on unlabeled dependency graphs, we also describe

simple extensions to our models that allow for the inclusionof labels.

Previous attempts at broad coverage dependency parsing have primarily dealt with

projective constructions. In particular, the supervised approaches of Yamada and Mat-

sumoto [151] and Nivre and Scholz [105] have provided the previous best results for pro-

jective dependency parsing. Another source of dependency parsers are lexicalized phrase-

structure parsers with the ability to output dependency information [16, 25, 151]. These

systems are based on finding phrase structure through nestedchart parsing algorithms and

cannot model non-projective edges tractably. However, Yamada and Matsumoto [151]

showed that these models are still very powerful since they consider much more infor-

mation when making decisions then pure dependency parsers.

For non-projective dependency parsing, tractable inference algorithms have been given

by Tapanainen and Järvinen [134] and Kahane et al. [71]. Nivre and Nilsson [104] pre-

sented a broad-coverage parsing model that allows for the introduction of non-projective

edges into dependency trees through learned edge transformations within their memory-

based parser. They test this system on Czech and show an improvement over a pure projec-

tive parser. Another broad coverage non-projective parseris that of Wang and Harper [149]

for English, which presents very good results using a constraint dependency grammar

framework that is rich in lexical and syntactic information. One aspect of previous attempts

at non-projective parsing is that inference algorithms aretypically approximate. A com-

monly cited result is the proof by Neuhaus and Bröker [101] that non-projective parsing

13

is NP-hard. However, this result assumes the existence of a particular grammar generating

the language. In this study we are working within the data driven framework and we will

show that this theoretical result does not apply.

The present work is closely related to that of Hirakawa [65] who, like us, relates the

problem of dependency parsing to finding spanning trees for Japanese text. However,

that parsing algorithm uses branch and bound techniques dueto non-local parsing con-

straints and is still in the worst case exponential (though in small scale experiments seems

tractable). Furthermore, no justification was provided forthe empirical adequacy of equat-

ing spanning trees with dependency trees.

The closely related research of Ribarov [112] was developedindependently of this

work2. In that work, Ribarov also equates the problem of dependency parsing to finding

maximum spanning trees in directed graphs. Furthermore, the learning model employed

is the perceptron algorithm [116], which is a learning algorithm related to the framework

presented in Chapter 2. However, his empirical evaluation on the Prague Dependency Tree-

bank [56] results in an accuracy well below the state-of-the-art. This is most likely due to a

very impoverished feature representation that focuses primarily on aspects of the complex

Czech morphology and does not consider lexical or contextual information. We also ex-

tend the dependency parsing as maximum spanning tree framework to consider trees with

larger (and possibly intractable) feature contexts as wellas apply the resulting parser to

new domains and in real world applications.

1.5 Thesis

In this thesis we develop a discriminative learning method for dependency parsing using

online large-margin training combined with spanning tree inference algorithms. We will

2Fortunately we were able to make a joint presentation on our work to HLT-EMNLP 2005 [95].

14

show that this method provides state-of-the-art accuracy,is extensible through the feature

set and can be implemented efficiently. Furthermore, we display the language independent

nature of the method by evaluating it on over a dozen diverse languages as well as show its

practical applicability through integration into a sentence compression system.

We start by presenting an online large-margin learning framework that is a generaliza-

tion of the work of Crammer and Singer [34, 37] to structured outputs, such as sequences

and parse trees. This is a large-margin perceptron-like learning technique which reduces

the learning task to one of inference. We argue that this technique is intuitive, flexible, effi-

cient and performs competitively with other discriminative learning algorithms. We display

this empirically on a number of standard NLP data sets.

This will lead to the heart of this thesis – discriminative dependency parsing. Here we

will formulate dependency parsing in a spanning tree framework, yielding efficient parsing

algorithms for both projective and non-projective tree structures. We will then extend the

parsing algorithm to incorporate features over larger substructures without an increase in

computational complexity for the projective case. Unfortunately, the non-projective prob-

lem then becomes NP-hard so we provide an approximate algorithm which is motivated

from the knowledge that, in practice, non-projective treescan typically be converted to a

projective tree using only a small number of edge transformations. Having defined a set of

parsing algorithms, we will also define a rich feature set andtrain various parsers using the

online large-margin learning framework. We then compare our trained dependency parsers

to other state-of-the-art parsers on English, Czech and Chinese data sets to show that our

discriminative model provides efficient parsing coupled with high accuracy. Furthermore,

we show how to extend the models to include syntactic edge labels and present additional

detailed results for English. One advantage of our parsing models is that they rely on little

to no language specific optimizations. To show the language independence of our parsing

models we further evaluate its parsing accuracy on 14 diverse languages: Arabic, Bul-

15

garian, Chinese, Czech, Danish, Dutch, English, German, Japanese, Portuguese, Slovene,

Spanish, Swedish and Turkish.

Having built an efficient and accurate discriminative dependency parser, this thesis will

then turn to improving and applying the parser. First we willshow how additional re-

sources can provide useful features to increase parsing accuracy and to adapt parsers to

new domains. In particular, we will display that features defined on the output of in and

out of domain parsers can improve accuracy considerably. Wewill also argue that the

robustness of discriminative inference-based learning algorithms lend themselves well to

dependency parsing when feature representations or structural constraints do not allow for

tractable parsing algorithms. Finally, we integrate our parsing models into a state-of-the-art

sentence compression system to show its applicability to a real world problem.

It is important to note that this thesis will not argue for dependency representations of

language from a linguistic perspective. We focus on dependency representations primarily

for empirical and didactic reasons: dependency structureshave been shown to be useful

for many language processing tasks and their computationalproperties allow us to explore

discriminative parsing to its fullest.

1.6 Summary of Document

This document is organized as follows:

• Chapter 2 outlines the learning method used throughout thiswork. In particular, we

discuss an online large-margin learning algorithm and compare it favorably to other

discriminative learning frameworks.

• Chapter 3 formulates dependency parsing as the maximum spanning tree problem.

We show how an edge based score factorization leads to tractable parsing algorithms

16

for both the projective and non-projective case. Extendingthe factorization over

pairs of edges leads to tractable algorithms for projectivestructures. However, non-

projective parsing becomes NP-hard. We discuss a rich feature set under these fac-

torizations that include both edge and edge-context information. Furthermore, we

show how to extend the parsing models to produce dependency edge labels. This can

be done either through a joint model or through a second-stage labeler.

• Chapter 4 presents extensive results for projective and non-projective parsing for

benchmark English, Czech and Chinese data sets. We compare the models favorably

to previous methods. In addition, we present results comparing joint and two-stage

labeling.

• Chapter 5 presents parsing results on 14 diverse languages using a single parsing

model. This section illustrates the language independenceof the parser.

• In Chapter 6 we give a thorough analysis of the parsing errorsand feature space of

the dependency parser for English. We show that parser errors are similar to other

parsing systems, e.g., preposition and conjunction attachment. An important aspect

of this section is that we tease apart the contribution of each feature type used in the

representation. We argue that edge-context features are important to simulate higher

order features over larger structures of the parse space andare thus key to achieving

high parsing accuracy. We also briefly discuss sources of error for other languages.

• In Chapter 7 we display the flexible nature of discriminativeparsing models by easily

incorporating features over auxiliary classifiers to improve the accuracy of both in

domain and out of domain parsers. Then, in Chapter 8, we arguethat the online large-

margin learning algorithms of Chapter 2 are robust to approximate parsing algorithms

by showing this empirically for higher-order non-projective parsing as well as non-

tree dependency graph parsing.

17

• To show the applicability of the dependency parser in a real world problem, we in-

corporate it into a sentence compression system in Chapter 9. The resulting sentence

compressor yields highly accurate compressions.

• Finally, we summarize the major contributions of this work and discuss related, on-

going and future work in Chapter 10 and Chapter 11.

18

Chapter 2

Online Large-Margin Learning

Parts of this chapter are drawn from material in [35].

In this chapter we present the learning algorithms that we will use for the rest of this

work. One crucial property of these learning algorithms is that they are inference based,

that is, to create trained models they only require the ability to find the highest scoring

output given an input. This will be exploited throughout this work.

2.1 Structured Classification

Structured classification is a subfield of machine learning that develops theory and algo-

rithms for learning how to label inputs with non-atomic outputs such as sequences and trees.

After the introduction of conditional random fields (CRFs) [80], several researchers devel-

oped margin-based learning alternatives, in particular maximum margin Markov networks

(M3Ns) [137] and the related methods of Tsochantaridis et al. [143]. These algorithms

have proven successful in several real world applications including sequential classifica-

tion [86, 93, 120, 137], image labeling [62], natural language parsing [138, 143] and Web

19

page classification [137]. All of these methods are in theorybatch learning algorithms, in

which the training objective is optimized with respect to all training instances simultane-

ously. In practice, however, the large-margin methods are often adapted to optimize with

respect to a small number of instances at a time in order to handle large training sets.

This work focuses on purely online learning techniques. Unlike batch algorithms, on-

line algorithms consider only one training instance at a time when optimizing parameters.

This restriction to single-instance optimization might beseen as a weakness, since the

algorithm uses less information about the objective function and constraints than batch al-

gorithms. However, we will argue that this potential weakness is balanced by the simplicity

of online learning, which allows for more streamlined training methods. We focus here on

variants of the perceptron algorithm [116], which inherit its conceptual and mathematical

simplicity and scale up to large problems much better than batch algorithms.

Online learning with perceptron-style algorithms has recently gained popularity due to

the work of Collins [26], who uses an approximation to the voted perceptron algorithm [52],

called here the averaged perceptron algorithm, for sequential classification problems. This

method has since been successfully adapted to parsing [30],language modeling [115] and

very recently word alignment [97]. Perceptron-based approaches have gained a wide accep-

tance since they reduce learning to inference, which is needed anyway, and they routinely

provide state-of-the-art performance.

One problem with the perceptron algorithm is that it does notoptimize any notion of

classification margin, which is widely accepted to reduce generalization error [10]. As a

result, ad-hoc approximations such as parameter averagingare required. Here, we propose

a large-margin online algorithm that generalizes the multi-class classification algorithm

MIRA (Margin Infused Relaxed Algorithm [34, 37, 33]) to structured outputs, which in

essence is a large-margin perceptron variant. The generalization is achieved by usingk-

best structural decoding to approximate the large-margin updates of MIRA. We will argue

20

that MIRA for structured outputs has many desirable properties – including simplicity,

accuracy and scalability – all of which make it a suitable learning method for complex

structured outputs like dependency trees.

2.2 Online Learning

First, we define a linear score function for input/output pairs,

s(x, y) = w · f(x, y)

wheref(x, y) is a high dimensional feature representation of inputx and outputy andw

is a corresponding weight vector. The goal will be to learnw so that correct outputs are

given a high score and incorrect outputs a low score. As usualfor supervised learning, we

assume a training setT = {(xt, yt)}
T
t=1, consisting of pairs of an inputxt and its correct

outputyt. Though these algorithms work for a variety of outputs, we focus on the case

when the output space is the set of dependency parses for a given input sentencex.

In this work we focus on online-learning algorithms that areinstances of the algorithm

schema in Figure 2.1. A single training instance is examinedat each iteration, and the

weight vector is updated by an algorithm-specific rule. The auxiliary vectorv accumu-

lates the successive values of ofw, so that the final weight vector is theaverageof the

weight vectors after each iteration. This averaging effecthas been shown to help reduce

overfitting [26].

In what follows, parses(x) denotes the set of possible dependency parses for sentence

x, and bestk(x; w) ⊆ parses(x) denotes the set ofk highest scoring parses relative to the

weight vectorw.

21

Training data:T = {(xt,yt)}
T
t=1

1. w(0) = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. w(i+1) = updatew(i) according to instance(xt,yt)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T)

Figure 2.1: Generic online learning algorithm.

2.2.1 Margin Infused Relaxed Algorithm (MIRA)

Crammer and Singer [36] present a natural approach to large-margin multi-class classifica-

tion, which was later extended by Taskar et al. [137] to structured classification:

min ‖w‖

s.t. s(x, y)− s(x, y′) ≥ L(y, y′)

∀(x, y) ∈ T , y′ ∈ parses(x)

whereL(y, y′) is a real-valued loss for the parsey′ relative to the correct parsey. Infor-

mally, this minimizes the norm of the weight vector subject to margin constraintsthat keep

the score of the correct parse above the score of each incorrect one by an amount given by

the loss of the incorrect parse.

The Margin Infused Relaxed Algorithm (MIRA) [34, 37, 33] employs this optimization

directly within the online framework. On each update, MIRA attempts to keep the new

weight vector as close as possible to the old weight vector, subject to correctly parsing the

instance under consideration with a margin given by the lossof the incorrect parses. This

can be formalized by substituting the following update intoline 4 of the generic online

22

algorithm from Figure 2.1,

w(i+1) = arg minw*
∥

∥w* − w(i)
∥

∥

such thats(xt, yt)− s(xt, y
′) ≥ L(yt, y

′), with respect tow*

∀y′ ∈ parses(xt)

(2.1)

This update attempts to minimize the change made to the weight vector subject to the set

of margin constraints for the instance under consideration. This quadratic programming

problem (QP) can be solved using Hildreth’s algorithm [15].Crammer and Singer [37]

and Crammer et al. [34, 33] provide an analysis of both the online generalization error and

convergence properties of MIRA.

For the dependency parsing problem, we defined the loss of a graph to be the number

of words with incorrect incoming edges relative to the correct parse. This is closely related

to the Hamming loss that is often used for sequences [137]. For instance, consider the

correct graph in Figure 1.2 versus the incorrect one in Figure 2.2. The loss of the incorrect

graph relative to the correct one is 2 sincewith and bat are both incorrectly labeled as

modifiers ofball. Note that this definition assumes dependency graphs are always trees.

This is just one possible definition of the loss. Other possibilities are the 0-1 loss [136]

or another more linguistically motivated loss that penalizes some errors (say conjunction

and preposition dependencies) over others. We use Hamming loss primarily since standard

evaluation of dependency parsers (see Chapter 4) is based onthe percentage of words that

modify the correct head in the graph. Thus, the Hamming loss directly relates our training

optimization to our final evaluation metric. It has been argued that learning model weights

relative to some loss function is advantageous. For many applications, there are certain

parts of the output structure that are relevant and others that are not. One merely needs to

change the loss function to focus on reducing specific errorsin the trees. To the best of our

knowledge, only Finley and Joachims [48] have made novel useof the loss function for

23

root

hit

John ball

the with bat

the

Figure 2.2: An example incorrect dependency parse relativeto that in Figure 1.2. The loss
of this parse is 2 sincewith andbat are incorrectly identified as modifiers ofball.

structured classification. In that work it was shown that setting the loss function to the final

evaluation metric helped significantly for co-reference resolution.

To use these algorithms for structured classification, we follow the common method of

equating structure prediction to multi-class classification, where each structure is a possible

class for a sentence. As a result we inherit all the theoretical properties of multi-class

classification algorithms. The primary problem with this view is that for arbitrary inputs

there are typically exponentially many possible classes and thus exponentially many margin

constraints. This is the case for sequential classificationas well as dependency parsing.

k-best MIRA

One solution for the exponential blow-up in number of classes is to relax the optimization

by using only the margin constraints for thek parsesy with the highest scoress(x, y). The

resulting online update (to be inserted in Figure 2.1, line 4) would then be:

w(i+1) = arg minw*
∥

∥w* − w(i)
∥

∥

such thats(xt, yt)− s(xt, y
′) ≥ L(yt, y

′), with respect tow*

∀y′ ∈ bestk(xt; w(i))

In Section 2.3 we show that this relaxation works well and even small values ofk yield near

optimal performance. This is also true for dependency parsing, as is shown in Section 4.2.1.

24

We call this algorithmk-best MIRA. Throughout the rest of this document all experimental

results for MIRA will be with1-best MIRA unless stated otherwise.

This formulation of large-margin learning for structured outputs is highly related to that

of Tsochantaridis et al. [143]. In that work a learning algorithm repeatedly runs inference

over training examples to create a growing set of constraints. Parameter optimization is

then run over all collected constraints. Since this optimization incorporates constraints

from all the instances in training, it is primarily a batch learning algorithm. However, since

the method used to collect the constraints is essentially online, one can consider it a hybrid.

Factored MIRA

Another option would be to factor the constraints relative to the structure of the output to

produce an equivalent polynomial sized set of constraints.Taskar et al. [137, 138] showed

that this can be done for both sequences and phrase-structure trees, providing that the loss

function can also factor relative to the structure of the output. The advantage of this ap-

proach is that it provides an exact solution to the QP given by(2.1). Even though the

resulting set of constraints is still polynomial, it is typically linear or squared in the length

of the input and can lead to large QP problems. For these reason we restrict ourselves to

k-best MIRA solutions.

Non-separability and Kernelization

Many large-margin learning algorithms have benefited from introducing slack variables

that trade-off good margin properties versus a separating hyperplane [137] as a way to

guarantee convergence when the data is not separable as wellas reduce overfitting when

outliers exist. In the original formulation of MIRA for multi-class classification [37] slack

variables are included. We implemented a version of MIRA with slack variables but found

it had negligible impact on performance, so we leave it out ofdiscussion for simplicity.

25

Another advantage of linear classifier models such as the perceptron and SVMs is that

they can be kernelized, that is, they can be reformulated so that all learning and inference is

calculated by a similarity metric (a kernel) between input points [98]. This can often make

large (even infinite) feature space calculations tractable. MIRA can easily be kernelized.

However, we focus on the feature space representation of inputs that is more common in the

NLP community. Defining interesting kernels compatible with the algorithms we provide

here is an area of research beyond the scope of this work.

2.3 Empirical Comparison for Sequence Classification

Unfortunately there are no readily available implementations of CRFs or M3Ns for parsing

and to implement them is a non-trivial engineering task. In order to compare MIRA to other

learning frameworks we will look at sequential classification tasks that represent non-trivial

language processing problems and for which implementations are available.

Our first set of experiments are on the handwriting recognition task used by Taskar

et al. [137] to evaluate M3Ns, which is a subset of an earlier evaluation collection [72].

We use exactly the same data set, training and test splits, instance representation, and first

and second degree kernel data representations. For this experiment we compared averaged

perceptron,k-best MIRA (k = 20), CRFs and M3Ns. Looking at Table 9.1(a), we can

see that both MIRA and M3Ns outperform the averaged perceptron, most likely due to the

fact that they aggressively maximize margin. Furthermore,we can see the performance of

MIRA is comparable to that of M3Ns for the degree 2 kernel1. In the impoverished degree

1 kernel, both CRFs and M3Ns appear to be the best option. Interestingly, CRFs perform

as well as M3Ns for the degree 1 kernel, but do much worse than all methods for the degree

2 kernel. The reason for this is the use of feature normalization [137], which improves

1We simulate the degree 1 and 2 kernel in the primal feature space.

26

the performance of all methods dramatically except for CRFs, whose performance seems

independent of normalization. Feature normalization artificially increases the value of the

edge bias feature (i.e., the state transition feature) to prevent it from being overwhelmed by

the overall magnitude of the vertex features in the model, inparticular for the second-degree

kernel.

Our next experiments involved two larger sequential classification problems: noun-

phrase chunking and named-entity recognition. For these problems, we used a feature-

based primal formulation, which is commonly used in naturallanguage processing and eas-

ier to implement. For noun-phrase chunking we implemented afirst-order Markov model

using the features of Sha and Pereira [120] on the CoNLL 2000 data set [141]. For named-

entity recognition we used standard word and sub-word features on the CoNLL-2003 data

set [142], including word, part-of-speech, suffix and prefixidentity as well as orthographic

features (e.g. word is capitalized), with all features overa window of two words previous

to two words next.

These data sets contain thousands of sentences (roughly 9000 for chunking and 14,000

for named-entity recognition). For both tasks we compared three methods: averaged per-

ceptron,k-best MIRA (k = 5) and CRFs. We did not have access to an implementation

of M3Ns for chunking or entity recognition. Training takes under5 hours for all the other

algorithms. The results are shown in Table 9.1(b-c). We can see that MIRA slightly outper-

forms the averaged perceptron and begins to bridge the performance gap with batch learn-

ers such as CRFs. According to McNemar significance tests, the difference between MIRA

and averaged perceptron is only significant for named-entity recognition (p < 0.0001) and

the difference between MIRA and CRFs is not significant.

For the larger data sets (chunking and entity extraction) weobserved that maximum

performance is achieved with5 ≤ k ≤ 10, with sometimes diminishing returns when

k > 20, providing evidence that the approximation is reasonable.All results for MIRA

27

(a)Handwriting (degree 1/degree 2)
Accuracy

Avg. Perc. 0.781 / 0.859
MIRA 0.785 / 0.870

CRF 0.802 / 0.818
M3Ns 0.803 / 0.869

(b) NP chunking
F-Meas

Avg. Perc. 0.941
MIRA 0.942
CRFs 0.943

(c) NE recognition
F-Meas

Avg. Perc. 0.823
MIRA 0.830
CRFs 0.831

Table 2.1: Structured classification experimental results.

0 50 100 150
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Avg. Perceptron
MIRA
CRF

0 50 100 150 200 250
0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Avg. Perceptron
MIRA
CRF

0 20 40 60 80 100 120 140 160 180
0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

Avg. Perceptron
MIRA
CRF

Figure 2.3: Handwriting recognition (degree 2 kernel), named-entity recognition and noun-
phrase chunking. The plots show performance on testing vs. training time in CPU minutes.

also include parameter averaging. Though important for both models, averaging had a

much smaller effect on accuracy for MIRA.

2.3.1 Performance versus Training Time

Due to the complexity of the output space, learning with structured outputs is inherently

more computationally demanding than simple classifier learning. In fact, many studies on

batch learning for structured outputs use small or reduced data sets to fit within available

computing budgets [137, 138, 143]. In contrast, the online learning methods studied here

require onlyk-best inference on a single instance in addition to solving asmall quadratic

program. Figure 6.1 plots the test accuracy for each method against CPU training time

for all three tasks studied in this paper. We only compare averaged perceptron, MIRA and

CRFs, since we did not have an implementation of M3Ns. Results for these plots were

gathered on a dual processor 1.3GHz 32-bit Pentium with 2GB of memory.

28

These plots show that learning withk-best MIRA and perceptron is typically much

less costly than learning with CRFs. A training epoch has roughly the same computa-

tional cost, due to inference, for the three methods (Viterbi for perceptron and MIRA,

forward-backward for CRFs). However, MIRA and perceptron quickly converge after a

few iterations, whereas CRFs require many iterations before attaining high test accuracy.

2.4 Why MIRA for Dependency Parsing?

When it comes to discriminative training, there are many options. In this section we sum-

marize why we believe MIRA is good discriminative learning framework for dependency

parsing.

• Accuracy: MIRA performs just as well or better than the leading batch learning

algorithms, CRFs and M3Ns while routinely outperforms the averaged perceptron

algorithm. Of course, this only applies to sequence classification problems for which

we can compare these methods.

• Efficiency: With the exception of the perceptron algorithm, MIRA is the fastest

global discriminative learner, mainly because it only takes a few iterations to achieve

optimal performance.

• Simplicity: MIRA relies only on inference and Hildreth’s algorithm to solve the

quadratic programming problem. Together, this typically represents only a few hun-

dred lines of code and both are relatively straightforward to implement – unlike

forward-backward or the inside-outside algorithms (required for CRFs), computing

marginal distributions (required for M3Ns) or complicated convex optimization code

(required for CRFs).

29

In addition to these three main points we should also note that MIRA, like the percep-

tron and M3Ns, do not require the calculation of a normalization function in order to return

a proper probability distribution. It has been shown that for some problems inference is

tractable, but computing the normalization is not [136]. Hence, methods like MIRA have

an additional advantage over CRFs since they do not need to compute a normalization fac-

tor. Furthermore, MIRA is very flexible with respect to the loss function. Any loss function

on the output is compatible with MIRA since it does not require the loss to factor according

to the output, unlike M3Ns.

In summary, we have argued that the online large-margin learning algorithm of MIRA

is a learning framework suitable for structured outputs like dependency graphs.

30

Chapter 3

Dependency Parsing

Parts of this chapter are drawn from material in [91, 95, 94, 92].

This chapter describes both the parsing models (Section 3.1, Section 3.2 and Sec-

tion 3.3) and inference algorithms (Section 3.1 and Section3.3) that constitute the core

of our dependency parser.

3.1 Dependency Structures as Maximum Spanning Trees

In this section we translate the problem of dependency parsing into that of finding max-

imum spanning trees for directed graphs. This formulation provides a unified theoretical

framework for discussing the algorithmic properties of inference in projective and non-

projective parsing.

3.1.1 First-Order Spanning Tree Parsing

In what follows,x = x1 · · ·xn represents a generic input sentence, andy represents a

generic dependency tree for sentencex. Seeingy as the set of tree edges, we write(i, j) ∈

31

y if there is a dependency iny from wordxi to wordxj .

We follow a common method of factoring the score of a dependency tree as the sum of

the scores of all edges in the tree. In particular, we define the score of an edge to be the dot

product between a high dimensional feature representationof the edge and a weight vector,

s(i, j) = w · f(i, j)

Thus the score of a dependency treey for sentencex is,

s(x, y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)

Assuming an appropriate feature representation as well as aweight vectorw, dependency

parsing is the task of finding the dependency treey with highest score for a given sentence

x. This is true for learning as well since we focus on an inference based online learning

framework (Chapter 2). We should note that the feature representationf(i, j) can also

include arbitrary features on the sentencex since it always fixed as input. To indicate this

fact, a more appropriate representation of the feature function would bef(x, i, j). However,

for notational simplicity we will just definef(i, j) = f(x, i, j).

Consider a directed graphG = (V, E) in which each edge(i, j) (wherevi, vj ∈ V) has

a scores(i, j). SinceG is directed,s(·, ·) is not symmetric. The maximum spanning tree

(MST) of G is the treey that maximizes the value
∑

(i,j)∈y
s(i, j), such that(i, j) ∈ E

and every vertex inV is used in the construction ofy. The maximumprojectivespanning

tree ofG is constructed similarly except that it can only contain projective edges relative

to some linear ordering on the vertices ofG. The MST problem for directed graphs is also

known as ther-arborescence or maximum branching problem [135].

32

For each sentencex we can define a directed graphGx = (Vx, Ex) where

Vx = {x0 = root, x1, . . . , xn}

Ex = {(i, j) : xi 6= xj , xi ∈ Vx, xj ∈ Vx − root}

That is,Gx is a graph where all the words and the dummy root symbol are vertices and there

is a directed edge between every pair of words and from the root symbol to every word. It

is clear that dependency trees forx and spanning trees forGx coincide. By definition, a

spanning tree ofG is a sub-graphG′ with nodesV ′ = V and edgesE ′ ⊆ E, such thatG′ is

weakly connected and all the nodes inV ′ have an in-degree of exactly1 except the unique

root node with in-degree0. This definition is equivalent to being a dependency graph

satisfying the tree constraint (Section 1.3.1). Hence, finding the (projective) dependency

tree of highest score is equivalent to finding the maximum (projective) spanning tree in

Gx rooted at the artificial root. Thus by factoring the score of the tree into the sum of

edge scores we have made dependency parsing equivalent withfinding maximum spanning

trees.

Throughout this work we will refer to this particular spanning tree formulation as the

first-order spanning tree problem (orfirst-order dependency parsing problem). This is

because the score factors as a sum of individual edge scores.Of course, we can factor the

score of the tree any way we wish, though not all factorizations lead to efficient parsing

algorithms. In Section 3.1.2 we will indeed modify how we factor the score of the tree to

incorporate features over pairs of edges.

In what follows, we make the assumption that calculatings(i, j) is O(1). In fact, this

is slightly misleading sincew andf typically have a dimension in the millions. As usual,

sparse vector representations are used to reduce the calculation to linear in the number of

features that are active for a given edge. We can view this calculation as some form of

grammar constant, which is a common notion for most parsing formalisms. We will argue

33

h1 h1 h2 h2

⇒

s h1 h1 r r+1 h2 h2 t

h1

h1 h2 h2

⇒

s h1 h1 h2 h2 t

h1

h1

s h1 h1 t

Figure 3.1: Cubic parsing algorithm of Eisner [45].

in Section 3.2 that this constant is typically very small (roughly 100), especially when

compared to grammar constants in phrase-based models, which can be on the order of tens

of thousands when extracted from a large treebank.

Projective Parsing Algorithms

Using a slightly modified version of the CKY [152] chart parsing algorithm, it is possible

to generate and represent all projective dependency trees in a forest that isO(n5) in size

and takesO(n5) time to create, which is equivalent to context-free phrase-structure parsing.

However, Eisner [45] made the observation that if one keeps the head of each chart item to

either the left or right periphery of that item, then it is possible to parse inO(n3). The idea is

to parse the left and right dependents of a word independently, and combine them at a later

stage. This removes the need for the additional head indicesof theO(n5) algorithm and

requires only two additional binary variables that specifythe direction of the item (either

gathering left dependents or gathering right dependents) and whether an item is complete

(available to gather more dependents). Figure 3.1 illustrates the algorithm. We user, s and

t for the start and end indices of chart items, andh1 andh2 for the indices of the heads

of chart items. In the first step, all items are complete, which is represented by each right

angle triangle. The algorithm then creates an incomplete item from the wordsh1 to h2 with

h1 as the head ofh2. This item is eventually completed at a later stage. As with normal

CKY parsing, larger items are created from pairs of smaller items in a bottom-up fashion.

It is relatively easy to augment this algorithm so that each chart item also stores the

34

score of the best possible subtree that gave rise to the item.This augmentation is identical

to those used for the standard CKY algorithms. We must also store back pointers so that it

is possible to reconstruct the best tree from the chart item that spans the entire sentence.

We will now describe the Eisner parsing algorithm in more detail. Let C[s][t][d][c] be

a dynamic programming table that stores the score of the bestsubtree from positions to

positiont, s ≤ t, with directiond and complete valuec. The variabled ∈ {←,→} indicates

the direction of the subtree (gathering left or right dependents). Ifd =← thent must be

the head of the subtree and ifd =→ thens is the head. The variablec ∈ {0, 1} indicates

if a subtree is complete (c = 1, no more dependents) or incomplete (c = 0, needs to be

completed). For instance,C[s][t][←][1] would be the score of the best subtree represented

by the item,

s t

andC[s][t][→][0] for the following item,

s t

The Eisner algorithm fills in the dynamic programming table bottom-up just like the CKY

parsing algorithm [152] by finding optimal subtrees for substrings of increasing increasing

length. Pseudo code for filling up the dynamic programming table is in Figure 3.2.

Consider the line in Figure 3.2 indicated by (*). This says that to find the best score for

35

Initialization: C[s][s][d][c] = 0.0 ∀s, d, c

for k : 1..n

for s : 1..n

t = s + k

if t > n then break

% First: create incomplete items
C[s][t][←][0] = maxs≤r<t (C[s][r][→][1] + C[r + 1][t][←][1] + s(t, s)) (*)
C[s][t][→][0] = maxs≤r<t (C[s][r][→][1] + C[r + 1][t][←][1] + s(s, t))

% Second: create complete items
C[s][t][←][1] = maxs≤r<t (C[s][r][←][1] + C[r][t][←][0])

C[s][t][→][1] = maxs<r≤t (C[s][r][→][0] + C[r][t][→][1])

end for
end for

Figure 3.2: Pseudo-code for bottom-up Eisner cubic parsingalgorithm.

an incomplete left subtree

s t

we need to find the indexs ≤ r < t that leads to the best possible score through joining

two complete subtrees,

s r r+1 t

The score of joining these two complete subtrees is the scoreof these subtrees plus the

score of creating an edge from wordxt to wordxs. This is guaranteed to be the score of the

best subtree provided the table correctly stores the scoresof all smaller subtrees. This is

because by enumerating over all values ofr, we are considering all possible combinations.

36

By forcing a unique root at the left-hand side of the sentence, the score of the best tree

for the entire sentence isC[1][n][→][1]. This can be shown easily by structural induction

using the inductive hypothesis that the chart stores the best score over all strings of smaller

length. A quick look at the pseudo-code shows that the run-time of the Eisner algorithm is

O(n3).

For the maximum projective spanning tree problem, it is easyto show that the Eisner

dependency parsing algorithm is an exact solution if we are given a linear ordering of the

vertices in the graph. Indeed, every projective dependencytree of sentencex is also a

projective spanning tree of the graphGx and vice-versa. Thus, if we can find the maximum

projective dependency tree using the Eisner algorithm, then we can also find the maximum

spanning tree. For natural language dependency tree parsing, the linear ordering on the

graph vertices is explicitly given by the order of the words in the sentence.

In addition to running inO(n3), the Eisner algorithm has the additional benefit that it is

a bottom-up dynamic programming chart parsing algorithm allowing for k-best extensions

that increase complexity by a multiplicative factor ofO(k log k) [66].

Non-projective Parsing Algorithms

To find the highest scoring non-projective tree we simply search the entire space of span-

ning trees with no restrictions. Well known algorithms exist for the less general case of

finding spanning trees in undirected graphs [31], as well ask-best extensions to them

[47]. Efficient algorithms for the directed case are less well known, but they exist. We

will use here the Chu-Liu-Edmonds algorithm [21, 43], sketched in Figure 3.3 following

Georgiadis [54]. Informally, the algorithm has each vertexin the graph greedily select the

incoming edge with highest weight. If a tree results, it mustbe the maximum spanning

tree. If not, there must be a cycle. The procedure identifies acycle and contracts it into

a single vertex and recalculates edge weights going into andout of the cycle. It can be

37

Chu-Liu-Edmonds(G, s)
GraphG = (V, E)
Edge weight functions : E → R

1. LetM = {(x∗, x) : x ∈ V, x∗ = arg maxx′ s(x′, x)}
2. LetGM = (V, M)
3. If GM has no cycles, then it is an MST: returnGM

4. Otherwise, find a cycleC in GM

5. Let< GC , c, ma >= contract(G, C, s)
6. Lety = Chu-Liu-Edmonds(GC , s)
7. Find vertexx ∈ C

such that(x′, c) ∈ y andma(x′, c) = x

8. Find edge(x′′, x) ∈ C

9. Find all edges(c, x′′′) ∈ y

10. y = y ∪ {(ma(c, x′′′), x′′′)}∀(c,x′′′)∈y

∪ C ∪ {(x′, x)} − {(x′′, x)}
11. Remove all vertices and edges iny containingc

12. returny

contract(G = (V, E), C, s)
1. LetGC be the subgraph ofG excluding nodes inC
2. Add a nodec to GC representing cycleC
3. Forx ∈ V − C : ∃x′∈C(x′, x) ∈ E

Add edge(c, x) to GC with
ma(c, x) = arg maxx′∈C s(x′, x)
x′ = ma(c, x)
s(c, x) = s(x′, x)

4. Forx ∈ V − C : ∃x′∈C(x, x′) ∈ E

Add edge(x, c) to GC with
ma(x, c) = arg maxx′∈C [s(x, x′) − s(a(x′), x′)]
x′ = ma(x, c)
s(x, c) = [s(x, x′) − s(a(x′), x′) + s(C)]

wherea(v) is the predecessor ofv in C

ands(C) =
P

v∈C s(a(v), v)
5. return< GC , c,ma >

Figure 3.3: Chu-Liu-Edmonds algorithm for finding maximum spanning trees in directed
graphs.

shown that a maximum spanning tree on the resulting contracted graph is equivalent to a

maximum spanning tree in the original graph [54]. Hence the algorithm can recursively

call itself on the new graph. Naively, this algorithm runs inO(n3) time since each recur-

sive call takesO(n2) to find the highest incoming edge for each word and to contractthe

graph. There are at mostO(n) recursive calls since we cannot contract the graph more then

n times. However, Tarjan [135] gives an efficient implementation of the algorithm with

O(n2) time complexity for dense graphs, which is what we need here.These algorithms

can be extended to thek-best case [14] with a run-time ofO(kn2).

To find the highest scoring non-projective tree for a sentence, x, we simply construct

the graphGx and run it through the Chu-Liu-Edmonds algorithm. The resulting spanning

tree is the best non-projective dependency tree. We illustrate this on the simple example

x = John saw Mary, with directed graph representationGx,

root

saw

John Mary

10

9

9

30

3020

3

0

11

38

The first step of the algorithm is to find, for each word, the highest scoring incoming edge

root

saw

John Mary30

3020

If the result of greedily choosing the highest scoring incoming edge to every node re-

sults in a tree, it would have to be a maximum spanning tree. Tosee this, consider a treeT

constructed by greedily choosing the highest scoring incoming edge for every word. Now

consider a treeT ′ such thatT 6= T ′ andT ′ is the maximum spanning tree. Find edges

(i, j) ∈ T and(i′, j) ∈ T ′ such thati 6= i′. We know by the definition ofT that the score

of (i, j) is at least as large than the score of(i′, j). So we can simple make the change

T ′ = T ′ ∪ {(i, j)} − {(i′, j)} andT ′ will be a graph of a least equal weight. If we repeat

this process, we will eventually converge to the treeT and we are always guaranteed that

the resulting graph will have a score at least as large as thatof T ′. Thus, eitherT ′ could not

have been the maximum spanning tree, or bothT andT ′ are trees of equal weight. Either

way,T is a maximum spanning tree.

In the current example there is a cycle, so we will contract itinto a single node and

recalculate edge weights according to Figure 3.3.

root

saw

John Mary

40 9

30

31

wjs

The new vertexwjs represents the contraction of verticesJohnandsaw. The edge fromwjs

39

to Mary is 30 since that is the highest scoring edge from any vertex inwjs. The edge from

root into wjs is set to 40 since this represents the score of the best spanning tree originating

from root and including the vertices in the cycle represented bywjs. The same leads to

the edge fromMary to wjs. The fundamental property of the Chu-Liu-Edmonds algorithm

is that an MST in this graph can be transformed into an MST in the original graph [54].

The proof of this fact follows from the lemma that, after the greedy step, all the edges

of any cycle must exist in some MST, except a single edge. Thatsingle edge is one that

must be removed to break this cycle and satisfy the tree constraint. Knowing this lemma,

we can observe that in the contracted graph, the weight of edges going into the contracted

node represent, exactly, the best score of that edge entering the cycle and breaking it. For

example, the edge fromroot into wjs is 40 representing that edge entering the nodesaw

and breaking the cycle by removing the single edge fromJohnto saw.

We recursively call the algorithm on this graph. Note that weneed to keep track of

the real endpoints of the edges into and out ofwjs for reconstruction later. Running the

algorithm, we must find the best incoming edge to all words,

root

saw

John Mary

40

30
wjs

This is a tree and thus the MST of this graph. We now need to go upa level and reconstruct

the graph. The edge fromwjs to Mary originally was from the wordsaw, so we include

that edge. Furthermore, the edge fromroot to wjs represented a tree fromroot to sawto

40

John, so we include all those edges to get the final (and correct) MST,

root

saw

John Mary

10

3030

A possible concern with searching the entire space of spanning trees is that we have not

used language-specific syntactic constraints to guide the search. Many languages that al-

low non-projectivity are still primarily projective. By searching all possible non-projective

trees, we run the risk of finding extremely bad trees. Again, we have assumed a data driven

approach to parsing and appeal to the properties of the training data to eliminate such cases.

We address this concern in Chapter 4.

3.1.2 Second-Order Spanning Tree Parsing

Restricting scores to a single edge in a dependency tree is a very impoverished view of

dependency parsing. Yamada and Matsumoto [151] showed thatkeeping a small amount of

parsing history was crucial to improving performance for their locally trained shift-reduce

SVM parser. It is reasonable to assume that other parsing models will benefit from features

over previous decisions.

Here we will focus on methods for parsingsecond-orderspanning trees. These models

factor the score of the tree into the sum of adjacent edge pairs. To quantify this, consider the

example from Figure 1.2, with words indexed: root(0) John(1) hit(2) the(3) ball(4) with(5)

the(6) bat(7). Using a first-order spanning tree formulation, the score of this tree would be,

s(0, 2) + s(2, 1) + s(2, 4) + s(2, 5)

+ s(4, 3) + s(5, 7) + s(7, 6)

However, in our second-order spanning tree model, the scoreof this tree would be,

41

s(0,−, 2) + s(2,−, 1) + s(2,−, 4) + s(2, 4, 5)

+ s(4,−, 3) + s(5,−, 7) + s(7,−, 6)

Here we have changed the score function tos(i, k, j), which is the score of creating a

pair of adjacent edges, from wordxi to wordsxk andxj . For instance,s(2, 4, 5) is the score

of creating a the edges fromhit to with and fromhit to ball. The score functions are relative

to the left or right of the head and we never score adjacent edges that are on different sides

of the head (e.g.s(2, 1, 4) for the adjacent edges fromhit to Johnandball). This left/right

independence assumption is common and will allow us to definepolynomial second-order

projective parsing algorithms. We lets(i,−, j) be the score whenxj is the first left/right

dependent of wordxi. For example,s(2,−, 4) indicates the score of creating a dependency

from hit to ball, whereball is the first modifier to the right ofhit. More formally, if the

wordxi0 has the modifiers as shown,

xi0

xi1 . . . xij xij+1
. . . xim

the score factors as follows:

∑j−1
k=1 s(i0, ik+1, ik) + s(i0,−, ij)

+ s(i0,−, ij+1) +
∑m−1

k=j+1 s(i0, ik, ik+1)

A second-order MST is mathematically a richer factorization, since the score function

can just ignore the middle modifier, orsibling, argument and it would be reduced to the

standard first-order model. In fact our second order score doincorporate first-order infor-

mation,s(i, k, j) = s(i, k, j) + s(i, j). Here the first term includes features over the pairs

of adjacent edges and the second over features of a single edge. It is also important to note

thats(i, k, j) 6= s(i, j, k). In fact, the order of the two adjacent modifiers is determined by

there relative location in the sentence to the head. The closer modifier is always the first

42

argument. Furthermore, for features over pairs of edges therelative order of the modifiers

is always incorporated.

The score of a tree for second-order parsing is now,

s(x, y) =
∑

(i,k,j)∈y

s(i, k, j)

Which is the sum of adjacent edge scores iny.

Essentially the second-order model allows us to condition on the most recent parsing

decision, i.e. the last dependent picked up by a particular word. This is analogous to the

Markov conditioning of the Charniak parser [16] for phrase-structure parsing.

When moving to this second-order factorization we have introduced the notion of edge

adjacency in a tree. This notion is only meaningful when there is a fixed order on the

vertexes in the graph, as is the case with dependency parsing. It is with respect to this

restricted formulation that we consider maximum spanning tree parsing in this section.

A Projective Parsing Algorithm

In this section we describe aO(n3) second-order parsing algorithm that works by break-

ing up dependency creation in the first-order algorithm intotwo steps - sibling creation

followed by head attachment. This cubic extension to the second-order case was in the

original work of Eisner [45]. Graphically the intuition behind the algorithm is given in

Figure 3.4. The key insight is to delay completion of items until all the dependents of the

head have been gathered. This allows for the collection of pairs of sibling dependents in a

single stage while maintaining a cubic time parsing algorithm. We will define a new item

type called asibling type (in addition to the usualcompleteandincompletetypes).

The algorithm works by defining an almost identical bottom-up dynamic programming

table as the original Eisner algorithm. The only differenceis the addition the newsibling

43

h1

h2 h2 h3

⇒

h1 h2 h2 r r+1 h3

(A)

h1

h2 h2 h3

⇒

h1 h2 h2 h3

(B)

h1

h3

h1 h3

(C)

Figure 3.4: An extension of the Eisner algorithm to second-order dependency parsing. This
figure shows howh1 creates a dependency toh3 with the second-order knowledge that the
last dependent ofh1 wash2. This is done through the creation of asibling item in part (B).

type. Pseudo-code for the algorithm is given in Figure 3.5. As before, we letC[s][t][d][c]

be a dynamic programming table that stores the score of the best subtree from positions

to positiont, s ≤ t, with directiond and complete valuec. In the second-order case we let

c ∈ {0, 1, 2} to indicate if a subtree is complete (c = 1, no more dependents), incomplete

(c = 0, needs to be completed), or represents sibling subtrees (c = 2). Sibling types have

no inherent direction, so we will always assume that whenc = 2 thend = null (-). As in the

first-order case, the proof of correctness is done through structural induction. Furthermore,

back-pointers can be included to reconstruct the highest scoring parse and thek-best parses

can be found inO(k log(k)n3).

An Approximate Non-projective Parsing Algorithm

Unfortunately second-order non-projective MST parsing isNP-hard. We prove this fact

with a reduction from 3-dimensional matching.

3DM: Disjoint sets,X, Y, Z each withm distinct elements, and a setT ⊆ X × Y × Z.

Question: is there a subsetS ⊆ T such that|S| = m and eachv ∈ X ∪ Y ∪ Z occurs in

exactly one element ofS.

Reduction: Given an instance of 3DM we define a graph in which the vertices are the

elements ofX ∪ Y ∪ Z as well as an artificialroot node. We insert edges fromroot to all

x ∈ X as well as edges from allx ∈ X to all y ∈ Y andz ∈ Z. We order the words s.t.

44

Initialization: C[s][s][d][c] = 0.0 ∀s, d, c

for k : 1..n

for s : 1..n

t = s + k

if t > n then break

% Create Sibling Items
C[s][t][-][2] = maxs≤r<t {C[s][r][→][1] + C[r + 1][t][←][1]}

% First Case: head picks up first modifier
C[s][t][←][0] = C[s][t− 1][→][1] + C[t− 1][t][←][1] + s(t, -, s)
C[s][t][→][0] = C[s][s][→][1] + C[s + 1][t][←][1] + s(s, -, t)

% Second Case: head picks up a pair of modifiers (through a sibling item)
C[s][t][←][0] = max {C[s][t][←][0], maxs≤r<t {C[s][r][-][2] + C[r][t][←][0] + s(t, r, s)}}

C[s][t][→][0] = max {C[s][t][→][0], maxs<r≤t {C[s][r][→][0] + C[r][t][-][2] + s(s, r, t)}}

% Create complete items
C[s][t][←][1] = maxs≤r<t {C[s][r][→][0] + C[r + 1][t][←][0] + s(t, s)}

C[s][t][→][1] = maxs≤r<t {C[s][r][→][0] + C[r + 1][t][←][0] + s(s, t)}

end for
end for

Figure 3.5: Pseudo-code for bottom-up second-order Eisnerparsing algorithm.

45

the root is on the left followed by all elements ofX, thenY , and finallyZ. The order of

elements within each set is unimportant. We then define the second-order score function as

follows,

s(root, x, x′) = 0, ∀x, x′ ∈ X

s(x,−, y) = 0, ∀x ∈ X, y ∈ Y

s(x, y, z) = 1, ∀(x, y, z) ∈ T

All other scores are defined to be−∞, including for edges pairs that were not defined in

the original graph.

Theorem: There is a 3D matching iff the second-order MST has a score ofm.

Proof: First we observe that no tree can have a score greater thanm since that would

require more thanm pairs of edges of the form(x, y, z). This can only happen when some

x has multipley ∈ Y modifiers or multiplez ∈ Z modifiers. But if this were true then

we would introduce a−∞ scored edge pair (e.g.s(x, y, y′)). Now, if the highest scoring

second-order MST has a score ofm, that means that everyx must have found a unique

pair of modifiersy andzk which represents the 3D matching, since there would bem such

triples. Furthermore,y andz could not match with any otherx′ since they can only have one

incoming edge in the tree. On the other hand, if there is a 3DM,then there must be a tree

of weightm consisting of second-order edges(x, y, z) for each element of the matchingS.

Since no tree can have a weight greater thenm, this must be the highest scoring second-

order MST. Thus if we can find the highest scoring second-order MST in polynomial time,

then 3DM would also be solvable. Note that this proof works for both dependency parsing

with the left/right modifier independent assumption and without.�

Thus, the Chu-Liu-Edmonds algorithm most likely cannot be extended polynomially

to handle second-order feature representations. This is animportant result, since it shows

that even for data driven parsing, non-projective exact search becomes intractable for any

46

2-order-non-proj-approx(x, s)
Sentencex = x0 . . . xn, x0 = root
Weight functions : (i, k, j) → R

1. Lety = 2-order-proj (x, s)
2. while true
3. m = −∞, c = −1, p = −1
4. for j : 1 · · · n
5. for i : 0 · · · n
6. y′ = y[i→ j]
7. if ¬tree(y′) or ∃k : (i, k, j) ∈ y continue
8. δ = s(x,y′)− s(x,y)
9. if δ > m

10. m = δ, c = j, p = i
11. end for
12. end for
13. if m > 0
14. y = y[p→ c]
15. elsereturn y

16. end while

Figure 3.6: Approximate second-order non-projective parsing algorithm.

factorization other than first-order1. To combat this, we will create an approximate algo-

rithm based on theO(n3) second-order projective parsing algorithm just provided.The

approximation will work by first finding the highest scoring projective parse. It will then

rearrange edges in the tree, one at a time, as long as such rearrangements increase the over-

all score and do not violate the tree constraint. We can clearly motivate this approximation

by observing that even in non-projective languages like Czech and Dutch, most trees are

primarily projective with just a few non-projective edges [104]. Thus, by starting with the

highest scoring projective tree, we are typically only a small number of transformations

away from the highest scoring non-projective tree. Pseudo-code for the algorithm is given

in Figure 3.6.

The expressiony[i → j] denotes the dependency graph identical toy except thatxj ’s

head isxi instead of what it was iny. The testtree(y) is true iff the dependency graphy

1Even though the above reduction was for pairwise adjacent edge factorization, it is easy to extend the
reduction for arbitrary constraints over more than one edge.

47

satisfies the tree constraint.

In more detail, line 1 of the algorithm setsy to the highest scoring second-order projec-

tive tree. The loop of lines 2-16 exits only when no further score improvement is possible.

Each iteration seeks the single highest-scoring change in dependency withiny that does not

break the tree constraint. To that effect, the nested loops starting in lines 4 and 5 enumerate

all (i, j) pairs. Line 6 setsy′ to the dependency graph obtained fromy by changingxj ’s

head toxi. Line 7 checks that the move fromy to y′ is valid and thatxj ’s head was not

alreadyxi and thaty′ is a tree. Line 8 computes the score change fromy to y′. If this

change is larger then the previous best change, we record howthis new tree was created

(lines 9-10). After considering all possible valid edge changes to the tree, the algorithm

checks to see that the best new tree does have a higher score. If that is the case, we change

the tree permanently and re-enter the loop. Otherwise we exit since there are no single edge

changes that can improve the score.

This algorithm allows for the introduction of non-projective edges because we do not

restrict any of the edge changes except to maintain the tree property. In fact, if any edge

change is ever made, the resulting tree is guaranteed to be non-projective, otherwise there

would have been a higher scoring projective tree that would have already been found by

the exact projective parsing algorithm.

It is clear that this approximation will always terminate – there are only a finite number

of dependency trees for any given sentence and each iteration of the loop requires an in-

crease in score to continue. However, the loop could potentially take exponential time, so

we will bound the number of edge transformations to a fixed valueM . It is easy to argue

that this will not hurt performance. Even in freer-word order languages such as Czech,

almost all non-projective dependency trees are primarily projective, modulo a few non-

projective edges. Thus, if our inference algorithm starts with the highest scoring projective

parse, the best non-projective parse only differs by a smallnumber of edge transformations.

48

Furthermore, it is easy to show that each iteration of the loop takesO(n2) time, resulting

in a O(n3 + Mn2) runtime algorithm. In practice, the approximation terminates after a

small number of transformations and we do not bound the number of iterations in our ex-

periments. In fact, the run-time of this algorithm is dominated by the call to2-order-proj

(see Chapter 4).

We should note that this is one of many possible approximations we could have made.

Another reasonable approach would be to first find the highestscoringfirst-order non-

projective parse, and then re-arrange edges based on secondorder scores in a similar man-

ner to the algorithm we described. We implemented this method and found that the results

were slightly worse.

It is also easy to find examples in which this approximation will fail to find the highest

scoring non-projective parse. Consider a sentencex = a b c d, i.e. root = a. We set the

following edge weights,

s(a, b, c) = 10
s(b,−, d) = 10
s(d, c, b) = 11

Let every other second-order edge have a weight of0. Now, note that any pair of the

three second-order edges with score greater than0 either cross or result in a cycle, hence

the highest scoring projective tree can contain at most one of these. This also means that

the highest scoring projective tree can have a score of at most 11. It turns out that there is

exactly one projective tree with a score of11,

a b c d

Now, if we enter the edge transformation step of the algorithm, we can look for changes

of heads inb, c or d that lead to a higher scoring tree, sincea is the root. Of course, there

are only two non-zero second-order edges not in this tree,(a, b, c) and(b,−, d). The former

49

edge cannot be constructed in a single edge transformation since it results in a change of

head for bothb andc and the latter will result in a cycle. Thus, there is no singleedge

change that will lead to a strictly higher scoring tree, so the algorithm stops. However,

consider the tree,

a b c d

This tree has a score of20, which is obviously a higher scoring tree than the one re-

turned by the algorithm. This example relies on the propertythat very similar second-order

edges will have a wide range in scores and that very differentedges (e.g. reversal of the

head and modifier) will have very similar scores. Both of these properties are unlikely in

practice.

We should note the similarity of this approximate dependency parsing algorithm with

that of Foth et al. [51]. In that work they describe an algorithm for constraint based de-

pendency parsing [85, 60] in which a suboptimal solution is initially found and subsequent

local constraint optimizations attempt to push the algorithm near the global optimum. As

is the case with our algorithm it is possible for this method to get stuck in a local max-

ima. Their main motivation to designing this algorithm was to overcome difficulties in a

standard constraint based dependency grammar when parsingspoken dialogue.

3.1.3 Summary: Dependency Parsing as MST

In this section we defined dependency parsing as the search for maximum spanning trees

in directed graphs constructed from sentences. This formulation naturally led to first and

second-order parsing algorithms for projective structures that were originally defined by

Eisner [45]. More surprisingly, a polynomial first-order parsing algorithm was provided

for non-projective trees that was based on the Chu-Liu-Edmonds MST algorithm. Unfor-

tunately, it has been shown that second-order non-projective MST parsing is NP-hard and

50

thus we were forced to define an approximate algorithm. However, in Chapter 4 we will

see that this approximation still leads to state-of-the-art results.

The major contribution of this formulation is that it provides a uniform framework for

defining and parsing both projective and non-projective languages using efficient cubic

parsing techniques. Furthermore, it unifies previous work on parsing dependencies into a

single framework, including the work of Eisner [45], Foth etal. [51], Hirakawa [65] and

Ribarov [112].

3.2 Defining the Feature Space

In the last section, we defined the score of an edge ass(i, j) = w · f(i, j). This assumes that

we have a high-dimensional feature representation for eachedge(i, j). The basic set of

features we use are shown in Table 3.1a and b. All features areconjoined with the direction

of attachment as well as the distance between the two words creating the dependency.

These features provide back-off from very specific featuresover words and part-of-speech

(POS) tags to less sparse features over just POS tags. These features are added for both the

entire words as well as the5-gram prefix if the word is longer than5 characters.

Using just features over head-modifier pairs in the tree is not enough for high accuracy

since all attachment decisions are made outside of the context in which the words occurred.

To solve this problem, we added two more types of features, which can be seen in Ta-

ble 3.1c. The first new feature class recognizes word types that occur between the head and

modifier words in an attachment decision. These features take the form of POS trigrams:

the POS of the head, that of the modifier, and that of a word in between, for all distinct

POS tags for the words between the head and the modifier. Thesefeatures were particu-

larly helpful for nouns to select their heads correctly, since they help reduce the score for

attaching a noun to another noun with a verb in between, whichis a relatively infrequent

51

a)

Basic Uni-gram Features
xi-word,xi-pos
xi-word
xi-pos
xj -word,xj -pos
xj -word
xj -pos

b)

Basic Bi-gram Features
xi-word,xi-pos,xj -word,xj -pos
xi-pos,xj -word,xj -pos
xi-word,xj -word,xj -pos
xi-word,xi-pos,xj -pos
xi-word,xi-pos,xj -word
xi-word,xj -word
xi-pos,xj -pos

c)

In Between POS Features
xi-pos, b-pos,xj -pos
Surrounding Word POS Features
xi-pos,xi-pos+1,xj -pos-1,xj -pos
xi-pos-1,xi-pos,xj -pos-1,xj -pos
xi-pos,xi-pos+1,xj -pos,xj -pos+1
xi-pos-1,xi-pos,xj -pos,xj -pos+1

d)

Second-order Features
xi-pos,xk-pos,xj -pos
xk-pos,xj -pos
xk-word,xj -word
xk-word,xj -pos
xk-pos,xj -word

Table 3.1: Features used by system,f(i, j), wherexi is the head andxj the modifier in
the dependency relation.xi-word: word of head in dependency edge.xj-word: word of
modifier. xi-pos: POS of head.xj-pos: POS of modifier.xi-pos+1: POS to the right of
head in sentence.xi-pos-1: POS to the left of head.xj-pos+1: POS to the right of modifier.
xj-pos-1: POS to the left of modifier. b-pos: POS of a word in between head and modifier.

configuration. The second class of additional features represents the local context of the

attachment, that is, the words before and after the head-modifier pair. These features take

the form of POS4-grams: The POS of the head, modifier, word before/after headand word

before/after modifier. We also include back-off features totrigrams where one of the local

context POS tags was removed.

These new features can be efficiently added since they are given as part of the input

and do not rely on knowledge of dependency decisions outsidethe current edge under

consideration. Adding these features resulted in a large improvement in performance and

brought the system to state-of-the-art accuracy. For illustrative purposes Appendix B shows

the feature representation for our example sentence over the edge (hit,with) for the example

sentence in Figure 1.2.

As mentioned earlier, all of the runtime analysis relied on the fact that the calculation

of s(i, j) wasO(1), when in fact it is really linear in the number of features that are active

for each edge. Table 3.1 shows that for each edge there are only a handful of bigram and

unigram features as well as context POS features. More troubling are the POS features for

all the words in-between the two words in the edge - this in fact makes the calculation of

s(i, j) at leastO(n) making the projective parsing algorithmsO(n4) and the non-projective

parsing algorithmO(n3). However, a feature can be active at most once for each distinct

POS, e.g., if there are two proper nouns (NNP) betweenxi andxj , the feature is active only

52

once.

We define a tablepos(i, j) that is the set of POS tags for all the words in-betweenxi

andxj . This table can be calculated statically before parsing inO(n2) using a dynamic

programming algorithm that fills in the table for successively larger sub-strings. It is easy

to see thatpos(i, j) is equal topos(i, j − 1) plus the POS ofxj−1, if it is not already in

pos(i, j − 1), which can be calculated inO(1) using a hash map. We have now only added

(not multiplied) a factor ofO(n2) to the runtime. Using this table we can now calculate

s(i, j) without enumerating all words in-between.

The result is that our grammar constant is now, in the worst case, on the order of the

number of distinct POS tags, which is typically around 40 or 50, plus the handful of uni-

gram, bigram and context features. When compared to the grammar constant for phrase-

structure parsers this is still very favorable.

3.2.1 Second-Order Features

Since we are also building a second-order parsing model, we must definef(i, k, j). We let

the first set of features be all those in the definition off(i, j). This is possible by simply

ignoring the middle index and creating features only on the original head-modifier indexes.

In addition to these features, we add the features in Table 3.1d.

These new features have two versions. The first is exactly as described in the table. The

second conjoins them with the distance between the two siblings as well as the direction of

attachment (from the left or right). These features were tuned on a development set. We

tried additional features, such as the POS of words in-between the two siblings, but the set

defined here seemed to provide optimal performance.

Again, Appendix B provides a concrete example of this feature representation.

53

3.2.2 Language Generality

The feature set we propose is generalizable to any language that can be tokenized and

assigned POS tags similar to English. In fact, our feature templates were created by trial

and error on our English development set, but are used for allof the languages for which

we study in this work. The only difference between the parsers is that they are trained on

language specific data sets. In Chapter 5 we discuss the addition of morphological features,

which can be shown to be useful for highly inflected languages.

3.3 Adding Labels

Though most large scale evaluations of dependency parsers have dealt with unlabeled de-

pendency accuracies, it is clear that labeled dependency structures like those in Figure 1.4

are more desirable for further processing since they identify not only the modifiers of a

word, but also their specific syntactic or grammatical function. As a result, many standard

dependency parsers already come with the ability to label edges [82, 105, 127]. In this sec-

tion we extend the algorithms previously presented to include syntactic labels. We assume

throughout this section that there is a known sett ∈ T of labels and that our training data

is annotated with this information.

One simple approach would be to extract the highest scoring unlabeled trees and then

run a classifier over its edges to assign labels. Dan Klein recently showed that labeling is

relatively easy and that the difficulty of parsing lies in creating bracketings [75], providing

evidence that a two-stage approach may prove good enough. However, for the sake of

completeness, we will provide details and experiments on learning dependencies trees with

labels in a single stage as well as a two-stage system.

54

3.3.1 First-Order Labeling

For first-order parsing we will change our edge score function to include label information,

s(i, j, t) = w · f(i, j, t)

In other words, we now define the score of the edge as the dot product between a weight

vector and a high dimensional feature representation of theedgeand that edges label.

Hence the score of a dependency tree will now be,

s(x, y) =
∑

(i,j,t)∈y

w · f(i, j, t)

Both the Eisner projective and the Chu-Liu-Edmonds non-projective parsing algorithm can

be modified so that only anO(|T |n2) factor is added (not multiplied) to the run-time.

Consider a labelt for an edge(i, j) such that,

t = arg max
t′

w · f(i, j, t′)

It is easy to show that, if the highest scoring treey under some weight vectorw contains

the edge(i, j), then the label of this edge must bet. Consider somey = arg maxy s(x, y)

and an arbitrary edge(i, j, t) ∈ y. Assume thatt 6= arg maxt′ w · f(i, j, t′). We can simply

replace the label of this edge with the label that maximizes the edge score to produce a

higher scoring tree. Thus, by contradiction, it must be the case thatt = arg maxt′ w ·

f(i, j, t′).

Using this fact, we can define a tablebt(i, j) such that each entry stores the best label

55

for that particular edge, i.e.,

bt(i, j) = arg max
t′

w · f(i, j, t′)

This table takesO(|T |n2) to calculate and can be calculated statically before parsing. Dur-

ing parsing we defines(i, j) = s(i, j, bt(i, j)) and we can run the algorithm as before with-

out increasing complexity. Thus the new complexity for the projective parsing algorithm is

O(n3 + |T |n2) andO(|T |n2) for the non-projective algorithm.

3.3.2 Second-Order Labeling

We redefine the second-order edge score to be,

s(i, k, j, t) = w · f(i, k, j, t)

This is the score of creating an edge from wordxi to xj with edge labelt such that the last

modifier ofxj wasxk. It is easy to show that we can use the same trick here and statically

calculate,

bt(i, k, j) = arg max
t′

w · f(i, k, j, t′)

and sets(i, k, j) = s(i, k, j, bt(i, k, j)) to allow us to apply our old parsing algorithms2.

The result is aO(|T |n3) complexity for the second-order projective extension since it will

takeO(|T |n3) to computebt(i, k, j).

We could have defined our second-order edge score as,

s(i, k, j, t′, t) = w · f(i, k, j, t′, t)

2Additional care is required in the non-projective second-order approximation since a change of one edge
could result in a label change for multiple edges.

56

wheret′ is the label for the edge(i, k). This would allow us to model common sibling edge

labels, e.g., possibly preventing a verb from taking adjacent subjects. However, inference

under this definition becomesO(|T |2n3), which can be prohibitive if the number of labels

is large.

3.3.3 Two-Stage Labeling

As mentioned earlier, a simple solution would be to create a second stage that takes the

output parsey for sentencex and classifies each edge(i, j) ∈ y with a particular label

t. Though one would like to make all parsing and labeling decisions jointly to include

the shared knowledge of both decisions when resolving any ambiguities, joint models are

fundamentally limited by the scope of local factorizationsthat make inference tractable.

In our case this means we are forced only to consider featuresover single edges or pairs

of edges in the tree. Furthermore, the complexity of inference increases by a factor of the

number of possible labels, which can be very detrimental if the label set is large. However,

in a two-stage system we can incorporate features over the entire output of the unlabeled

parser since that structure is fixed as input. The simplest two-stage method would be to

take as input an edge(i, j) ∈ y for sentencex and find the label with highest score,

t = arg max
t

s(t, (i, j), y, x)

Doing this for each edge in the tree would produce the final output. Such a model could

easily be trained using the provided training data for each language. However, it might be

advantageous to know the labels of other nearby edges. For instance, if we consider a head

xi with dependentsxj1, . . . , xjM
, it is often the case that many of these dependencies will

have correlated labels. To model this we treat the labeling of the edges(i, j1), . . . , (i, jM)

57

as a sequence labeling problem,

(t(i,j1), . . . , t(i,jM)) = t = arg max
t

s(t̄, i, y, x)

We use a first-order Markov factorization of the score

t = arg max
t

M
∑

m=2

s(t(i,jm), t(i,jm−1), i, y, x)

in which each factor is the score of assigning labels to the adjacent edges(i, jm) and

(i, jm−1) in the treey. We attempted higher-order Markov factorizations but theydid not

improve performance uniformly across languages and training became significantly slower.

For score functions, we use the standard dot products between high dimensional feature

representations and a weight vector. Assuming we have an appropriate feature represen-

tation, we can find the highest scoring label sequence with Viterbi’s algorithm. We use

the MIRA online learner to set the weights since we found it trained quickly and provide

good performance. Furthermore, it made the system homogeneous in terms of learning

algorithms since that is what is used to train our unlabeled parser. Of course, we have to

define a set of suitable features. We used the following:

• Edge Features:Word/pre-suffix/POS feature identity of the head and the modifier
(suffix lengths 2 and 3). Does the head and its modifier share a prefix/suffix. Attach-
ment direction. s the modifier the first/last word in the sentence?

• Sibling Features: Word/POS/pre-suffix feature identity of the modifiers left/right
siblings in the tree (siblings are words with same head in thetree)? Do any of the
modifiers siblings share its POS?

• Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a headother than the
head? Are any of the words between the head and the modifier nota descendent of
the head (i.e. non-projective edge)?

58

• Non-local: How many modifiers does the modifier have? Is this the left/right-most
modifier for the head? Is this the first modifier to the left/right of the head?

Various conjunctions of these were included based on performance on held-out data.

Note that many of these features are beyond the scope of the edge based factorizations of

the unlabeled parser. Thus a joint model of parsing and labeling could not easily include

them without some form of re-ranking or approximate parameter estimation.

3.4 Summary of Chapter

In this chapter we presented the primary contribution of this work – the formulation of de-

pendency parsing as the maximum spanning tree problem. The MST view of dependency

trees has many advantages. Primarily it leads to efficient first and second-order projective

parsing algorithms as well as efficient first-order non-projective parsing algorithms. Fur-

thermore, we also gave an approximate second-order non-projective parsing algorithm for

which we will empirically justify in the next chapter. We also showed how all algorithms

can be extended to provide labeled dependencies. The MST view thus gives a uniform and

algorithmically justifiable view of dependency parsing fornatural language, which we will

exploit together with the learning algorithms in Chapter 2 to produce efficient and accurate

parsers for a variety of languages.

59

Chapter 4

Dependency Parsing Experiments

Parts of this chapter are drawn from material in [91, 95, 94].

4.1 Data Sets

We performed these experiments on three sets of data, the Penn English Treebank [84], the

Czech Prague Dependency Treebank (PDT) v1.0 [56, 57] and thePenn Chinese Treebank

[150]. For the English data we extracted dependency trees using the rules of Yamada and

Matsumoto [151], which are similar, but not identical, to those used by Collins [25] and

Magerman [83]. These rules are given in Appendix A. Because the dependency trees are

extracted from the phrase-structures in the Penn Treebank,they are by construction exclu-

sively projective. We used sections 02-21 of the Treebank for training data, section 22 for

development and section 23 for testing. All experiments were run using every single sen-

tence in each set of data regardless of length. For the English data only, we followed the

standards of Yamada and Matsumoto [151] and did not include punctuation in the calcu-

lation of accuracies. For the test set, the number of words without punctuation is 49,892.

Since our system assumes part-of-speech information as input, we used the maximum en-

60

tropy part-of-speech tagger of Ratnaparkhi [110] to provide tags for the development and

testing data. The number of features extracted from the PennTreebank were6, 998, 447 for

the first-order model and7, 595, 549 for the second-order model.

For the Czech data, we did not have to automatically extract dependency structures

since manually annotated dependency trees are precisely what the PDT contains. We used

the predefined training, development and testing split for the data. Furthermore, we used

the automatically generated POS tags that were provided with the data. Czech POS tags

are extremely complex and consist of a series of slots that may or may not be filled with

some value. These slots represent lexical properties such as standard POS, case, gender,

and tense. The result is that Czech POS tags are rich in information, but quite sparse when

viewed as a whole. To reduce sparseness, our features rely only on the reduced POS tag set

from Collins et al. [29]. The number of features extracted from the PDT training set were

13, 450, 672 for the first-order model and14, 654, 388 for the second-order model.

Czech has more flexible word order than English and as a resultthe PDT contains non-

projective dependencies. On average,23% of the sentences in the training, development

and test sets have at least one non-projective dependency. However, less than2% of total

edges are actually non-projective. Therefore, handling non-projective arcs correctly has

a relatively small effect on overall accuracy. To show the effect more clearly, we created

two Czech data sets. The first, Czech-A, consists of the entire PDT. The second, Czech-

B, includes only the23% of sentences with at least one non-projective dependency. This

second set will allow us to analyze the effectiveness of the algorithms on non-projective

material.

The Chinese data set was created by extracting dependenciesfrom the Penn Chinese

Treebank [150] using the head rules that were created by a native speaker primarily for the

purpose of building a machine translation system. Again, because the dependency trees are

extracted from the phrase-structures, they are by construction exclusively projective. We

61

split the data into training and testing by placing every tenth sentence in the data into the

test set. We use gold POS tags for this data set since we have not yet trained a Chinese

POS tagger. The number of features extracted from the Penn Chinese Treebank training

set were2, 985, 843 for the first-order model and3, 346, 783 for the second-order model.

Unlike English and Czech, we did not include any5-gram prefix features.

4.2 Unlabeled Dependencies

This section reports on the most extensive experiments we have completed to date on unla-

beled dependencies. It is primarily divided into two sections, projective and non-projective

results. For the non-projective results we focus on the Czech data since it contains this

particular phenomenon.

The first two sections compare pure dependency parsers only,i.e., those parsers trained

only on dependency structures. We include a third section that compares our parsers to

lexicalized phrase-structure parsers, which have been shown to produce state-of-the-art

dependency results [151].

4.2.1 Projective Parsing Results

We compare five systems,

• Y&M2003: The Yamada and Matsumoto parser [151] is a discriminative parser
based on local decision models trained by an SVM. These models are combined
in a shift-reduce parsing algorithm similar to Ratnaparkhi[111].

• N&S2004: The parser of Nivre and Scholz [105] is a memory based parser with an
approximate linear parsing algorithm.

• N&N2005: The parser of [104], which is an extension of N&S2004 to Czech. This
paper presents both a projective and non-projective variant. We report the non-
projective results in the next section.

62

English Czech-A Chinese
Accuracy Complete Accuracy Complete Accuracy Complete

Y&M2003 90.3 38.4 - - - -
N&S2004 87.3 30.4 - - - -
N&N2005 - - 78.5 20.6 - -

1st-order-proj 90.7 36.7 83.0 30.6 79.7 27.2
2nd-order-proj 91.5 42.1 84.2 33.1 82.5 32.6

Table 4.1: Unlabeled projective dependency parsing results. Accuracyis the percentage of
words modififying the correct head.Completeis the percentage of sentences for which the
entire predicted dependency graph was correct.

• 1st-order-proj: This parser uses the Eisner first-order projective parsing algorithm
combined with the MIRA learning framework.

• 2nd-order-proj: This parser uses the second-order extension of the Eisner algorithm
combined with the MIRA learning framework.

Results are shown in Figure 4.1. Not all systems report all results. Across all lan-

guages the parsers we have developed here provide state-of-the-art performance without

any language specific enhancements. It can be argued that theprimary reason for this im-

provement is the parsers ability to incorporate millions ofrich dependent features, which is

not possible in for the history based models [104, 105]. The Yamada and Matsumoto [151]

SVM parser also has this ability. However, their locally trained model can suffer from the

label bias problem [80] as well as error propagation during their shift-reduce search. Fur-

thermore, we can also see that the introduction of second-order features improves parsing

substantially for all languages, as expected.

k-best MIRA Approximation

We need to determine how justifiable is thek-best MIRA approximation, in particular when

k = 1. Table 4.2 indicates the test accuracy and training time on English for thek-best

MIRA first-order model withk = 1, 2, 5, 10, 20. Even thoughk-best parsing multiplies

asymptotic parsing complexity by ak log k factor, empirically the training times seem to

63

k=1 k=2 k=5 k=10 k=20
Accuracy 90.73 90.82 90.88 90.92 90.91

Train time 183m 235m 627m 1372m 2491m

Table 4.2: Evaluation ofk-best MIRA approximation. These experiments were run on a
2.4GHz 32-bit machine with 2G of memory.

scale linearly withk. Peak performance is achieved for lowk with a slight degradation

aroundk = 20. We speculate that the reason for this phenomenon is that themodel is over-

fitting by ensuring that even unlikely trees are separated from the correct tree in proportion

to their loss.

4.2.2 Non-projective Parsing Results

As mentioned earlier,23% of the sentences in the PDT contain at least one non-projective

dependency and roughly2% of all dependencies are non-projective. In this section we

examine the performance of our non-projective parsers on the entire PDT (data setCzech-

A) as well as a subset containing only those sentences with non-projective dependencies

(data setCzech-B).

We compare five systems,

• N&N2005: The parser of Nivre and Nilsson [104] is a memory based parserlike
[105]. This parser models non-projective dependencies through edge transformations
encoded into labels on each edge. For instance a label can encode a parental raises
in the tree (when a edge is raised along the spine towards the root of the tree).

• 1st-order-proj: The first-order projective parser from Section 4.2.1.

• 2nd-order-proj: The second-order projective parser from Section 4.2.1.

• 1st-order-non-proj: This parser uses the Chu-Liu-Edmonds MST algorithm as de-
scribed in Section 3.1.1.

• 2nd-order-non-proj: This parser uses the approximate second-order non-projective
parsing algorithm described in Section 3.1.2.

64

Czech-A Czech-B
Accuracy Complete Accuracy Complete

N&N2005 80.0 31.8 - -
1st-order-proj 83.0 30.6 74.4 0.0
2nd-order-proj 84.2 33.1 74.6 0.0

1st-order-non-proj 84.1 32.2 81.0 14.9
2nd-order-non-proj 85.2 35.9 81.9 15.9

Table 4.3: Unlabeled non-projective dependency parsing results.

Results are shown in Figure 4.3. This table shows us that for both the first and second-

order models, modeling non-projective dependencies leadsto an improvement in perfor-

mance of around1% absolute. Especially surprising is that the second-order approximate

algorithm leads to such a large improvement. The most likelyreason is that the approxi-

mate post-process edge transformations are incorporated into the online learning algorithm,

which allows the model to adjust its parameters for common mistakes made during the ap-

proximation. Thus the algorithm learns quickly that the best non-projective tree is typically

only one or two edge transformations away from the highest scoring projective tree. The

robustness of discriminative online learning algorithms to approximate inference will be

discussed further in Chapter 8.

As mentioned earlier, we have not been able to put a worst-case complexity on our ap-

proximate second-order non-projective parsing algorithm. However, in terms of runtime,

our projectiveO(n3) second-order model runs in 16m32s and our non-projective approx-

imation in 17m03s on the Czech evaluations data. Clearly, the post-process approximate

step of inference does not in practice add too much time. Thisis because each sentence

typically contains only a handful of non-projective dependencies. As a result the algorithm

will learn not to adjust too many edges after the initial projective parsing step.

65

English
Accuracy Complete Complexity Time

Collins [7, 25] 91.4 42.6 O(n5) 98m 21s
Charniak [16] 92.1 45.3 O(n5) 31m 24s
2nd-order-proj 91.5 42.1 O(n3) 8m46s

Table 4.4: Results comparing our system to those based on theCollins and Charniak
parsers.Complexityrepresents the computational complexity of each parser andTimethe
CPU time to parse sec. 23 of the Penn Treebank.

4.2.3 Lexicalized Phrase-Structure Parsers as DependencyParsers

It is well known that dependency trees extracted from lexicalized phrase-structure parsers [16,

25] are typically more accurate than those produced by pure dependency parsers [151]. We

compared our system to the Charniak parser [16] and the Bikelre-implementation of the

Collins parser [7, 25] trained with the same head rules as oursystem. By taking the phrase-

structure output of the parser and running the automatic head rules over it, we were able to

extract the dependencies. Table 4.5 shows the results comparing our second-order projec-

tive system to the Charniak and Collins parser for English. All systems are implemented in

Java and run on the same machine, except for the Charniak parser which was implemented

in C. The Charniak parser clearly has an accuracy advantage over both our parser and the

Collins parser, whose performance is indistinguishable from our discriminative parser. In

terms of complexity and runtime, our system is a large improvement over both parsers. In

particular, the parser is still significantly faster than the Charniak parser that is implemented

in C.

We should note that comparing our parser to dependencies automatically extracted from

phrase-structure is misleading in a number of ways. First ofall our parser was trained and

designed to maximize dependency accuracy, whereas the parsers of Collins and Charniak

were trained and designed to maximize phrase-structure accuracy. Furthermore, extract-

ing dependencies from phrase-structure assumes that our head rules are a priori correct.

66

Czech-A
Accuracy Complete

Collins-proj [29, 154] 82.5 -
Charniak-proj [59, 154] 84.3 -
Charniak-non-proj [59] 85.1 -

2nd-order-proj 84.2 33.1
2nd-order-non-proj 85.2 35.9

Table 4.5: Improved WSJ parsing performance using auxiliary parsing features.

A better means might be to actually extract the lexicalization produced by these parsers.

However, this is difficult since these parsers by default do not produce their internal lexi-

calization and sometimes exclude certain punctuation fromthe output since accuracies are

calculated independently of punctuation.

Thus, a better comparison would be on the Czech data set sinceit contains hand anno-

tated dependencies and there has been extensive work on extending the generative models

of Collins and Charniak to Czech [29, 59, 154]. We compare three systems to our second-

order models.Collins-proj is the Collins parser extended to Czech as described by [29].

Charniak-projis the Charniak parser extended to Czech as reported in [59, 154]. Both of

these models are based on phrase-structure parsers and are limited to producing projective

trees.Charniak-non-projis the recently published parser of Hall and Nóvák [59] that takes

the best parse from the Charniak parser and creates a new set of parses based on small

transformations that can introduce non-projective edges.A maximum entropy re-ranker

then picks the best parse from this new set. We do not report parsing times since code for

these systems is unavailable.

We can see that our second-order approximate parser performs slightly better than the

Charniak parser modified to include non-projective edges. This is particularly promis-

ing since our parser is a single model trained with our approximate inference algorithm,

whereas Hall and Nóvák require two models, the original Charniak parser plus a non-

projective re-ranker.

67

It is rather disappointing that our discriminative parser does not in general outperform

these generative models (in particular the Charniak parser). However, as we will show

in Chapter 7, we can incorporate features into our discriminative model that represent the

parsing decisions of both the Collins and Charniak parsers leading to a significant improve-

ment in accuracy.

4.2.4 Training Time and Model Size

A major concern when training discriminative learners on large training sets for compu-

tationally heavy tasks such as dependency parsing is training time. Currently, on a 64-bit

Linux machine running Java 1.5, the largest model (Czech on the full data with the Eisner

algorithm) takes just under a day to train. However, most models take under 15 hours.

These times increase by a factor of 2-2.5 when the model is runon a 32-bit machine. Cur-

rently, the Czech model can only be run on the 64-bit machine,because of the very large

feature set. However, we could easily remedy this by only including features that occur

more than once in the training set. This reduces the feature space substantially with little

harm to performance. Feature count cut-offs are common, buttypically used as a form of

regularization. Section 6.1.2 addresses this issue directly.

4.3 Labeled Dependencies

In this section we report results for the first-order labeleddependency models described in

Section 3.3.1 as well as a two-stage labeling system, i.e., one that learns a model to label

the output of an unlabeled dependency parser. We report results for English on the WSJ

using sections 02-21 for training, section 22 for development and section 23 for evalua-

tion. To extract labeled dependency trees from this data, wetook the label of the highest

node in the phrase-structure tree for which that word is the lexical head. For example, the

68

S

VP

PP

NP-SBJ NP-OBJ NP

N V DT N IN DT N

John hit the ball with the bat

root

hit

John ball with

the bat

the

ROOT

NP-SBJ NP-OBJ PP

DEP NP

DEP

Figure 4.1: Converting a phrase-structure tree to a labeleddependency tree.

ADJP
ADVP
CONJP
DEP
FRAG
INTJ

LST
NAC
NP
NP-OBJ
NP-PRD
NP-SBJ

NX
PP
PRN
PRT
QP
ROOT

S
SBAR
SBARQ
SINV
SQ
UCP

VP
WHADVP
WHNP
X
ROOT

Figure 4.2: Labels extracted from WSJ using [106].

phrase-structure tree forJohn hit the ball with the batwould be transformed into a labeled

dependency tree as shown in Figure 4.1. Running an extraction script (we used Penn2Malt

[106]) resulted in the set of 29 labels shown in Figure 4.2. The labels are standard from the

Penn Treebank, except the labels ‘DEP’, which is meant to represent a generic dependency,

and ‘ROOT’, which is designated for modifiers of the artificial root node.

In the next sections we report results for English onLabeled AccuracyandUnlabeled

Accuracy. The former measures the number of words who correctly identified their head

and assign the correct label to the edge and the latter measure normal unlabeled dependency

parsing accuracy (as discussed in the last section). We always use the projective parsing

algorithms in this evaluation since the English data set is exclusively projective.

In Chapter 5 we present labeled experiments for languages other than English.

69

English
Labeled Accuracy Unlabeled Accuracy

1st-order-proj with joint labeling 88.7 90.9

Table 4.6: First-order labeling results for English.

4.3.1 First-Order Results

Results for the first-order labeling model (Section 3.3.1) are shown in Table 4.6. The first

thing to note is that even with a large set of possible labels (28), overall accuracy drops

only 2% absolute, which roughly says that the labeling accuracy is 97.6% accurate over

correctly identified dependencies. This is a very promisingresult. However, we will see in

Chapter 5 that labeling for English is typically much easierthan for all other languages and

can usually be deterministically decided based on the part-of-speech tags of the modifier

and head words in the dependency.

Another interesting property is that the unlabeled accuracy actually improves (from

90.7 to 90.9). This is consistent with previous results [105] and displays that learning to

label and find dependencies jointly will help overall performance. However, this benefit

does come at the expensive of computation, since the training and inference have an added

O(Tn2) term, which in practice leads to roughly to run times on the order of 3 times

slower than the unlabeled system. The fact that second-order joint parsing and labeling

results in a run-time complexity ofO(Tn3) made it unreasonable to train large models in a

practical amount of time. In the next section, it will be shown that learning to label and find

dependencies separately does not degrade performance and has much nicer computational

properties.

70

English
Labeled Accuracy Unlabeled Accuracy

1st-order-proj with joint labeling 88.7 90.9
1st-order-proj with 2-stage labeling 88.8 90.7
2nd-order-proj with 2-stage labeling 89.4 91.5

Table 4.7: Two-stage labeling results for English.

4.3.2 Two-Stage Results

Results for two-stage labeling (Section 3.3.3) are shown inTable 4.7. From this table, we

can see that a two-stage labeler with a rich feature set does just as well as a joint labeler

that is restricted to features over local factorizations (88.8 vs. 88.7). The advantage of the

two stage labeler is that it is much quicker to train and run, with a complexity ofO(n3 +

T 2n), where theT 2 factor comes from the fact that we have to run Viterbi’s algorithm.

Furthermore, the complexity for the second-order model is identical atO(n3 + T 2n) and

can be trained very efficiently. Results for this system are also shown in Table 4.7 and once

again display the advantage of a second-order model.

4.4 Summary of Chapter

In this chapter we presented an empirical evaluation of the dependency parsers described

in this work. For unlabeled dependencies we compared them tothe current best systems fa-

vorably. Furthermore, we showed that they have competitiveperformance with lexicalized

phrase-based parsers, but are much more computationally efficient. Finally, we presented

results for the labeled parser and showed that two-stage parsing can provide equal or better

performance to a joint parser and labeler due to its ability to include features over the entire

dependency tree.

71

Chapter 5

Parsing 14 languages with One Model

Part of the material in this chapter is drawn from [92].

An important question for any parsing model is, how well doesit apply to new lan-

guages? In this section we aim to show that the models described in this work are, for

the most part, language independent. We do this by evaluating the models on 14 diverse

languages. This data set includes the 13 standard dependency data sets provided by the

organizers of the 2006 CoNLL shared task [13] plus the English data set we described in

Section 4.1. We show that our standard parser with little to no language specific enhance-

ments achieves high parsing accuracies across all languages (relative to state-of-the-art).

This is a very promising result and a strong argument for the applicability of the parsers in

this work. We used the two-stage parsing model described in Section 3.3.3 for all experi-

ments in this chapter.

72

language Ar Ch Cz Da Du Ge Ja Po Sl Sp Sw Tu Bu En

genres 1: ne 6 3 8+ 5+ 1: ne 1: di 1: ne 1: no 9 4+ 8 12 1: ne
annotation d c+f d d dc+f dc+f c+f dc+f d c(+f) dc+f/d d c+t c+f

training data
tokens (k) 54 337 1249 94 195 700 151 207 29 89 191 58 190 950
%non-scor. 8.8 0.8 14.9 13.9 11.3 11.5 11.6 14.2 17.3 12.6 11.0 33.1 14.4 9.1
sents (k) 1.5 57.0 72.7 5.2 13.3 39.2 17.0 9.1 1.5 3.3 11.0 5.0 12.8 39.8
tokens/sent 37.2 5.9 17.2 18.2 14.6 17.8 8.9 22.8 18.7 27.0 17.3 11.5 14.8 23.9
LEMMA Yes No Yes No Yes No No Yes Yes Yes No Yes No No
CPOSTAGs 14 22? 12 10 13 52 20 15 11 15 37 14 11 36
POSTAGs 19 303? 63 24 302 52 77 21 28 38 37 30 53 36
FEATS 19 0 61 47 81 0 4 146 51 33 0 82 50 0
DEPRELs 27 82 78 52 26 46 7 55 25 21 56 25 18 28
D. H.=0 15 1 14 1 1 1 1 6 6 1 1 1 1 1
%HEAD=0 5.5 16.9 6.7 6.4 8.9 6.3 18.6 5.1 5.9 4.2 6.5 13.4 7.9 4.2
%H. left 82.9 24.8 50.9 75.0 46.5 50.9 8.9 60.3 47.2 60.8 52.8 6.2 62.9 47.0
%H. right 11.6 58.2 42.4 18.6 44.6 42.7 72.5 34.6 46.9 35.1 40.7 80.4 29.2 48.8
H.=0/sent 1.9 1.0 1.0 1.0 1.2 1.0 1.5 1.0 0.9 1.0 1.0 1.0 1.0 1.0
%n.p. edges 0.4 0.0 1.9 1.0 5.4 2.3 1.1 1.3 1.9 0.1 1.0 1.5 0.4 0.0
%n.p. sents 11.2 0.0 23.2 15.6 36.4 27.8 5.3 18.9 22.2 1.7 9.8 11.6 5.4 0.0

Table 5.1: Properties of the data for the 14 languages. This table has been taken and
modified from [13], with permission.

5.1 Data Sets

In this section we briefly describe the source and size of eachdata set. For further details

see [13]. Each of these data sets consist of a number of sentences annotated with labeled

dependency graphs satisfying the tree constraint.

5.1.1 General Properties of the Data

Table 5.1 outlines general properties of the data for the 14 languages: Arabic (Ar), Chinese

(Ch), Czech (Cz), Danish (Da), Dutch (Du), German (Ge), Japanese (Ja), Portuguese (Po),

Slovene (Sl), Spanish (Sp), Swedish (Sw), Turkish (Tu), Bulgarian (Bu) and English (En).

Table 5.1 contains the following information,

• genres: The number of genres in the data set. ne: news, no: novel/literature,
di:dialogue (other if not specified).

• annotation: The original annotation in the treebank. d=dependency, c=constituents,
dc=discontinuous constituents, +f=with functions, +t=with types (labels).

• tokens: The number of tokens in the data set.

• %non-scor: Number of non-scoring tokens in the data (usually punctuation).

73

• sents:Number of sentences in the data set.

• LEMMA: Does the data set contain lemmas (in addition to inflected forms)?

• CPOSTAGs: Number of coarse-grained part-of-speech tags in data.

• POSTAGs: Number of part-of-speech tags in data.

• FEATS: Does the data set contain morphological feature information?

• DEPRELs: The number of edge labels in the data set.

• D. H.=0: The number of labels for dependencies involving the root of the graph.

• %HEAD=0: Percentage of tokens whose head is the root of the graph.

• %H. left: Percentage of tokens whose head is to its left (not includingtokens whose
head is the root).

• %H. right: Percentage of tokens whose head is to its right (not including tokens
whose head is the root).

• H.=0/sent: Average number of words per sentence whose head is the root ofthe
graph.

• %n.p. edges:Percentage of non-projective edges in data.

• %n.p. sents: Percentage of sentences with at least one non-projective edge.

5.1.2 Data Sources and Specifics

In this section we briefly describe the source of each data setused as well as if any trans-

formations were required. Note that the size of each test setwas chosen to approximately

make the number of scoring tokens equivalent for each language, except English, which is

not officially one of the CoNLL data sets.

Arabic

Dependencies were taken from the Prague Arabic Dependency Treebank [58, 129], which

is a proper dependency treebank. The data is drawn from a variety of news sources includ-

ing Agence France Presse, Al Hayat News Agency, Ummah Press Service, An Nahar News

74

Agency, Xinhua News Agency. The training set consists of 1460 sentences and the test set

consists of 146 sentences.

Bulgarian

Dependencies were taken from the Bulgarian Treebank [124, 123, 126, 125, 108], which

was converted to dependencies from a Head-Driven Phrase Structure format. The data is

drawn from a wide variety of sources including, news text, textbooks and literature. The

training set consists of 12,823 sentences and the test set consists of 398 sentences.

Chinese

Dependencies were taken from the Sinica Treebank [19], which is syntactically and se-

mantically annotated corpus of phrasal structure including head and modifier information.

The data is drawn from a wide variety of genres in the Sinica corpus [18]. The training set

consists of 56,957 sentences and the test set consists of 867sentences.

Czech

Dependencies were taken from the Prague Dependency Treebank [9], which is a proper de-

pendency treebank. The data is drawn from from Czech newspapers and academic publish-

ers. The training set consists of 72,703 sentences and the test set consists of 365 sentences.

Danish

Dependencies were drawn from the Danish Dependency Treebank [79], which is a proper

dependency treebank. This data set also consists of a set ofsecondaryedges, which break

the tree constraint. For these experiments, only primary edges are considered. In Sec-

tion 8.2 we discuss extensions to our parsing algorithms with the ability of producing sec-

ondary edges. This data is drawn from the PAROLE corpus whichcontains sentences from

75

a variety of sources. The training set consists of 5,190 sentences and the test set consists of

322 sentences.

Dutch

Dependencies were drawn from the Alpino Treebank [148, 147], which is a corpus of

syntactically annotated phrasal information. Dependencies were generated using standard

head selection rules. The data is drawn from news text, spoken dialogue, sentences that

are questions, and even sentences from a Dutch yellow pages.The training set consists of

13,349 sentences and the test set consists of 386 sentences.

English

Dependencies were created from the Penn Treebank [84] usingthe method described in

Section 4.1. The training set consists of 39,832 sentences and the test set consists of 2,416

sentences.

German

Dependencies were taken from the TIGER Treebank [11], whichis a corpus of sentences

annotated under a Lexical Functional Grammar formalism. Dependencies are easily ex-

tracted in this data using deterministic head rules. The data is drawn from the German

news source Frankfurter Rundschau. The training set consists of 39,216 sentences and the

test set consists of 357 sentences.

Japanese

Dependencies were taken from the Verbmobil Treebank [73], which was converted from

phrase-structure using pre-annotated head associations.The data is drawn from two way

76

conversations negotiating business meetings. The training set consists of 17,044 sentences

and the test set consists of 709 sentences.

Portuguese

Dependencies were taken from the Bosque subset of the Floresta Sintá(c)tica Treebank

project [2], which was converted from phrase-structure to dependencies using a fixed set of

head rules. The data is drawn from two news and journal sources. The training set consists

of 9,071 sentences and the test set consists of 288 sentences.

Slovene

Dependencies were taken from the Slovene Dependency Treebank [41], which is a pure

dependency treebank annotated in the same fashion as the Prague Dependency Treebank

and Prague Arabic Dependency Treebank. The text contains sentences from a Slovene

translation of1984by George Orwell. The training set consists of 1,534 sentences and the

test set consists of 402 sentences.

Spanish

Dependencies were taken from the Cast3LB Treebank [23, 99, 22], which was converted

from phrase-structure using a fixed set of head rules. The data is drawn from journals,

literature and scientific text from Spain as well as South America. The training set consists

of 3,306 sentences and the test set consists of 206 sentences.

Swedish

Dependencies were taken from Talbanken05 [102], which is a modern version of one of

the oldest treebanks in existence, Talbanken76 [44, 139]. Talbanken05 is annotated with

dependencies so no conversion was necessary. The data consists of both written text and

77

transcribed speech. The training set consists of 11,042 sentences and the test set consists

of 389 sentences.

Turkish

Dependencies were drawn from the METU-Sabanci Turkish Treebank [107, 4], which an-

notates dependencies between inflectional groups. Within an inflectional group all words

modify the last. The data is drawn from a wide body of genres including news and litera-

ture. The training set consists of 4,997 sentences and the test set consists of 623 sentences.

5.2 Adding Morphological Features

One advantage of the CoNLL data sets is that they came with derived morphological fea-

tures for each language. The types of features differed by data set so we incorporated them

into our models in a general way.

For the unlabeled dependency parser we augmented the feature representation of each

edge. Consider a proposed dependency of a modifierxj for the headxi, each with mor-

phological featuresMj andMi respectively. We then add to the representation of the edge:

Mi as head features,Mj as modifier features, and also each conjunction of a feature from

both sets. These features play the obvious role of explicitly modeling consistencies and

commonalities between a head and its modifier in terms of attributes like gender, case, or

number.

For the second-stage labeler we used the following feature set,

• Edge Features:Word/pre-suffix/POS/morphological feature identity of the head and
the modifier (suffix lengths 2 and 3). Does the head and its modifier share a pre-
fix/suffix. Attachment direction. What morphological features do head and modifier
have the same value for? Is the modifier the first/last word in the sentence?

78

• Sibling Features: Word/POS/pre-suffix/morphological feature identity of the modi-
fiers left/right siblings in the tree (siblings are words with same head in the tree)? Do
any of the modifiers siblings share its POS?

• Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a headother than the
head? Are any of the words between the head and the modifier nota descendent of
the head (i.e. non-projective edge)?

• Non-local: How many modifiers does the modifier have? What morphological
features does the grandparent and the modifier have identical values? Is this the
left/right-most modifier for the head? Is this the first modifier to the left/right of the
head?

This is identical to the old feature set, except where morphology features have been

included.

5.3 Results

Based on performance from a held-out section of the trainingdata, we used non-projective

parsing algorithms for Czech, Danish, Dutch, German, Japanese, Portuguese and Slovene,

and projective parsing algorithms for Arabic, Bulgarian, Chinese, English, Spanish, Swedish

and Turkish1. Furthermore, for Arabic and Spanish, we used lemmas instead of inflected

word forms since this seemed to alleviate sparsity in parameter estimates for these lan-

guages.

Results on the test sets are given in Table 9.1. Performance is measured through unla-

beled accuracy, which is the percentage of words that correctly identify their head in the

dependency graph, and labeled accuracy, which is the percentage of words that identify

their head and label the edge correctly in the graph. Punctuation is ignored for all lan-

guages. For all languages except English, a token is considered punctuation if and only if

1Using the non-projective parser for all languages does not effect performance significantly.

79

UA LA
Arabic 79.3 66.9

Bulgarian 92.0 87.6
Chinese 91.1 85.9

Czech 87.3 80.2
Danish 90.6 84.8
Dutch 83.6 79.2

English 91.5 89.4
German 90.4 87.3

Japanese 92.8 90.7
Portuguese 91.4 86.8

Slovene 83.2 73.4
Spanish 86.1 82.3
Swedish 88.9 82.5
Turkish 74.7 63.2
Average 87.4 81.4

Table 5.2: Dependency accuracy on 14 languages. Unlabeled (UA) and Labeled Accuracy
(LA).

all of its characters are unicode punctuation characters. For English we define punctuation

identical to Yamada and Matsumoto [151].

These results show that a two-stage system can achieve a relatively high performance.

In fact, for every language our models perform significantlyhigher than the average perfor-

mance for all the systems reported in the CoNLL 2006 shared task [13] and represent the

best reporting system for Arabic, Bulgarian, Czech, Danish, Dutch, German, Slovene and

Spanish (English was not included in the shared task).

5.4 Summary of Chapter

In this chapter we showed that the discriminative spanning tree parsing framework is easily

adapted across all these languages. Only Arabic, Turkish and Slovene have parsing accura-

cies significantly below 80%, and these languages have relatively small training sets and/or

are traditionally difficult languages to parse. These results are very promising. In fact, they

are state-of-the-art when compared to other parsers evaluated in the CoNLL shared task

80

[13].

Section 6.2 and Appendix C provide a detailed error analyses.

81

Chapter 6

Analysis of Parsing Results

Parts of the material in this chapter is drawn from [92].

In this chapter we attempt to provide an analysis of common errors in both the English

parsing models as well as a brief error analysis of the modelsfor all other languages.

Furthermore, we present experiments that tease apart the contribution of various features

in the models. For a detailed quantitative error analysis for all sections, see Appendix C.

6.1 English

6.1.1 Error Analysis

For these experiments, we used sections 02-21 of the Penn Treebank to train a parsing

model for English. We then used the standard test data to analyze the errors (section 23).

Throughout the development of the parser, we had only used the development section (22)

to analyze errors and modify the models. Now that we have fixedthe parsing model, we

wish to gain an insight on the kinds of errors that are being made for the reported results.

82

English
Accuracy

Standard 91.5
Top2POSTraining 91.9

GoldPOS 93.1

Table 6.1: English parsing errors relative to part-of-speech tagging errors.

Part-of-speech tagging errors

One aspect of our system that differs from at least one state-of-the-art parsing model (Char-

niak [16]) is that part-of-speech (POS) tags for the input sentence are fixed before parsing.

This of course can lead to a propagation of errors if the POS tagger is not accurate. For-

tunately, POS tagging is very well studied with the best parsers reporting accuracies near

human capabilities. For instance, the POS tagger we used [110] was 96.3% accurate on the

test data. Though this is a high number, the fact that parsingaccuracies are also over 90%

suggests that this could be a significant source of error, which in fact it is.

Table 6.1 shows the parsing accuracies of three systems. Thefirst system,Standard, is

the English second-order model from Section 4. The final system,GoldPOS, is identical to

Standard, except that at test time we use the true POS tags forthe data. This final system

represents the upper-bound on parsing accuracy relative toPOS tag information.

It is clear from the difference in accuracies betweenStandardandGold that propagated

POS tagging errors account for a large chunk of the remainingparsing errors, around 20%

of it in fact. This result definitely suggests that a parsing model that predicts POS tags and

dependencies jointly should be investigated to alleviate this. However, once there is POS

ambiguity, exact parsing for the second-order projective model becomesO(|P |3n3), where

|P | is the number of unique POS tags. This presents a difficulty since|P | is usually around

than 40. However, one interesting approach to try is to fix thenumber of possible POS tags

for a given token to a small set of likely candidates during training/testing, say of sizep.

These fixed tags can be provided from thep-best outputs of most statistical classification

83

algorithms. The resulting parsing algorithm would beO(p3n3), which seems a little more

reasonable.

It is easy to motivate such an approach by observing that current POS taggers get near

99% recall if we consider the top 2 POS tags for each token. However, even withp = 2,

we are multiplying the run-time by a factor of 8. Training already takes over 10 hours for

English, thus multiplying this by 8 is cumbersome for use in current systems. However,

for the sake of completeness, we implemented and trained a second-order parsing model

that takes as input the top 2 POS tags for each token based on a maximum entropy tagger

implemented in MALLET [87]. It took approximately 5 days to train the new parsing

model, which resulted in an improvement in parsing accuracyfrom 91.5 to 91.9 (Table 6.1,

systemTop2POSTraining). For the context POS features used in the model, we simply

fixed them as the single most likely POS tag in order to make inference tractable.

Unfortunately, it is easy to show that incorporating POS ambiguity into the first-order

non-projective MST parsing algorithm makes the problem NP-hard.

Errors by Sentence Length

Another quantitative measure of error is by sentence length. It is natural for longer sen-

tences to contain more errors absolute, since there are moresimply more parsing decisions.

Similarly, it is also natural for parsers to perform on average worse for longer sentences.

However, the latter is usually for two reasons,

1. Longer sentences are more likely to have conjunctions, prepositions and multi-verb

constructions, which typically cause most parsing errors (see the rest of this section

for more details).

2. Often, greedy parsing algorithms will make early mistakes, causing the propaga-

tion of errors. Similarly, parsers based on a pruned dynamicprogramming search

84

English
Accuracy Complete Root

0-10 94.3 85.6 96.3
11-20 92.7 54.2 95.8
21-30 91.5 33.7 94.0
31-40 91.1 21.7 93.3
41-50 90.4 8.9 93.3
> 50 88.7 9.4 97.2

Table 6.2: English parsing errors by sentence length.

may prematurely eliminate correct solutions early, again leading to error propagation.

Longer sentences result in more opportunities to make propagated search mistakes.

There is no real guard against the former, except creating richer parsing models. However,

for the latter, we would expect our system to be relatively immune since we use exact search

without pruning and without greedy parsing decisions.

Table 6.2 presents parsing accuracy for sentences of varying length. In terms of stan-

dard dependency accuracy, we see an expected drop off in performance as sentence length

increases. For complete parse accuracy we see a massive dropoff, where the model rarely

gets longer sentences correct and almost always gets shorter sentences correct. However,

note that the accuracy for the root dependency (column Root)does not drop off as drasti-

cally as complete sentence accuracy for larger sentences. In fact, root accuracy drops at a

rate very close to overall accuracy. This result suggests that, even though more mistakes

are made for longer sentences, errors are not necessarily being propagated by bad mistakes

made early, since the parsing model still tends to have good performance on identifying the

root of the tree.

Errors due to Training Sentence Order and Online Learning

One important aspect of our learning algorithm is its efficiency. This is primarily a result

of its online nature resulting in single instance parameteroptimization. A natural concern

85

English
Accuracy Complete

Averaging Original 91.5 42.1
Random 1 91.5 41.7
Random 2 91.5 41.9
Random 3 91.5 41.9
Random 4 91.5 41.6
Random 5 91.6 42.5

No Averaging Original 90.3 37.7
Random 1 89.5 34.9
Random 2 89.9 35.9
Random 3 89.8 35.9
Random 4 90.2 36.2
Random 5 89.8 36.1

Table 6.3: English parsing errors relative to permutationsof sentence order in the training
set.

would be whether or not the order in which instances are seen during training has an impact

on the final parsing accuracies. In particular, one would expect those sentences seen near

the end of training to contribute more than those seen earlier. In this section we will provide

results alleviating such concerns and argue that parameteraveraging solves this problem.

To show this we created five new training sets, each a random permutation of the orig-

inal training set. We then trained two models per data set (including the original data set).

The first model is standard MIRA with parameter averaging andthe second model is MIRA

without parameter averaging. Results are shown in Table 6.3.

This table clearly indicates that with parameter averaging, sentence order has no effect

on the accuracy of the final model. However, once averaging isturned off, we see that

a disparity between accuracy does occur (nearly 1% absolute). Note that the best parser

without averaging is the original. We speculate that this isbecause the sentences in that

data set are chronological (sections 02-21 of the treebank). Thus, the latter sentences (from

section 21) should be closer in distribution to the test data(section 23).

86

Errors by Modifier Type

In this section we aim to get a better picture of the kinds of dependency errors occurring

in the model. In particular, dependency accuracy is defined as the percentage of words that

modify the correct head in the corpus. A natural analysis would be to look at these errors by

part-of-speech tag. This analysis is given in Table 6.4, which is sorted by the total number

of incorrect head attachment decisions for each POS tag. In other words, tags near the top

of the table account for the largest amount of errors made by the parser.

Let’s first look at unlabeled accuracy (column with UA header). The results here are

not surprising at all. These show, for English, that most modification errors are for prepo-

sitions (IN) and coordinating conjunctions (CC and ,). These have repeatedly been shown

to be the most difficult phenomena to parse in English [25]. Errors in prepositions are of-

ten caused by inherent ambiguities in attachment decisions. However, this is not usually

the case for conjunctions, whose errors are often the resultof locality restrictions on the

feature representation. Note that nouns also account for a large number of absolute parsing

mistakes. However, this is really due to their abundance in the corpus. In fact, unlabeled

parsing accuracies for nouns are well above the average.

A common coordinating conjunction error occurs with coordination within a base-NP1

as in,That was modestly higher than the 8.8 % and 9.2 % levels in August and September of

1987. Here the conjunction phrase8.8 % and 9.2 %modifies the nounlevels(i.e., ((8.8 %)

and (9.2 %)) levels). NP coordinating conjunctions in our English data set modify the final

element of the conjunction, which in this case is the token% as head of the noun-phrase9.2

%. However, the parser makes a simple mistake and produces9.2 % levelsas a noun phrase.

As a result it incorrectly makes the conjunction a modifier oflevels. This situation could

benefit from some regular expression features that notice a repeat in pattern, i.e.,[num] %,

which might help with the recognition of the proper boundaries of the conjunction phrase.

1Exemplified by the NX tag in the Penn Treebank.

87

Another common error is sentence initial sentence initial CCs attaching to the wrong

verb in multi-verb sentences. For example,But a strong level of investor withdrawls is

much more unlikely this time around, fund managers said. Here, the parser incorrectly

attaches the sentence initial conjunction to its closest verb is, instead of the main verb of

the sentencesaid. This case also is an example of a genuine ambiguity, in whichknowledge

of the discourse is required to parse correctly. Part-of-speech errors also cause problems.

For instance, in the sentenceMr. Shidler ’s company specializes in commercial real-estate

investment and claims to have The wordclaims is mislabeled a noun due to the

financial nature of the corpus. Here the conjunction should modify the first verb in the

conjunction,specializes, but gets confused due to the fact that it is surrounded by two

nouns and thus modifies the second of these nouns. Finally, another interesting example is

It is now the United Kingdom of Great Britain and Northern Ireland, comprising of Wales,

Northern Ireland, Scotland, and ... oh yes, England, too. There are actually two noun

phrases here (United Kingdom of Great Britain and Northern IrelandandWales, Northern

Ireland, Scotland, and ... oh yes, England, too), but the parser mistakenly treats it as an

entire phrase (i.e.,comprising of Walesmistakenly modifies the firstNorthern Ireland)

One obvious solution to preposition and conjunction errorsis to identify specific and

more global features for these cases. For example, if we are considering a dependency

in which a preposition will modify a noun, we can heuristically find the first verb to the

left of the noun and the first noun phrase to the right of the noun to create features over

the tuple (V,N,P,N) to help with attachment ambiguities between the verb and the noun. If

the heuristic is reasonable, then we have simulated the classification environment of PP-

attachment [27]. We can do a similar thing for conjunctions by using regular expressions to

find all the base-nouns or verbs participating in the conjunction, as mentioned earlier. Since

conjunctions typically modify the last or first argument, then such features might improve

performance. We tried introducing these features, but theydid not improve accuracy. Even

88

breaking results down by part-of-speech tag showed that accuracies for prepositions and

conjunctions were not significantly effected. This could bedue to errors in the heuristics to

extract those features.

The final major source of unlabeled accuracy error comes fromadverbials (RB). This

is a result of a number of things, including reduced relativeclauses, inherent ambiguities

in the sentence as well as inconsistencies between the head of adjective phrases resulting

from the fixed head percolation rules. A frequent source of error also arose due to ADJPs

in comparative constructions likeas high as, where the first instance ofasshould modify

the adjectivehigh to create an ADJPas high. This was often parsed with either the first or

lastasbeing the head of an adverbial phrase.

In terms of labeling accuracy, which is the percentage of modifiers for which the in-

coming edge in the tree has the correct label (not necessarily the correct head), we see

that the largest sources of errors are nouns (NN, NNS), verbs(VB, VBZ, VBN, VBG,

VBP), adverbials (RB) and adjectives (JJ). This is not surprising for nouns and verbs since

edges involving these words have the most ambiguity (e.g., the labels SBJ, OBJ, PRD, NP,

SBAR, S, VP, DEP). On the other hand, part-of-speech types such as determiners, preposi-

tions, conjunctions and punctuation can usually be labeledwith a single rule (e.g., DT→

DEP), thus have labeling accuracies greater than 95%. Verb subject errors are most com-

mon due to subjects following the verb, such asNot included in the bid are Bonwit Teller

or B. Altman & Co., L.J. Hooker’s department store chains. Here, the conjoined phrase

was parsed correctly, however, it incorrectly modified the verbareas a NP-PRD.

For NP-OBJ a common error seems to be from nouns modifying verbs in what is defined

in the Penn Treebank as the “Closely Related” relationship,for example,he has had trouble

finding the stocks he likes. Here the nountrouble is considered closely related to the verb

had and is annotated essentially as the fixed phrasehad trouble. The parser mistakes this

for a direct object. The opposite also happens, where the parser treats the noun as a closely

89

related modifier, when it really should be the object. Some errors are also due to the

heuristic nature of the inclusion of the NP-OBJ label in the extraction script, since OBJ is

not a function tag originally annotated in the Penn Treebank. The OBJ label was included

for any NP under a VP that lacks an adverbial function [106]. For example, inRevenue

gained 6 % to$ 2.55 billion from$ 2.4 billion, the extraction script labeled the dependency

from 6 % to gainedas an NP-OBJ since it is an NP within a VP. However,6 % is not

a direct object, but simply a result of the gaining event and was labeled as an NP by the

dependency parser.

For the label ADVP a large number of errors result from incorrect part-of-speech tag-

ging. For instance, in... having much of an effect ...the adjectivemuchis mislabeled

as an adverb. It is correctly parsed as the head of the phrasemuch of an effect(accord-

ing to the head rules), but that phrase is incorrectly labeled an ADVP and not a NP-OBJ2.

Other common errors are due to adverbs heading adjective phrases, such aswho are [ADJP

[ADVP only casually] related [PP to the magazine]]. Hereonlyheads the adjective phrase

(according to the Yamada and Matsumoto head rules), but since it is an adverb, the edge is

labeled an ADVP. This error causes many of the ADJP phrase labeling problems as well.

The final column in Table 6.4 is labeled accuracy (LA), which combines both unlabeled

accuracy and labeling accuracy. The primary property of interest in this column is to note

that the differences in unlabeled and labeling accuracy often multiply. For instance, nouns

and verbs have high unlabeled accuracy but low labeling accuracy, resulting in average

labeled accuracy, and vice-versa for conjunctions and prepositions. The worst is adverbs,

whose low unlabeled accuracy and low labeling accuracy multiply together to result in a

labeled accuracy of 76%, well below the average.

2This seems like another case of an error in assigning nouns the OBJ label.

90

Part-of-speech correct incorrect correct labeling correct head
Tag words head head UA label accuracy and label LA

IN 5934 5039 895 85% 5549 94% 4814 81%
, 3064 2431 633 79% 3062 100% 2431 79%

NN 7841 7246 595 92% 7227 92% 7012 89%
RB 1991 1661 330 83% 1673 84% 1517 76%

NNS 3561 3264 297 92% 3265 92% 3164 89%
NNP 5500 5215 285 95% 5206 95% 5070 92%

JJ 3663 3439 224 94% 3374 92% 3272 89%
CC 1369 1168 201 85% 1358 99% 1164 85%
CD 1943 1792 151 92% 1855 95% 1767 91%
DT 4834 4692 142 97% 4784 99% 4667 97%

VBG 856 722 134 84% 735 86% 680 79%
. 2363 2231 132 94% 2363 100% 2231 94%

VBD 1814 1695 119 93% 1717 95% 1685 93%
VBZ 1239 1126 113 91% 1139 92% 1110 90%

“ 531 426 105 80% 531 100% 426 80%
VB 1549 1446 103 93% 1445 93% 1404 91%

VBN 1190 1092 98 92% 1074 90% 1036 87%
: 324 235 89 73% 324 100% 235 73%

TO 1240 1151 89 93% 1206 97% 1144 92%
VBP 811 727 84 90% 731 90% 710 88%

’ 512 436 76 85% 511 100% 435 85%
MD 583 530 53 91% 546 94% 525 90%

WDT 276 234 42 85% 266 96% 231 84%
JJR 190 151 39 79% 150 79% 133 70%

WRB 132 96 36 73% 123 93% 93 70%
$ 376 342 34 91% 342 91% 334 89%

POS 548 524 24 96% 538 98% 522 95%
RBR 107 85 22 79% 88 82% 78 73%

-RRB- 72 53 19 74% 72 100% 53 74%
PRP 1050 1032 18 98% 1033 98% 1025 98%
WP 112 95 17 85% 104 93% 92 82%

PRP$ 511 494 17 97% 511 100% 494 97%
-LRB- 72 61 11 85% 72 100% 61 85%

JJS 128 118 10 92% 116 91% 112 88%
NNPS 118 112 6 95% 109 92% 108 92%

UH 10 5 5 50% 8 80% 4 40%
WP$ 21 17 4 81% 21 100% 17 81%
PDT 21 17 4 81% 21 100% 17 81%
RBS 27 24 3 89% 26 96% 24 89%
LS 4 2 2 50% 2 50% 0 0%
FW 4 2 2 50% 1 25% 1 25%
EX 58 56 2 97% 58 100% 56 97%
RP 130 129 1 99% 105 81% 105 81%
5 4 1 80% 5 100% 4 80%

Table 6.4: Head modification accuracy by modifier part-of-speech tag. UA is unlabeled
accuracy, labeling accuracy is the percentage of modifiers whose incoming edge has the
correct label (though not necessarily the correct head), and LA is labeled accuracy.

91

Dependency Label gold correct incorrect system recall(%) precision(%)
DEP 25522 23278 2244 25767 91.21 90.34
NP 7449 6586 863 7434 88.41 88.59
PP 5429 4574 855 5582 84.25 81.94

SBAR 1757 1275 482 1638 72.57 77.84
S 2774 2375 399 2800 85.62 84.82

ADJP 769 456 313 592 59.3 77.03
NP-SBJ 4111 3809 302 4039 92.65 94.31
ADVP 1166 908 258 1199 77.87 75.73

NP-OBJ 2011 1775 236 2075 88.26 85.54
VP 2232 2057 175 2264 92.16 90.86

ROOT 2416 2288 128 2416 94.7 94.70
PRN 141 77 64 116 54.61 66.38

NP-PRD 346 284 62 351 82.08 80.91
PRT 159 106 53 130 66.67 81.54
NX 44 3 41 6 6.82 50.00
QP 187 154 33 190 82.35 81.05

UCP 30 3 27 7 10 42.86
FRAG 19 1 18 3 5.26 33.33
CONJP 21 4 17 14 19.05 28.57
NAC 30 16 14 17 53.33 94.12
SINV 11 2 9 3 18.18 66.67

WHNP 30 22 8 24 73.33 91.67
INTJ 10 4 6 8 40 50.00

X 5 1 4 2 20 50.00
LST 4 0 4 2 0 0.00

WHADVP 8 5 3 5 62.5 100.00
SBARQ 2 0 2 0 0 NaN

SQ 1 0 1 0 0 NaN

Table 6.5: Labeled precision/recall of dependency edges byedge label.

Dependency Errors by Label Type

Another method of analyzing dependency parsing performance is to measure labeled pre-

cision and recall, which is similar, but not analogous, to performance metrics for phrase-

based parsing [25]. Labeled precision for an edge label is the percentage of edges we

predicted with that label that were valid, and recall is the percentage of valid edges with

that label that were predicted. For English, results are shown in Table 6.5.

Here the errors are also not surprising. For instance, the label SBAR has both a poor

precision and recall due to its confusion versus both the labels S and VP, which occur more

frequently. Similarly, the modifiers of verbs typically have a low precision and recall. In

particular, the labels NP-OBJ, NP-PRD, NP and DEP are often confused since they are

typically to the right of the verb, whereas NP-SBJ is almost exclusively to its left (i.e., the

direction of attachment feature plus modifier POS tag would typically be enough to get

92

NP-SBJ edges correct).

Again we note that both adverbial and adjective phrasal labels have particularly bad

precision and recall. Finally, we note that the label ROOT does not have a precision/recall

of 1.0 due to unlabeled parsing errors (i.e., the wrong verb in a multi-clause sentence being

attached to the root) and not because of labeling errors.

6.1.2 Feature Space Analysis

One powerful aspect of discriminative models is their ability to incorporate rich sets of

highly dependent features. In previous sections the modelswe have described have clearly

taken advantage of this property by incorporating millionsof features over parsing deci-

sions and the input in order to produce dependency scores. One very natural question to

ask is,how does each feature affect performance?

For generative parsing models, Bikel [6] provided a detailed analysis of the contribution

of each class of distribution to the generative power of the model. One conclusion drawn

from Bikel’s experiments was that bilexical distributionsare very similar to back-off dis-

tributions that do not use bilexical information, which explained the long-known property

that generative parsers have little performance degradation once bilexical information is

removed. Ideally we would like to do a similar analysis of ourdependency parsing models.

However, the non-probabilistic nature of our models prevents that kind of comparison.

A simple method might be to look at the weight of each individual feature to deter-

mine its importance to parsing. But again there is a problem.Positive feature weights

typically indicate good dependency decisions and negativeweights bad decisions. Beyond

that though, there is very little one can infer from the weight itself. This is due to the dis-

criminative way in which the weights are learned. Consider featuresf1 throughfm that

occur frequently, always occur together and only occur for edges that represent valid de-

pendencies. Since we train our models to set weights so that correct decisions are made

93

with the smallest weights possible, it should be the case that the weight for each of these

features is low, since all we require is the sum of their weights to be high. On the other

hand consider featuref ′ that occurs once for a correct dependency. Furthermore assume all

the other features that are on for this correct dependency usually occur only for incorrect

dependencies. The model will naturally set the weight of featuref ′ high since it needs to

overcome the negative influence of all those other features.However, a high weight for

featuref ′ does not necessarily mean it is an important feature, it probably just means that

that particular edge is an outlier in the training set. Conversely, the low weights of features

f1 . . . fm does not indicate they are less important. In fact, for performance on the test set,

it is almost certain that featuresf1 . . . fm will be of more use.

In this section we describe two experiments. The first is to identify classes of features,

such as word or part-of-speech features, and evaluate theirimpact on overall accuracy by

retraining the model without them and measuring the subsequent drop in performance.

In the second experiment we compare two feature selection techniques, count cut-off and

information gain, and evaluate the performance of each on varying sizes of feature sets.

Leave Out Feature Tests

The most common technique for determining the impact of eachfeature in a discriminative

learning setting is the so calledleave out feature tests. This method simply identifies com-

mon classes of features, retrains the models without these features and measures the drop

in subsequent performance. The intuition is simple - the features that are most important

to parsing will result in the largest drop in accuracy when they are left out. This analysis

is imperfect. Often two feature classes will overlap significantly, thus leaving one class out

may not have a huge impact on performance since another classcan encode much of the

information. We will try to identify such classes when they arise.

For these experiments, we broke our feature set Section 3.2 into the following classes:

94

English
First-Order
Unlabeled Accuracy

Full 90.7
NoPrefix 90.7

NoPOSContext 89.4
NoPOSBetween 90.2

NoPOSContextBetween 86.0
NoEdge 87.3

NoBiLex 90.6
NoAttachmentOrDistance 88.1

English
Second-Order
Unlabeled Accuracy

Full 91.5
NoPrefix 91.4

NoPOSContext 91.0
NoPOSBetween 91.3

NoPOSContextBetween 90.0
NoEdge 89.5

NoBiLex 91.5
NoAttachmentOrDistance 91.3

Table 6.6: English parsing accuracy results using various subsets of features.

• Full: The full set of features.

• NoPrefix: The full set, but without prefix features.

• NoPOSContext: The full set, but without POS context features, i.e., the features
describing the POS tags of the words surrounding the head andmodifier word of the
dependency.

• NoPOSBetween:The full set, but without POS features for the words in-between
the head and modifier.

• NoPOSContextBetween:The intersection of NoPOSContext and NoPOSBetween.
POS context and in-between features overlap significantly.This set is meant to show
the performance without either of them.

• NoEdge: The full set, but without any features over the head or modifier.

• NoBiLex: Identical to NoEdge, however we only omit those features that contain
the word identities ofboth the head and modifier. This also includes bilexical prefix
features.

• NoAttachmentOrDistance: The full set, but we never include any information
about dependency attachment direction or the distance between the head and modi-
fier.

Table 6.6 shows the results for each subset of features. We report results for both the

first-order model and the second-order model for English.

For both systems the prefix features had very little effect. In fact, the reason the system

even includes prefix features is to improve performance on Czech, which had a much larger

vocabulary and rich morphology. The prefix feature was specifically designed as an ad-hoc

95

method for extracting the lemma from the inflected form in Czech. The prefix feature for

Czech resulted in around a half percent increase in performance absolute. Similarly, the

bilexical features had virtually no effect on parsing performance. This is not surprising and

confirms previously reported results from the lexicalized phrase-structure community [55].

For the first-order model, knowing the direction of attachment as well as the distance

from the head to the modifier is crucial to performance. Without this knowledge perfor-

mance drops from 90.7 to 88.1. This of course makes sense. Particular word classes (e.g.

noun and prepositional modifiers) typically will only have ahead that is nearby, whereas

others (e.g., main verbs) can have heads at a much larger distance. Direction is important

since some modifiers exist almost exclusively to the left or right of the head (e.g., modifiers

of nouns are usually to the left, with the exceptions usuallyonly for prepositions or relative

clauses). Direction and distance become less important with the second-order model. This

is not too surprising. Consider a preposition attaching to anoun that is far away on its left.

Without distance we cannot rule out such a case because we cannot learn the regularity that

prepositions typically only attach to nouns if they are directly to the right of them. How-

ever, if the noun and the preposition are far away, the noun islikely to have taken modifiers

between them, which is encoded in the second-order model, which serves as a proxy in this

case.

The most interesting case is what happens when part-of-speech context and in-between

features are removed. For the first order model, removing either does not ruin the perfor-

mance of the parser (90.7 to 89.4 and 90.2). However, once both context and in-between

features are removed, parsing accuracy drops significantlyto 86.0%. Note that even re-

moving all the features of the head and modifier in the dependency does not even hurt

performance as much (87.3%). This result is one of the most important in this work, so

important that we emphasize it here:

Maximum spanning tree parsing provides efficient inferencealgorithms for

96

both the projective and non-projective case. Furthermore,the weaknesses

of edge-based factorization can be overcome with discriminative learning

that exploits rich feature sets describing properties of each dependency as

well as their local context.

The edge features and part-of-speech context/in-between features are all statistically

dependent, but with our discriminative learning frameworkwe can learn weights for each

of these features in order to achieve state-of-the-art accuracies. Thus, an aggressive edge

based factorization can be overcome with a rich feature representation of the input. As a

result we achieve efficient non-projective parsing with high empirical accuracy by using

discriminative learning with spanning tree inference algorithms.

The part-of-speech context and in-between features can be viewed as simulating higher

order feature representations. First, we note the drop in performance of the second-order

model when these features are removed (Figure 6.6). This drop is not nearly as significant

as the drop in performance of the first-order model, i.e., there is only a 15% relative change

in the second-order model versus a 34% change in the first-order model. The relative

unimportance of these features for the second-order model shows that their information

overlaps significantly with the second-order features.

Feature Selection

The number of features for the various models we have described is typically between five

and fifteen million. Of these millions of features it seems likely that many are unimportant

and that even some are misleading (e.g., infrequent features). For feature spaces of this

size, people often employ some form of feature selection [50] as means to reduce model

size or improve generalization performance.

In this section we consider two simple feature selection criteria for our first-order pars-

ing models. The first is feature count cut-off. Here we simplyjust take those features that

97

occur in the training set more than a predefined threshold. The second criteria is informa-

tion gain. Consider a random variableY ∈ {−1, 1} that is 1 if a proposed dependency edge

(i, j) is valid and−1 if it is not. Let H(Y) represent the entropy ofP (Y). Now consider

a particular featuref and the distributionP (Y |f) with entropyH(Y |f). The information

gain of featuref is defined as,

IG(f) = H(Y)−H(Y |f)

This difference in entropy measures how much information about random variableY ,

the featuref encodes. We would expect features with high information gain to encode a lot

of information about which dependency edges are valid and which are not. Thus, it seems

reasonable that these features should help in parsing dependencies.

Figure 6.1 shows dependency accuracy results for both methods using cut-off or in-

formation gain thresholds that result in feature set sizes of roughly 10,000, 100,000 and

500,000 features. This figure shows that with many features there is little difference be-

tween the two methods. However, when we look at smaller feature set sizes feature count

cut-off seems to outperform information gain. At first glance this seems like a surprising

result since count cut-off is one of the crudest methods for feature selection.

A closer look at the actual features returned by each method sheds some light on why

count cut-off performs so well. Most of the features that count cut-off returns are based

on part-of-speech information and not lexical information. As we showed in the previous

section, these features tend to generalize best. Furthermore, since we are using frequency as

a means for selection, these features are also more likely tooccur in the test set as well. On

the other hand, information gain in many cases returned features that are highly indicative

when present, but occur less frequently. It appears that having a lot features on per edge is

more important than having few informative features that occur infrequently in the test set.

98

0 1 2 3 4 5 6

x 10
5

83

84

85

86

87

88

89

90

91
Feature Selection: Count Cut−Off vs. Info−Gain

Number of Features
A

cc
ur

ac
y

Count Cut−Off
Info−Gain

Figure 6.1: Feature selection tests comparing feature count cut-off to information gain. The
top dashed line represents the parser when all of the roughly7,000,000 English features are
included.

We should note that other feature selection metrics were attempted including Chi-

squared and Bi-normal separation [50]. However, none led tobetter results than count

cut-off or information gain.

In terms of model selection, we can determine from Figure 6.1that with less than1/10th

of the feature set (from 7 million features to 550,000) performance is nearly as good as the

full model (90.7% versus 90.2%) using feature count cut-off.

6.2 All Languages

In this section we will present a brief quantitative study ofthe errors produced by the

parsers for languages other than English. The error analysis of this section is much more

coarse grained than that for English. It is meant to provide an intuition for what aspects of

parsing systems improve performance across languages, as well as what are the properties

of a language that make it either difficult or easy to parse.

99

Projective
No-Morph

Normal Projective No-Morph Features Atomic Labeling Atomic
Arabic 79.6/66.9 79.3/66.9 78.0/65.1 79.3/66.8 78.0/65.0

Bulgarian 92.0/87.6 92.0/87.6 91.9/87.2 92.0/87.3 91.9/86.5
Danish 90.6/84.8 89.8/84.1 90.1/84.0 90.6/84.3 89.0/82.6
Dutch 83.6/79.2 78.8/74.7 82.2/77.8 83.6/79.2 78.3/73.8

Japanese 92.8/90.7 92.9/90.7 92.7/90.6 92.8/90.4 92.6/90.3
Portuguese 91.4/86.8 91.7/87.0 90.5/85.7 91.4/86.5 90.0/84.7

Slovene 83.2/73.4 82.5/72.6 82.2/71.5 83.2/73.3 81.7/70.8
Spanish 86.1/82.3 86.1/82.3 85.1/80.9 86.1/82.0 85.1/80.7
Swedish 88.9/82.6 88.9/82.6 89.2/82.6 88.9/81.7 89.2/82.0
Turkish 74.7/63.2 74.7/63.2 72.8/60.6 74.7/63.4 72.8/60.6
Average 86.3/79.7 85.7/79.2 85.5/78.6 86.3/79.4 84.9/77.7

Table 6.7: Error analysis of parser components averaged over Arabic, Bulgarian, Danish,
Dutch, Japanese, Portuguese, Slovene, Spanish, Swedish and Turkish. Normal: Reported
result, Projective: Only allow projective edges, No-MorphFeatures: Only features over
words and POS tags, Atomic Labeling: Do not use sequence labeling. Each cell contains
the unlabeled and labeled accuracy values (UA/LA).

6.2.1 Quantitative Error Analysis

The models described in this work have several components, including the ability to pro-

duce non-projective edges, sequential assignment of edge labels instead of individual as-

signment, and a rich feature set that incorporates derived morphological properties when

available. The benefit of each of these is shown in Table 6.7. These results report the la-

beled and unlabeled precision for the 10 languages with the smallest training sets. This

allowed us to train new models quickly.

Table 6.7 shows that each component of our system does not change performance sig-

nificantly (row labeledAverage). However, if we only allow projective parses, do not

use morphological features and label edges with a simple atomic classifier, the overall

drop in performance becomes significant (first column versuslast column). Allowing

non-projective parses helped with freer word order languages like Dutch (78.8%/74.7% to

83.6%/79.2%, unlabeled/labeled accuracy). Including rich morphologyfeatures naturally

helped with highly inflected languages, in particular Spanish, Arabic, Turkish, Slovene,

100

Dutch and Portuguese. Derived morphological features improved accuracy in all these

languages by 1-3% absolute. See Section 6.2.2 for more details.

Sequential classification of labels had very little effect on overall labeled accuracy

(79.4% to 79.7%)3. The major contribution was in helping to distinguish subjects, objects

and other dependents of main verbs, which is the most common labeling error. This is not

surprising since these edge labels typically are the most correlated (i.e., if you already know

which noun dependent is the subject, then it should be easy tofind the object). For instance,

sequential labeling improves the labeling of objects from81.7%/75.6% to 84.2%/81.3%

(labeled precision/recall) and the labeling of subjects from86.8%/88.2% to 90.5%/90.4%

for Swedish. Similar improvements are common across all languages, though not as dra-

matic. Even with this improvement, the labeling of verb dependents remains the highest

source of error.

6.2.2 The Benefit of Morphological Features

The integration of morphology into statistical parsers hasbeen an open issue in the parsing

community. In particular, interest in parsing Semitic languages and other highly inflected

languages has given rise to the question of what role morphological information will play

in parsing. One key aspect of the discriminative parsing models described in this work is

that they have a natural mechanism for incorporating such information – the feature set.

Our parsing models simply incorporated the cross-product of morphological informa-

tion between a head and a modifier as features. This simple andsomewhat naive method

resulted in an overall improvement in labeled accuracy of 65.1% to 66.9% for Arabic,

77.8% to 79.2% for Dutch, 85.7% to 86.8% for Portuguese, 80.9% to 82.3% for Spanish,

71.5% to 73.4% for Slovene, and 60.6% to 63.2% for Turkish.

3This difference was much larger for experiments in which gold standard unlabeled dependencies are
used.

101

Extending the feature set to improve parsing of highly inflected languages is clearly

one of the most important areas of future research for discriminative parsing models such

as those presented here.

6.2.3 Correlating Language and Data Properties with Accuracy

By building a single system to parse multiple languages, we are placed in a situation to

gain insight into the underlying properties of a language that make it either difficult or easy

to parse. This is because we can eliminate any variations in performance due to language

specific parser optimizations. In this section we compare unlabeled parsing accuracies

(including punctuation) relative to four properties,

1. Average conditional entropyof the head offset distribution. Consider the distribution

P (O|t, p), which is the probability that the head of a token is at some particular

offset O ∈ ZZ, for the given token and part-of-speech tag (t andp). For instance,

P (−2|Inc., N) is the probability that the head of the wordInc. is two words to its

left. One would expect that languages with a non-uniform head offset distribution

(e.g., always modify the word to the right) will be easier to parse.

2. Average sentence length. This simply measures throughout both the full training and

testing sets what the average sentence length is for each language. As mentioned

earlier, longer sentences typically cause more errors due to the higher presence of

prepositions, conjunctions and multi-clause constructions.

3. Percentage of unique tokens in training set. On a normalized training set (i.e., identi-

cal length for each language), this measures the number of unique tokens in the data.

Data sets with more unique tokens are typically drawn from more diverse sources

and can lead to sparse parameter estimations. This also measures lexical sparsity.

102

4. Percentage of new tokens in test set. If the i.i.d. assumption is broken between the

training and test set, then we would expect to see a high percentage of unseen tokens

in the test set relative to the training set. This also measures lexical sparsity.

Figure 6.2 plots unlabeled dependency accuracy versus the four criteria outlined above.

We normalized the training sets for each language so that they roughly contained the same

number of tokens. This was done by randomly picking sentences from the data (without

replacement) until the desired number of tokens was exceeded.

Figure 6.2a, Figure 6.2b, Figure 6.2c and Figure 6.2d show that there is little correlation

between parsing accuracy any of the properties we have described. This is not too surpris-

ing, since one would expect multiple properties of a language and/or data set to contribute

to parsing difficulty. For example, Arabic has a low average conditional entropy (1.1), but

has on average the longest sentences (37). Turkish has very short sentences (8), but a high

percentage of unique tokens due to the fact that it is highly inflected. Of all the properties,

unique tokens in the training set has the highest correlation with parsing accuracy (around

0.56 statistical correlation).

The final plot, Figure 6.2e, is a linear combination of Figure6.2a, b, c and d. This

plot was generated by first normalizing all values using the log of each value relative to

the average, i.e.,log(value/average value)4. Then, the coefficients for each property in the

linear combination were chosen using least-squares linearregression. Figure 6.2e clearly

shows that a correlation with parsing accuracy is beginningto appear. This suggests that

all of the properties together have a high impact on parsing accuracy, even though no one

property is directly correlated. The statistical correlation of this linear combination and

parsing accuracy is 0.85.

4For average conditional entropy we did not take the log sinceit is already on the log scale. Instead we
just subtracted the average conditional entropy of all the languages together.

103

What conclusions can be drawn? The fact that the we can correlate parsing accuracy

with properties of the data suggests that the parser is indeed language independent. How-

ever, some of these properties reflect aspects of the language itself, and not just one partic-

ular data set. The percentage of unique or unseen tokens willbe large for highly inflected

languages, which tend to be lexically sparse. We would expect, and in fact it is the case,

that performance for these languages is lower than average.This suggests that the parser

still needs to be improved to attain total language generality.

Of course, this analysis is simplistic and there are many more factors that can con-

tribute. These include annotation design decisions, consistency of annotations, head ex-

traction rules for converted treebanks, and the quality of the automatic part-of-speech and

morphology tagger.

104

(a)
72 74 76 78 80 82 84 86 88 90 92

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 C
on

di
tio

na
l E

nt
ro

py

Dependency Parsing Accuracy

(b)
72 74 76 78 80 82 84 86 88 90 92

5

10

15

20

25

30

35

40

A
ve

ra
ge

 S
en

te
nc

e
Le

ng
th

Dependency Parsing Accuracy

(c)
72 74 76 78 80 82 84 86 88 90 92

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
er

ce
nt

ag
e

of
 U

ni
qu

e
T

ok
en

s
in

 T
ra

in
in

g
S

et

Dependency Parsing Accuracy

(d)
72 74 76 78 80 82 84 86 88 90 92

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
er

ce
nt

ag
e

of
 U

ns
ee

n
T

ok
en

s
in

 T
es

t S
et

Dependency Parsing Accuracy

(e)

72 74 76 78 80 82 84 86 88 90 92
76

78

80

82

84

86

88

90

92

94

C
O

M
B

IN
E

D
: L

IN
E

A
R

 R
E

G
R

E
S

S
IO

N

Dependency Parsing Accuracy

Figure 6.2: Plots of unlabeled dependency parsing accuracyversus properties of the data
for each language. (a) Average conditional entropy of head offset distribution. (b) Average
sentence length. (c) Percentage of unique tokens in normalized training set. (d) Percentage
of unseen tokens in the test set relative to normalized training set. (e) Normalized least-
squares linear regression of a, b, c, and d.

105

Chapter 7

Improved Parsing with Auxiliary

Classifiers

In this chapter we demonstrate how it is possible to define newfeatures indicating the

output of auxiliary parsers trained on in and out of domain data sets. The first section deals

with improving a WSJ parser by adding features on the output of diverse parsers trained on

the same data. The second section shows how it is possible to adapt a WSJ parser to a new

domain in which little training data is available.

7.1 Improving a WSJ Parser by Combining Parsers

Combining the outputs of several classifiers has been shown in the past to improve per-

formance significantly for many tasks. One common method is to linearly interpolate the

probability distributions of all the classifiers by either choosing or learning the weights on

some held-out data set [69]. However, this approach requires that all models return a valid

probability distribution and that the best parse can be efficiently found in the interpolated

model, both of which are unlikely.

106

For parsing, a more common approach to combining the output of various parsers is

to use voting. Henderson and Brill [64] described a constituent voting scheme for phrase-

structure and Zeman [154] describes an edge voting scheme for dependency structures, both

of which provide state-of-the-art results. However, voting requires at least three parsers and

can involve complicated tie-breaking schemes when parsingdecisions differ. Another prob-

lem of voting for parsing is that votes are typically accumulated over constituents/edges and

often the winning constituents/edges do not constitute a valid tree. In fact, for dependency

trees, the approach of Zeman is not guaranteed to obey the tree constraint, a property we

wish to maintain. In both cases, heuristics are required to return a consistent parse.

Voting is also deficient since it assumes that we trust each ofthe parsers equally since

each gets an equal vote. However, in practice, we typically prefer the output of some

parsers over others. To address this problem Henderson and Brill also present a model that

learns voting weights for each parser by using a naive Bayes classifier on a held-out set of

data. This way we can add weight to the votes of parsers that are most trustworthy on this

new data set. But again, the same problems with consistent constituents will arise.

Fortunately there is a simple mechanism for solving all these problems in the discrim-

inative parsing framework. All one needs to do is define a class of features that indicates

parsing decisions for each auxiliary parser and include these features into the discrimina-

tive model. For dependency parsing, this amounts to including features indicating whether

an auxiliary parser believed a certain dependency or pair ofdependencies actually exist in

the tree. Once these features are added, we simply need to train the model on the new set

of data. Specifically, we add two features. The first is a simple binary feature indicating for

each edge (or pair of edges in the second-order case), whether or not the auxiliary parser

believes this edge to be part of the correct tree. The second feature is identical to the first,

except that we conjoin it with the part-of-speech of the headand modifier in the edge (or

the head-sibling-modifier for the second-order case). We also negate these features and

107

English
Accuracy Complete

Collins 91.5 42.6
Charniak-proj 92.1 45.3

2nd-order-proj+ 93.2 47.1

Table 7.1: Results comparing our system to those based on extensions of the Collins and
Charniak parsers to Czech.

include features indicating whether an auxiliary parserdid notbelieve an edge to be part of

the correct tree.

To train the new parser, we need the parsing decisions of the auxiliary classifiers on

the training data. The problem with this is that these classifiers are also trained on exactly

this data, which means they will be uncharacteristically accurate on this data set and will

not represent the kinds of errors these parsers will make on unseen data. To alleviate this

problem we divide the training in two and train two separate models for each auxiliary

classifier. We then run each model on the half of the data it wasnot trained on to extract

parsing decision features for the training set. This procedure is very similar to collecting

training data for parse re-ranking.

Table 7.1 presents results for our second-order projectivemodel on English that has

been modified to include new features that incorporate parsedecisions of the Collins and

Charniak parser. We call the system2nd-order-proj+. This system can then balance these

features with its original feature set to produce an optimalparsing model. The resulting

parser is far more accurate then the original second-order model as well as both the Collins

and Charniak models. Thus, the core feature representationof a discriminative model

allows us to naturally define new features on the output of other parsers to achieve the best

reported parsing accuracies without resorting to complex voting schemes.

108

7.2 Adapting a WSJ Parser to New Domains

In general, large annotated data sets typically are not available to train state-of-the-art pars-

ing models. One interesting problem is how to adapt resources to domains for which there

is little to no training data available. In this section we investigate how to adapt a WSJ

parser to parse biomedical research literature. Recently,Lease and Charniak [81] provided

a set of techniques for modifying a trained WSJ phrase-structure parser when no biomedical

training data is available. These techniques are easily be applied to the case of dependency

parsing. In general, adapting out of domain or out of task annotated data to new problems

is known astransfer learning.

In this section we focus on the different problem of parsing biomedical text when there

is a small amount of training available. For these experiments we took 2,600 parsed sen-

tences from the biomedical domain related to cancer [109]. We divided the data into 500

training, 100 development and 2000 testing sentences. We created five sets of training

data with 100, 200, 300, 400, and 500 sentences respectively. The first experiment we

ran was to simply see how well our trained WSJ parser performson the biomedical text

using our second-order projective model. It turns out that it performs reasonably well at

80.6% accuracy. The primary reason for this is that the numerous POS features from the

WSJ parser are still beneficial for domains in which the lexicon is significantly different.

The next experiments we ran were to train five parsers on the five sets of training data to

measure parsing performance on small sets of data. Figure 7.1 plots accuracy as a function

of training instances.WSJis the performance of the basic WSJ parser andBiomedis the

performance of the parsers trained on only the biomedical data. From the plot we can see

that a parser trained on even a very small set of biomedical data (around 280 sentences)

already outperforms a parser trained on 40,000 WSJ sentences.

We again take advantage of the fact that our discriminative dependency parser can de-

109

100 150 200 250 300 350 400 450 500
76

77

78

79

80

81

82

83

84

85

86

WSJ

BioMed

BioMed+WSJ

Figure 7.1: Adapting a WSJ parser to biomedical text.WSJ: performance of parser
trained only on WSJ.Biomed: performance of parser trained on only biomedical data.
Biomed+WSJ:parser trained on biomedical data with auxiliary WSJ parsing features. Fig-
ure plots dependency accuracy vs. number of biomedical training instances.

fine rich sets of features by creating a feature for the biomedical parser that indicate pars-

ing decisions of the WSJ parser. This is completely analogous to the last section when we

added decision features for auxiliary parsers. This time, our parser will be trained on the

biomedical text and the auxiliary parser is the trained WSJ parser. The performance of this

new model is plotted in Figure 7.1 asBiomed+WSJ. This simple trick leads to an absolute

improvement of at least2.2% in accuracy which represents greater than a10% reduction in

error.

The method of creating features over out of domain predictions is similar to the work

of Florian et al. [49] for named-entity extraction. In that work, an extractor trained on

one newswire corpus was adapted to another newswire corpus through features defined in

a discriminative model. We have shown two things here. First, that this method can be

applied to parsing and second, that this method still works when the two domains are very

different in both content and writing style.

110

Another option would have been to combine the biomedical andthe WSJ training sen-

tences and train a model over this new set of data. However, this performed only marginally

better than the WSJ parser since the number of WSJ training sentences overwhelmed the

training procedure. We could run weighted training, in which biomedical training instances

are weighted higher than WSJ instances. However, this wouldrequire the tuning of a weight

parameter, which is unnecessary in the approach we have suggested. The power of using

the feature space to incorporate out of domain parsing decisions is that it allows us to focus

training in domainwhile incorporating information that can be obtained from alarge out

of domain annotated corpus.

We also looked at feature bagging [12, 132] approaches to parser adaptation. By train-

ing many WSJ parsers on various subsets of the feature space we can often create a diverse,

but powerful, set of parsers, each providing a different view of the feature space. We

then can add features over the outputs of all these parsers with the hopes that the biomed-

ical parser will learn weights accordingly. Unfortunately, this technique did not lead to

improved parser performance. This is not surprising, especially due to the nature of our

parsing models. It has been shown that linear classifiers have low variance when trained on

different subsets of data or features. When this is coupled with the fact that bagging tends

to only work when the different classifiers have high variance, we should not expect these

techniques to improve performance.

One new approach to adapting parsers across domains is that of McClosky et al. [89].

That work uses an out of domain parser to annotate a large set of in domain sentences.

Using the noisy annotations for the in domain data a new parser is trained. If a lot of

partially noisy data is equivalent to a modest amount of clean data, then an in domain

parser trained this way could provide good performance. Themethods of McClosky et al.

are orthogonal to those presented here. We could easily train a parser in the same manner

and then define features on the output of that parser when training a new parser on a small

111

amount of annotated in domain data.

112

Chapter 8

Approximate Dependency Parsing

Algorithms

Parsing dependencies has a relatively low parsing complexity of O(n3) with little to no

grammar constant, which allows for searching the entire space of dependency trees during

inference and learning. However, for other structures, such as lexicalized phrase-structure,

non-projective second-order dependencies and dependencystructures with multiple heads,

the computational cost can become exponential or just to large to permit an exhaustive

search.

Recently there has been much research on learning approximations with discriminative

online learning algorithms. Collins and Roark [30] showed that an incremental parsing

algorithm with an aggressive pruning criteria can still provide state-of-the-art performance

for phrase-structure parsing when combined with perceptron learning. Daumé and Marcu

[39] formalized online learning for approximate inferenceby defining a learning step in

which updates are made based on errors in the approximation procedure. The primary

reason that these methods work is that discriminative online learning allows the model to

set its parameters relative to the inference algorithm. Thus, if the inference algorithm is

113

Czech-A
Accuracy Complete

Learning w/ Approximation 85.2 35.9
Learning w/o Approximation 69.3 10.7

Table 8.1: Approximate second-order non-projective parsing results for Czech displaying
the importance of learning relative to the approximate parsing algorithm.

an approximation, then the model will set its parameters relative to the mistakes such an

approximation might make. As Daumé and Marcu noted, the motivation and methods of

this learning framework are highly related those proposed by the reinforcement learning

community [133].

8.1 Second-order Non-projective Parsing

We have already shown that our approximate second-order non-projective parsing algo-

rithm yields state-of-the-art results. However, we wish toalso display the importance of

learning relative to the approximation. Table 8.1 shows twosystems. The first,Learning

w/ Approximationis the original results for the second-order non-projective parsing model

on Czech, in which the approximate post-process stage of thealgorithm is incorporated

directly into inference during learning. The second,Learning w/o Approximationis the

results for a system in which the approximation is only used at test time. During learning,

this system simply learn the projective model. What we can see is that it is crucial for ap-

proximations at test time to be incorporated during training. It is precisely learning relative

to a specific inference algorithm that allows the online learner to adapt to pitfalls in the

approximation procedure.

114

root Han spejder efter og ser elefanterne

He looks for and sees elephants

Figure 8.1: An example dependency tree from the Danish Dependency Treebank (from
Kromann [79]).

8.2 Non-tree dependency structures: Danish

Kromann [78] argues for a dependency formalism calledDiscontinuous Grammarand an-

notated a large set of Danish sentences under this formalism(the Danish Treebank [79]).

This formalism allows for a word to have multiple heads, e.g., in the case of verb conjunc-

tions where the subject/object is an argument for multiple verbs or relative clauses in which

words must satisfy dependencies within the clause and outside of it. An example is shown

in Figure 8.1 for the sentenceHe looks for and sees elephants. Here, the pronounHe is

the subject for both verbs in the sentence, and the nounelephantsthe corresponding ob-

ject. In the Danish Treebank, roughly5% of words have more than one head, which breaks

the single head (or tree) constraint we have previously required on dependency structures.

Kromann also allows for cyclic dependencies, but focus on sentences with acyclic represen-

tations. Though less common then trees, dependency representations containing multiple

heads are well established in the literature (e.g., Hudson [67]). Unfortunately, the problem

of finding the dependency structure with highest score in this setting is intractable [20].

This is true even for the first-order model and even if we can bound the number of heads to

a constantk, wherek > 1. In the first-order case, the problem is trivially polynomial when

we remove the acyclicity constraint. The second-order problem is NP-hard for all cases.

To create an approximate parsing algorithm for dependency structures with multiple

heads, we start with our approximate second-order non-projective algorithm outlined in

115

Danish
Precision Recall F-measure

Projective 86.3 81.6 83.9
Non-projective 86.8 82.1 84.3

Non-projective w/ multiple heads 86.5 85.2 85.8

Table 8.2: Parsing results for Danish.

Figure 3.6. We use the non-projective algorithm since the Danish treebank contains a small

number of non-projective arcs. We then modify lines 7-10 of this algorithm so that it looks

for the change in heador the addition of an entirely new edge that causes the highest change

in overall score and does not create a cycle. Like before, we make one change per iteration

and that change will depend on the resulting score of the new tree. Using this simple new

approximate parsing algorithm we can train a new parsing model with our online large-

margin learning framework that will allow for the inclusionof multiple heads.

For our experiments we used the Danish Dependency Treebank v1.0. The treebank

contains a small number of inter-sentence dependencies andwe removed all sentences that

contained such structures. The resulting data set contained 5384 sentences. We split the

data into an 80/20 training/testing split by putting every fifth sentence into the training set.

We used the identical second-order feature set that our English and Czech parser use, which

resulted in 1,072,322 distinct features.

We compared three systems, the standard second-order projective and non-projective

parsing models, as well as our modified second-order non-projective model that allows for

the introduction of multiple heads. All systems use gold-standard part-of-speech since no

trained tagger is readily available for Danish. Results areshown in Figure 8.2.

Some things we should note. First of all, the non-projectiveparser does slightly better

then the projective parser since around 1% of the edges are non-projective. We can no

longer use accuracy to measure performance since each word may modify an arbitrary

number of heads. Instead we use edge precision and recall. Ofcourse, this also means

116

that using the Hamming loss during training no longer makes sense. A natural alternative

is to use false positives plus false negatives over edge decisions, which relates the loss to

our ultimate performance metric. As expected, for the basicprojective and non-projective

parsers, the recall is roughly 5% lower than the precision since these models can only pick

up at most one head per word. For the parser that can introducemultiple heads, we see an

increase in recall of over 3% absolute with only a slight dropin precision. These results

are very promising and further show the robustness of discriminative online learning to

approximate parsing algorithms.

8.3 Global Features

The trade-off between locality constraints (for tractableinference) and expressiveness is

an interesting area of research. In this work we have shown how edge based locality

constraints can provide tractable inference. When coupledwith a rich feature set, these

constraints also provide high empirical performance. However, it seems reasonable to con-

jecture that features over larger substructures of the dependency tree should improve perfor-

mance (much in the same way that second-order features did).In this section we describe

two kinds of non-local feature experiments. The first deals with global non-projective fea-

tures. These features will represent global aspects of how anon-projective edge occurs in

the sentence relative to other edges. The hope is that such features will prevent our search

algorithms from arbitrarily inserting non-projectivity into dependency graphs. The second

kind of feature represents the parsing decisions of other siblings (not just the nearest one)

as well as the dependency properties of the head word (i.e., what is the head’s head, a.k.a.,

grandparent).

Fortunately, there is a simple method for incorporating global features into the second-

order non-projective approximate parsing algorithm givenin Figure 3.6. The post process-

117

ing stage considers allO(n2) possible edge transformations and recalculates the score of

the entire tree for each one. It is trivial in this stage to addfeatures indicating (after an edge

transformation) the local and global properties of each edge.

Such global features have been encoded into a re-ranking module [28, 17]. However,

we do not focus on re-ranking issues in this work and leave it as future research.

8.3.1 Global Non-projectivity Features

Both the first and second-order non-projective spanning tree algorithms presented in Chap-

ter 3 make no restrictions on the types of non-projectivity that may occur. In particular, the

features of the parsing models do not encode in anyway whether a particular edge, or sets

of edges are non-projective. In practice this does not seem to adversely effect empirical

performance, even though for many languages, non-projective edges typically only occur

in restricted situations. It seems reasonable to assume that if we can somehow encode

this information into the parsing models, then we might reduce the amount of erroneous

non-projectivity in the returned parses. To do this, we added the following binary edge

features,

1. Is the edge non-projective?

2. Is the edge non-projective & what are the POS tags of the head and modifier?

3. Is the edge non-projective & what are the POS tags between the head and modifier?

These features are distinct from those previously defined inother models. This is be-

cause they require the knowledge of an arbitrary number of edges in the tree to determine

if a single edge is non-projective. All of these features were conjoined with direction of

attachment and distance between the head and modifier. Note that these features cannot be

incorporated into the first-order non-projective parsing model, since these properties rely

on knowledge of the entire dependency graph.

118

Czech
Accuracy Complete

2nd-order-non-proj 85.2 35.9
2nd-order-non-proj approx w/ global features 85.2 35.6

Table 8.3: Benefit of additional global non-projective features.

Results are shown in Table 8.3 for the Czech data. Unfortunately these features made

little difference to overall parsing performance. This canbe explained by looking at the

precision and recall of the non-projective edges in the dataset. The parser with the global

non-projective features had a higher precision but lower recall since it tended to restrict

some non-projective edges from being inserted. This resultin many ways justifies the data-

driven parsing algorithms without the use of underlying grammars specifying when certain

constructions may occur.

8.3.2 Grandparent and Other Sibling Features

In the second-order parsing model we extended the feature representation to include fea-

tures over pairs of adjacent edges in the tree. In this section, we extend this further and

allow features over an pair of edges that modify the same head. We add identical second-

order features, except that we also indicate whether the edges are adjacent or not. In addi-

tion to this, we also extend the feature representation to incorporate dependency informa-

tion relating to the head word. That is, we add a features overthe identity of the head’s head

in the dependency graph (also known as the grandparent). This information is designed to

disambiguate cases like prepositional attachment. If we consider the sentenceI saw the sci-

entist with the telescope, this new feature will tell us that the prepositional phraseis much

more likely to attach to the noun since the dependency graph path featurescientist→ with

→ telescopeshould have a high weight due to the high correlation betweenscientistand

telescope. In contrast, for the sentence,I saw the planet with the telescope, the path feature

119

English
Accuracy Complete

2nd-order-proj 91.5 42.1
2nd-order-non-proj approx w/ global features 91.4 40.8

Table 8.4: Benefit of additional global sibling and grandparent features.

planet→ with→ telescopeshould have a lower weight since planets rarely are modified

by telescopes, but are often seen through them (i.e., a higher weight should be associated

with saw→ with→ telescope).

Results are shown in Table 8.4 for the English data. We added features over the part-

of-speech tags of the grandparent, parent and child, the lexical identities of the grand-

parent and child and conjoin these with direction and distance between grandparent and

child. Though we are parsing English, the system we report did not attempt to prevent

non-projective edges from occurring. We could have simply added a constraint forcing

the parser to only consider edge changes that did not break a projectivity constraint, but

we found that this led to slightly worse performance. Unfortunately adding these features

did not improve performance over the second-order model. Infact, performance did drop

slightly. There may be many reasons for this. First, this information may not be impor-

tant to improving dependency parsing accuracy. Second, these additional features might

be causing the parsing models to overfit. And third, any addedbenefit from these features

may might be washed out by the approximate inference. Previous results presented in this

chapter provide evidence against this final reason.

8.3.3 Global Feature Summary

In this section we described some preliminary experiments to include global features of

edges including additional sibling and grandparent information as well as global aspects

of non-projective edges. Unfortunately these features didnot improve performance. This

120

seems to contradict much work on parse re-ranking [28, 17] which suggests global features

are important to improving performance of the parsers. However, it can be argued that the

real benefit of parse re-ranking is the use of discriminativelearning optimizing an objective

directly related to prediction performance, which the parsers in this work already benefit

from.

One area of future work worth pursuing is to create an approximate greedy parser

trained with the learning algorithms of Daumé and Marcu [39]. This algorithms provide a

principled approach to incorporating global features intogreedy approximate search algo-

rithms and has been shown to be empirically justifiable.

8.4 Summary of Chapter

In this section we described some initial experiments suggesting that discriminative on-

line learning techniques are robust to inference approximations. This is an example of a

more general problem - learning and inference algorithms for intractable NLP problems.

As the language processing community moves to induce more complex structures and even

joint representations of various linguistic phenomenon, it will become increasingly impor-

tant to develop learning and inference algorithms when traditional dynamic-programming

algorithms like Viterbi, CKY, forward-backward or inside-outside fail.

121

Chapter 9

Application to Sentence Compression

In this chapter we apply our dependency parser to the problemof sentence compression to

show its applicability in an important subcomponent of summarization systems. Summa-

rization systems are evaluated on the amount of relevant information retained, the gram-

maticality of the summary and the compression rate. Thus, returning highly compressed,

yet informative, sentences allows summarization systems to return larger sets of sentences

and increase the overall amount of information extracted.

We focus on the particular instantiation of sentence compression when the goal is to

produce the compressed version solely by removing words or phrases from the original,

which is the most common setting in the literature [76, 114, 146]. In this framework, the

goal is to find the shortest substring of the original sentence that conveys the most im-

portant aspects of the meaning. As is the case throughout this work, we use supervised

learning and assume as input a training setT =(xt, yt)
|T |
t=1 of original sentencesxt and

their compressionsyt. We use the Ziff-Davis corpus, which is a set of 1087 pairs of sen-

tence/compression pairs. Furthermore, we use the same 32 testing examples from Knight

and Marcu [76] and the rest for training, except that we hold out 20 sentences for the pur-

pose of development. A handful of sentences occur twice but with different compressions.

122

The Reverse Engineer Tool is priced from $8,000 for a single user to $90,000 for a multiuser project site .

The Reverse Engineer Tool is available now and is priced on a site-licensing basis , ranging from $8,000 for a single user to $90,000 for

a multiuser project site .

Design recovery tools read existing code and translate it into definitions and structured diagrams .

Essentially , design recovery tools read existing code and translate it into the language in which CASE is conversant – definitions and

structured diagrams .

Figure 9.1: Two examples of compressed sentences from the Ziff-Davis corpus. The com-
pressed version and the original sentence are given.

We randomly select a single compression for each unique sentence in order to create an

unambiguous training set. Examples from this data set are given in Figure 9.1.

Formally, sentence compression aims to shorten a sentencex = x1 . . . xn into a sub-

stringy = y1 . . . ym, whereyi ∈ {x1, . . . , xn}. We define the functionI(i) ∈ {1, . . . , n}

that maps wordyi in the compression to the index of the word in the original sentence.

Finally we include the constraintI(i) < I(i + 1), which forces each word inx to occur

at most once in the compressiony and in the correct relative order. Compressions are

evaluated on three criteria,

1. Grammaticality: Compressed sentences should be grammatical.

2. Importance: How much of the important information is retained from the original.

3. Compression rate: How much compression took place. A compression rate of65%

means the compressed sentence is65% the length of the original.

Typically grammaticality and importance are traded off with compression rate. The

longer our compressions, the less likely we are to remove important words or phrases cru-

cial to maintaining grammaticality and the intended meaning.

This chapter is organized as follows: Section 9.1 discussesprevious approaches to

sentence compression. In particular, we discuss the advantages and disadvantages of the

models of Knight and Marcu [76]. In Section 9.2 we present a discriminative large-margin

123

model for sentence compression, including an efficient decoding algorithm for searching

the space of compressions. Most importantly, we show how to extract a rich feature set

that includes surface-level bigram features of the compressed sentence, dropped words and

phrases from the original sentence, and features over dependency structures produced by

the English parser described in this work. We argue that thisrich feature set allows the

model to accurately learn which words and phrases should be dropped and which should

remain in the compression. Section 9.3 presents an experimental evaluation of our model

compared to a model of Knight and Marcu. Furthermore, we alsoempirically display the

importance of the dependency features in producing good compressions.

9.1 Previous Work

Knight and Marcu [76] first tackled this problem by presenting a generative noisy-channel

model and a discriminative tree-to-tree decision tree model. The noisy-channel model de-

fines the problem as finding the compressed sentence with maximum conditional probabil-

ity

y = arg max
y

P (y|x) = arg max
y

P (x|y)P (y)

P (y) is the source model, which is a PCFG plus bigram language model. P (x|y) is the

channel model, the probability that the long sentence is an expansion of the compressed

sentence. To calculate the channel model, both the originaland compressed versions of

every sentence in the training set are assigned a phrase-structure tree. Given a tree for a

long sentencex and compressed sentencey, the channel probability is the product of the

probability for each transformation required if the tree for y is to expand to the tree forx.

The tree-to-tree decision tree model looks to rewrite the tree forx into a tree fory. The

model uses a shift-reduce-drop parsing algorithm that starts with the sequence of words in

x and the corresponding tree. The algorithm then either shifts (considers new words and

124

subtrees forx), reduces (combines subtrees fromx into possibly new tree constructions)

or drops (drops words and subtrees fromx) on each step of the algorithm. A decision tree

model is trained on a set of indicative features for each typeof action in the parser. These

models are then combined in a greedy global search algorithmto find a single compression.

Though both models of Knight and Marcu perform quite well, they do have their short-

comings. The noisy-channel model uses a source model that istrained on uncompressed

sentences, even though the source model is meant to represent the probability of com-

pressed sentences. The channel model requires aligned parse trees for both compressed

and uncompressed sentences in the training set in order to calculate probability estimates.

These parses are provided from a parsing model trained on outof domain data (the WSJ),

which can result in parse trees with many mistakes for both the original and compressed

versions. This makes alignment difficult and the channel probability estimates unreliable

as a result. On the other hand, the decision tree model does not rely on the trees to align and

instead simply learns a tree-to-tree transformation modelto compress sentences. The pri-

mary problem with this model is that most of the model features encode properties related

to including or dropping constituents from the tree with no encoding of bigram or trigram

surface features to promote grammaticality. As a result, the model will sometimes return

very short and ungrammatical compressions.

Both models rely heavily on the output of a noisy parser to calculate probability esti-

mates for the compression. We argue in the next section that ideally, parse trees should be

treated solely as a source of evidence when making compression decisions to be balanced

with other evidence such as that provided by the words themselves.

Recently Turner and Charniak [146] presented supervised and semi-supervised versions

of the Knight and Marcu noisy-channel model. The resulting systems typically return in-

formative and grammatical sentences, however, they do so atthe cost of compression rate.

Riezler et al. [114] present a discriminative sentence compressor over the output of an LFG

125

parser that is a packed representation of possible compressions. This model is highly re-

lated to the system we present here. However, unlike Riezleret al., we do not let the output

of an out of domain trained parser to guide our search. Instead, we will simply search

the entire space of compressions and use syntactic information as one form of evidence to

discriminate between good and bad compressions.

9.2 Sentence Compression Model

For the rest of this section we usex = x1 . . . xn to indicate an uncompressed sentence and

y = y1 . . . ym a compressed version ofx, i.e., eachyj indicates the position inx of thejth

word in the compression. We always pad the sentence with dummy start and end words,

x1 = -START- andxn = -END-, which are always included in the compressed version (i.e.

y1 = x1 andym = xn).

In this section we described a discriminative online learning approach to sentence com-

pression, the core of which is a decoding algorithm that searches the entire space of com-

pressions. Let the score of a compressiony for a sentencex as

s(x, y)

In particular, we are going to factor this score using a first-order Markov assumption on the

words in thecompressedsentence

s(x, y) =

|y|
∑

j=2

s(x, I(j − 1), I(j))

Finally, we define the score function to be the dot product between a high dimensional

126

feature representation and a corresponding weight vector

s(x, y) =

|y|
∑

j=2

w · f(x, I(j − 1), I(j))

Note that this factorization will allow us to define featuresover two adjacent words in the

compression as well as the words in-between that were dropped from the original sentence

to create the compression. We will show in Section 9.2.2 how this factorization also allows

us to include features on dropped phrases and subtrees from both a dependency and/or a

phrase-structure parse of the original sentence. Note thatthese features are meant to capture

the same information in both the source and channel models ofKnight and Marcu [76].

However, here they are merely treated as evidence for the discriminative learner, which

will set the weight of each feature relative to the other (possibly overlapping) features to

optimize the models accuracy on the observed data.

9.2.1 Decoding

We define a dynamic programming tableC[i] which represents the highest score for any

compression that ends at wordxi for sentencex. We define a recurrence as follows

C[1] = 0.0

C[i] = maxj<i C[j] + s(x, j, i) for i > 1

It is easy to show thatC[n] represents the score of the best compression for sentencex

(whose length isn) under the first-order score factorization we made. We can show this

by induction. If we assume thatC[j] is the highest scoring compression that ends at word

xj , for all j < i, thenC[i] must also be the highest scoring compression ending at word

xi since it represents the max combination over all high scoring shorter compressions plus

127

the score of extending the compression to the current word. Thus, sincexn is by definition

in every compressed version ofx (see above), then it must be the case thatC[n] stores the

score of the best compression. This table can be filled inO(n2).

This algorithm is really an extension of Viterbi to the case when scores factor over

dynamic substrings of the text [118, 90]. As such, we can use back-pointers to reconstruct

the highest scoring compression as well as standardk-best decoding algorithms.

This decoding algorithm is dynamic with respect to compression rate. That is, the al-

gorithm will return the highest scoring compression regardless of length. This may seem

problematic since longer compressions might contribute more to the score (since they con-

tain more bigrams) and thus be preferred. However, in Section 3.2 we define a rich feature

set, including features on words dropped from the compression that will help disfavor com-

pressions that drop very few words since this is rarely seen in the training data. In fact, it

turns out that our learned compressions have a compression rate very similar to the gold

standard.

That said, there are some instances when a static compression rate is preferred. A user

may specifically want a25% compression rate for all sentences. This is not a problem for

our decoding algorithm. We simply augment the dynamic programming table and calculate

C[i][r], which is the score of the best compression of lengthr that ends at wordxi. This

table can be filled in as follows

C[1][1] = 0.0

C[1][r] = −∞ for r > 1

C[i][r] = maxj<i C[j][r − 1] + s(x, j, i) for i > 1

Thus, if we require a specific compression rate, we simple determine the number of words

r that satisfy this rate and calculateC[n][r]. The new complexity isO(n2r).

128

9.2.2 Features

So far we have defined the score of a compression as well as a decoding algorithm that

searches the entire space of compressions to find the one withhighest score. This all relies

on a score factorization over adjacent words in the compression, s(x, I(j − 1), I(j)) =

w·f(x, I(j−1), I(j)). In Section 2 we describe an online large-margin method for learning

w. Here we present the feature representationf(x, I(j − 1), I(j)) for a pair of adjacent

words in the compression. These features were selected on a development data set.

Word/POS Features

The first set of features are over adjacent wordsyj−1 andyj in the compression. These

include the part-of-speech (POS) bigrams for the pair, the POS of each word individually,

and the POS context (bigram and trigram) of the most recent word being added to the

compression,yj. These features are meant to indicate likely words to include in the com-

pression as well as some level of grammaticality, e.g., the adjacent POS features “JJ&VB”

would get a low weight since we rarely see an adjective followed by a verb. We also add a

feature indicating ifyj−1 andyj were actually adjacent in the original sentence or not and

we conjoin this feature with the above POS features. We have not included any bi-lexical

features because experiments on the development data showed that lexical information was

too sparse and led to overfitting. Instead we rely on the accuracy of POS tags to provide

enough evidence.

Next we added features over every dropped word in the original sentence betweenyj−1

andyj, if there were any. These include the POS of each dropped word, the POS of the

dropped words conjoined with the POS ofyj−1 and yj. If the dropped word is a verb,

we add a feature indicating the actual verb (this is for common verbs like “is”, which

are typically in compressions). Finally we add the POS context (bigram and trigram) of

129

root0

saw2

on4 after6

Mary1 Ralph3 Tuesday5 lunch7

S

VP

PP PP

NP NP NP NP

NNP VBD NNP IN NNP IN NN

Mary1 saw2 Ralph3 on4 Tuesday5 after6 lunch7

Figure 9.2: An example dependency tree from the dependency parser and phrase structure
tree from the Charniak parser [16]. In this example we want toadd features from the
trees for the case whenRalphandafter become adjacent in the compression, i.e., we are
dropping the phraseon Tuesday.

each dropped word. These features represent common characteristics of words that can or

should be dropped from the original sentence in the compressed version (e.g. adjectives

and adverbs). We also add a feature indicating whether the dropped word is a negation

(e.g., not, never, etc.).

We also have a set of features to represent brackets in the text, which are common

in the data set. The first measures if all the dropped words betweenyj−1 andyj have a

mismatched or inconsistent bracketing. The second measures if the left and right-most

dropped words are themselves both brackets. These featurescome in handy for examples

like, The Associated Press (AP) reported the story, where the compressed version isThe

Associated Press reported the story. Information within brackets is often redundant.

Syntactic Features

The previous set of features are meant to encode common POS contexts that are commonly

retained or dropped from the original sentence during compression. However, they do

130

so without a larger picture of the function of each word in thesentence. For instance,

dropping verbs is not that uncommon - a relative clause for instance may be dropped during

compression. However, dropping the main verb in the sentence is uncommon, since that

verb and its arguments typically encode most of the information being conveyed.

An obvious solution to this problem is to include features over a syntactic analysis

of the sentence. To do this we parse every sentence twice, once with the dependency

parser described in this work and once with the Charniak phrase-structure parser [16].

These parsers have been trained out of domain on the Penn WSJ Treebank and as a result

contain noise. However, we are merely going to use them as additional sources of features.

We call thissoft syntactic evidencesince the syntactic trees are not used as a strict gold-

standard in our model but just as more evidence for or againstparticular compressions.

The learning algorithm will set the feature weights accordingly depending on each features

discriminative power. It is not novel to use soft syntactic features in this way, as it has been

done for many problems in language processing. However, we stress this aspect of our

model due to the history of compression systems using syntaxto provide hard structural

constraints on the output. In Section 9.3 we empirically display the importance of the

dependency features derived from our parser.

Let us consider the sentencex = Mary saw Ralph on Tuesday after lunch, with corre-

sponding parses given in Figure 9.2. In particular, let us consider the feature representation

f(x,3,6), i.e., the feature representation of makingRalphandafteradjacent in the compres-

sion and dropping the prepositional phraseon Tuesday. The first set of features we consider

are over dependency trees. For every dropped word we add a feature indicating the POS of

the word’s head in the tree. For example, if the dropped word’s head isroot, then it is the

main verb of the sentence and typically should not be dropped. We also add a conjunction

feature of the POS tag of the word being dropped and the POS of its head as well as a

feature indicating for each word being dropped whether it isa leaf node in the tree. We

131

also add the same features for the two adjacent words, but indicating that they are part of

the compression.

For the phrase-structure features, we find every node in the tree that spans a piece of

dropped text and is not a descendant in the tree of another spanning node, in the example

this is the PP governingon Tuesday. We then add features indicating the context from which

this node was dropped. For example we add a feature specifying that a PP was dropped

which was the modifier of a VP. We also add a feature indicatingthat a PP was dropped

which was the left sibling of another PP, etc. Ideally, for each production in the tree we

would like to add a feature indicating every node that was dropped, e.g. “VP→VBD NP

PP PP⇒ VP→VBD NP PP”. However, we cannot necessarily calculate this feature since

the extent of the production might be well beyond the local context of first-order feature

factorization. Furthermore, since the training set is so small, these features are likely to be

observed too few times.

Feature Set Summary

In this section we have described a rich feature set over adjacent words in the compressed

sentence, dropped words and phrases from the original sentence, and properties of syntactic

trees of the original sentence. Note that these features in many ways mimic the informa-

tion already present in the noisy-channel and decision-tree models of Knight and Marcu

[76]. Our bigram features encode properties that indicate both good and bad words to be

adjacent in the compressed sentence. This is similar in purpose to the source model from

the noisy-channel system. However, in that system, the source model is trained on uncom-

pressed sentences and thus is not as representative of likely bigram features for compressed

sentences, which is really what we desire.

Our feature set also encodes dropped words and phrases through the properties of the

words themselves and through properties of their syntacticrelation to the rest of the sen-

132

tence in a parse tree. These features represent likely phrases to be dropped in the compres-

sion and are thus similar in nature to the channel model in thenoisy-channel system as well

as the features in the tree-to-tree decision tree system. However, we use these syntactic

constraints assoft evidencein our model. That is, they represent just another layer of ev-

idence to be considered during training when setting parameters. Thus, if the parses have

too much noise, the learning algorithm can lower the weight of the parse features since they

are unlikely to be useful discriminators on the training data. This differs from the models

of Knight and Marcu [76] and Riezler et al. [114], which treatthe noisy parses as gold-

standard when calculating probability estimates or when searching the space of possible

compressions.

An important distinction we should make is the notion ofsupportedversusunsupported

features [120]. Supported features are those that are on forthe gold standard compressions

in the training. For instance, the bigram feature “NN&VB” will be supported since there

is most likely a compression that contains a adjacent noun and verb. However, the feature

“JJ&VB” will not be supported since an adjacent adjective and verb most likely will not

be observed in any valid compression. Our model includes allfeatures, including those

that are unsupported. The advantage of this is that the modelcan learn negative weights

for features that are indicative of bad compressions. This is not difficult to do since most

features are POS based and the feature set size even with all these features is only 78,923.

9.2.3 Learning

Having defined a feature encoding and decoding algorithm, the last step is to learn the

feature weightsw. We do this using the MIRA as described in Chapter 2. Thek-best

compressions can easily be calculated by extending the decoding algorithm with standard

Viterbi k-best techniques. On the development data, we found thatk = 10 provided the best

performance, though varyingk did not have a major impact overall. Furthermore we found

133

Compression Rate Grammaticality Importance
Human 53.3% 4.96± 0.2 3.91± 1.0

Decision-Tree (K&M2000) 57.2% 4.30± 1.4 3.60± 1.3
This work 58.1% 4.61± 0.8 4.03± 1.0

Table 9.1: Sentence compression results.

that after only 3-5 training epochs performance on the development data was maximized.

9.3 Experiments

We use the same experimental methodology as Knight and Marcu[76]. We provide every

compression to four judges and ask them to evaluate each one for grammaticality and im-

portance on a scale from 1 to 5. For each of the 32 sentences in our test set we ask the

judges to evaluate three systems: human annotated, the decision tree model of Knight and

Marcu and our system. The judges were told all three compressions were automatically

generated and the order in which they were presented was randomly chosen for each sen-

tence. We compared our system to the decision tree model of Knight and Marcu instead of

the noisy-channel model since both performed nearly as wellin their evaluation, and the

compression rate of the decision tree model is nearer to our system (around 57-58%). The

noisy-channel model typically returned longer compressions.

Results are shown in Table 9.1. We present the average score over all judges as well as

the standard deviation. The evaluation for the decision tree system of Knight and Marcu

is strikingly similar to the original evaluation in their work. This provides strong evidence

that the evaluation criteria in both cases were very similar.

Table 9.1 shows that all models had similar compressions rates, with humans preferring

to compress a little more aggressively. Not surprisingly, the human compressions are prac-

tically all grammatical. A quick scan of the evaluations shows that the few ungrammatical

human compressions were for a sentence that was not grammatical in the first place. Of

134

greater interest is that the compressions of our system are typically more grammatical than

the decision tree model of Knight and Marcu.

When looking at importance, we see that our system actually does the best – even better

than humans. The most likely reason for this is that our modelreturns longer sentences and

is thus less likely to prune away important information. Forexample, consider the sentence

The chemical etching process used for glare protection is effective and will help if your office has

the fluorescent-light overkill that’s typical in offices

The human compression wasGlare protection is effective, whereas our model compressed

the sentence toThe chemical etching process used for glare protection is effective.

A primary reason that our model does better than the decisiontree model of Knight and

Marcu is that on a handful of sentences, the decision tree compressions were a single word

or noun phrase. For such sentences, the evaluators typically rated the compression a 1 for

both grammaticality and importance. In contrast, our modelnever failed in such drastic

ways and always output something reasonable. This is quantified in the standard deviation

of the two systems.

Though these results are promising, more large scale experiments are required to really

ascertain the significance of the performance increase. Ideally we could sample multiple

training/testing splits and use all sentences in the data set to evaluate the systems. However,

since these systems require human evaluation we did not havethe time or the resources to

conduct these experiments.

9.3.1 Some Examples

Here we aim to give the reader a flavor of some common outputs from the different models.

Three examples are given in Table 9.3.1. The first shows two properties. First of all, the

decision tree model completely breaks and just returns a single noun-phrase. Our system

135

Full Sentence The first new product , ATF Protype , is a line of digital postscript typefaces that will be sold in packages of
up to six fonts .

Human ATF Protype is a line of digital postscript typefaces that will be sold in packages of up to six fonts .
Decision Tree The first new product .
This work ATF Protype is a line of digital postscript typefaces will besold in packages of up to six fonts .

Full Sentence Finally , another advantage of broadband is distance .
Human Another advantage is distance .
Decision Tree Another advantage of broadband is distance .
This work Another advantage is distance .

Full Sentence The source code , which is available for C , Fortran , ADA and VHDL , can be compiled and executed on the same
system or ported to other target platforms .

Human The source code is available for C , Fortran , ADA and VHDL .
Decision Tree The source code is available for C .
This work The source code can be compiled and executed on the same system or ported to other target platforms .

Table 9.2: Example compressions for the evaluation data.

performs fairly well, although it leaves out the complementizer of the relative clause. This

actually occurred in a few examples and appears to be the mostcommon problem of our

model. A post-processing rule should eliminate this.

The second example displays a case in which our system and thehuman system are

grammatical, but the removal of a prepositional phrase hurts the resulting meaning of the

sentence. In fact, without the knowledge that the sentence is referring tobroadband, the

compressions are meaningless. This appears to be a harder problem – determining which

prepositional phrases can be dropped and which cannot.

The final, and more interesting, example presents two very different compressions by

the human and our automatic system. Here, the human kept the relative clause relating

what languages the source code is available in, but dropped the main verb phrase of the

sentence. Our model preferred to retain the main verb phraseand drop the relative clause.

This is most likely due to the fact that dropping the main verbphrase of a sentence is much

less likely in the training data than dropping a relative clause. Two out of four evaluators

preferred the compression returned by our system and the other two rated them equal.

136

9.3.2 Importance of Dependency Features

Bi-grams versus Syntax

Table 9.3 compares the outputs of two systems. The first,Only Bigram, is the sentence

compression system describe in this chapter without any syntax features (either dependency

or phrase-based). The second,Normal, is exactly the sentence compressor described in this

chapter. We show examples for which the outputs of the systemdiffered significantly (i.e.,

10 out of 32 sentences). Clearly, and not surprisingly, the system is benefitting from syntax.

The best example is the final one for the sentencethe source code , which is available for c ,

fortran , ada and vhdl , can be compiled and executed on the same system or ported to other

target platforms. Here the bigram only system outputada can be compiled and executed

on the same system or ported to other target platforms. This is obviously unacceptable

sinceada is really part of a noun conjunction phrase within a preposition that modifies the

availability of the source code. However, this informationcannot be encoded in the bigram

only system and as a result, it outputs a meaningless compression (though grammatical).

Another interesting example is the sentencealthough it bears the ibm name, it syn-

thesizer circuitry is identical to that of a yamaha fb-01, a popular eight-voice synthesizer

module. The bi-gram only model spits out a very grammatical compression the ibm cir-

cuitry is identical to that of a yamaha fb-01. However, the semantics of the compression

are different from the original, making this compression completely meaningless. On the

other hand, the full system outputscircuitry is identical to that of a yamaha fb-01. This

sentence is slightly ungrammatical and appears to be missing information. However, we

can see that the original sentence itself is not grammaticaland is missing information, due

to an unresolved pronoun.

137

Full Sentence standard fonts include courier , line printer (a sans serif face) , times roman and prestige elite .
Only Bigram standard fonts include , line printer , times roman and prestige elite .
Normal standard fonts include courier , line printer , times roman and prestige elite .

Full Sentence with three exabyte drives , it is priced at $17,850 .
Only Bigram with three is priced at $17,850 .
Normal it is priced at $17,850 .

Full Sentence the chemical etching process used for glare protection is effective and will help if your office has the
fluorescent-light overkill that ’s typical in offices .

Only Bigram the chemical etching process used for glare protection .
Normal the chemical etching process used for glare protection is effective .

Full Sentence apparel makers use them to design clothes and to quickly produce and deliver the best-selling garments .
Only Bigram clothes and to produce and deliver the best-selling garments .
Normal apparel makers use to design clothes and to produce and deliver the best-selling garments .

Full Sentence microsoft alone has lost one-third of its market value .
Only Bigram microsoft has lost one-third of market value .
Normal microsoft alone has lost one-third of its market value .

Full Sentence although it bears the ibm name , it synthesizer circuitry is identical to that of a yamaha fb-01 , a popular
eight-voice synthesizer module .

Only Bigram the ibm circuitry is identical to that of a yamaha fb-01 .
Normal circuitry is identical to that of a yamaha fb-01 .

Full Sentence working in the score is not an intuitive process ; it takes a lot of practice .
Only Bigram working in the score is an intuitive process .
Normal working in the score is not an intuitive process .

Full Sentence the utilities will be bundled with quickdex ii in a $90 package called super quickdex , which is expected to ship
in late summer .

Only Bigram the utilities will be bundled with quickdex ii in a quickdex .
Normal the utilities will be bundled with quickdex ii in a $90 package called super quickdex .

Full Sentence establishing external (to the application) reference filesallows controlled and timely access to all reference
data (master files) , regardless of location or application ,and enhance data integrity .

Only Bigram all reference data and enhance data integrity .
Normal establishing external reference files allows controlled and enhance data integrity .

Full Sentence the source code , which is available for c , fortran , ada and vhdl , can be compiled and executed on the same
system or ported to other target platforms .

Only Bigram ada can be compiled and executed on the same system or ported to other target platforms .
Normal the source code can be compiled and executed on the same system or ported to other target platforms .

Table 9.3: Compression system comparison with and without syntactic features.

138

Only Dependency Features

One interesting question is the effect of phrase-structurefeatures on compression accuracy.

If the addition of these features changes performance significantly, it is an argument for

the necessity of phrase-based parsing over just labeled dependencies. We trained two sys-

tems. One used only labeled dependency features and the other used both dependencies

and phrase-structure features (i.e., the normal system). The resulting systems differed in 6

sentences, shown in Table 9.4.Normal is the system with both dependencies and phrase-

structure features, andNo Phrase-Structureuses just labeled dependency features.

For the most part the differences between the two systems aresmall. In Table 9.4, the

second, third, fourth and sixth sentences differ little. Inthe first sentence,many debug-

ging features , including user-defined break points and variable-watching and message-

watching windows , have been added, the normal system outputs a good compression,many

debugging features have been added. The dependency only system outputs a grammati-

cal sentence,many debugging features and variable-watching and message-watching win-

dows have been added, however, the sentence implies thatvariable-watching and message-

watching windowsare distinct entities from debugging features, when in factthey are ex-

amples of debugging features. In the fifth sentence, the dependency based parser leaves out

one of the verbs in this multi-clause sentence. This may be due to the feature indicating

whether a verb is not the main verb in the sentence. This feature is usually on for rela-

tive clauses, which can often be dropped in the compression.Thus, this feature may have

caused the drop of the second verb in the multi-clause sentence, since by convention, the

first verb in a verb-conjunction phrase is considered the head.

These results suggest, at least for sentence compression, that labeled dependencies en-

code sufficient information for accurate compression systems. It would be an interesting

future study to compare the difference in performance of labeled dependencies against

phrase-structure representations on a variety of languageprocessing problems to determine

139

Full Sentence many debugging features , including user-defined break points and variable-watching and
message-watching windows , have been added .

No Phrase-Structure many debugging features and variable-watching and message-watching windows have been added .
Normal many debugging features have been added .

Full Sentence microsoft alone has lost one-third of its market value .
No Phrase-Structure microsoft has lost one-third of its market value .
Normal microsoft alone has lost one-third of its market value .

Full Sentence the sas screen is divided into three sections : one for writing programs , one for the system ’s response as
it executes the program , and a third for output tables and charts .

No Phrase-Structure the sas screen is divided into three sections .
Normal the sas screen is divided into three .

Full Sentence the scamp module , designed and built by unisys and based on anintel process , contains the entire 48-bit
a-series processor .

No Phrase-Structure the scamp module contains the entire 48-bit a-series processor .
Normal the scamp designed and built by unisys contains the entire 48-bit a-series processor .

Full Sentence it implements the common cryptographic architecture and offers a comprehensive set of security products
that allow users to implement end-to-end secure systems with ibm components .

No Phrase-Structure it implements the common cryptographic architecture.
Normal it implements the common cryptographic architecture and offers a comprehensive set of security products .

Full Sentence the discounted package for the sparcserver 470 is priced at $89,900 , down from the regular $107,795 .
No Phrase-Structure the discounted package for the 470 is priced at $89,900 .
Normal the discounted package is priced at $89,900 .

Table 9.4: Compression system comparison with and without phrase-structure features.

which representation is appropriate for what situations.

9.4 Summary of Chapter

In this chapter we have described a new system for sentence compression. The key con-

tribution to this work is that it is a practical example whichshows the applicability of our

English parser. In particular, we have argued that featuresover the output of our parser are

imperative for accurate compression and even contain most of the information provided by

a phrase-based parser.

When compared to previous work on sentence compression, this system has several

advantages. First of all, its discriminative nature allowsus to use a rich dependent feature

set and to optimize a function directly related to compression accuracy during training, both

of which have been shown to be beneficial for other problems. Furthermore, the system

140

does not rely on the syntactic parses of the sentences to calculate probability estimates.

Instead, this information is incorporated as just another form of evidence to be considered

during training. This is advantageous because these parsesare trained on out of domain data

and often contain mistakes. These syntactic features are available even with an aggressive

first-order Markov factorization required for efficient inference.

141

Chapter 10

Discussion

10.1 Comparison to Recent Work

In the dependency parsing community there has been much recent and related work. Sagae

and Lavie [117] use the maximum spanning tree algorithms presented here in a new voted

parsing system. The idea is very simple: if one hasM different parsers each producing

a single best dependency parse, then one can define the score of each edge as the number

of parsers that believed that edge was in the correct parse. Using this score function it is

possible to find the highest scoring tree. The power behind this method is that it guarantees

that graphs satisfying the tree constraint will be returned. Furthermore, weighted votes can

easily be determined on a held-out set of data.

The work of Corston-Oliver et al. [32] used the maximum spanning tree framework

presented in this work in conjunction with Bayes-Point machines, which is an easy to

implement but memory inefficient learning algorithm. One important aspect of that work

is that they reimplemented our parsing framework and reported identical results, resulting

in an independent verification of many of the claims presented here. Corston-Oliver et al.

plan on using their parser to assist in the translation of Microsoft technical documents to

142

other languages.

One interesting area of research not previously mentioned is the work of Klein [75] and

Smith and Eisner [128] on unsupervised dependency parsing.Klein and Manning provide

a model that uses co-occurrence information coupled with mutual-information between

words at possible phrasal boundaries, both of which can be calculated from unlabeled data.

Smith and Eisner present a general unsupervised approach tolanguage learning calledcon-

trastive estimationand present very promising results for dependency parsing.

There has also been new work discriminative phrase-structure parsing. In particular

the work of Shen and Joshi [121] extends the discriminative incremental parsing frame-

work of Collins and Roark [30] to a LTAG formalism called LTAG-slim. They present

highly accurate results for English. Their parsing framework, being in the TAG family,

allows for the modeling of long-distance dependencies and thus non-projectivity. Further-

more, the lexical nature of their formalism allows them to extract dependencies on top

of phrase-structure. The work of Turian and Melamed [144, 145] present a discrimina-

tive classifier-based parser, which is one of the first discriminative phrase-based parsers

to outperform a generative baseline without the explicit use of the baseline parser (e.g.,

to re-rank or for parameter initialization). The work of Kooand Collins [77] use hidden

variables within a discriminative re-ranking framework and show such models can improve

parser performance.

One new direction in parsing is self-training methods of McClosky et al. [88, 89]. This

method works by taking a discriminative re-ranked parser, running it on millions of new

sentences, and retraining a generative parser. The idea is to attempt to alleviate sparsity

of the original supervised model by learning parameters over a larger set of training data

(albeit noisy). This method was shown to improve both in domain as well as out of domain

parser performance.

143

10.1.1 CoNLL 2006

At the Conference on Natural Language Learning (CoNLL) in 2006, 17 groups submitted

parsing systems, which were used to parse 13 different languages [13]. The goal of the

experiment was to test various parsing models on a diverse set of languages with varying

amounts of training data. Of all the systems submitted, the two most represented parsing

frameworks were those of Nivre and his colleagues [105, 104]and the models described in

this work. These systems also performed the best empirically in the experiments.

Other systems were based on the work of Yamada and Matsumoto [151], vine parsing

algorithms [46], linear integer programming inference techniques and conversions to CFG

parsing.

10.2 Future Work

We highlight some areas of future research in this section. This list is not exhaustive,

merely just a sample of the most promising next directions toimproving and applying the

parsing models described here.

Integrated Part-of-Speech Tagging

As noted in Chapter 6 one of the major sources of errors are pipelined errors resulting in

noisy part-of-speech tags at test time. The obvious solution to this is to learn to tag and

parse in tandem. However, this would result in an increase incomplexity by a multiplicative

factor cubic in the number of tags. We attempted to minimize this factor by limiting the

number of possible tags per token to 2. The resulting parser was slightly more accurate

than the original, but has yet to bridge the gap between performance with gold standard

tags.

However, other solutions might exist. For example, the workof Daumè and Marcu

144

[39] on learning as search optimization. In this work a general framework was given for

learning relative to approximate and even greedy inferencealgorithms. One might expect

such a framework to be beneficial when searching the joint space of part-of-speech tags and

dependency structures. Another option is to train a POS tagger using a dependency parsing

loss function. That is, when determining the loss of a particular incorrect tag sequence, we

could calculate the number of dependency errors that tag sequence would give rise to in a

parsing systems, then update parameters relative to this loss. The hope is that the resulting

tagger would be less likely to cause a dependency parser to make errors.

Richer Feature Space

During the course of constructing the parsers of this work, extensive tests over various

feature combinations were conducted for English. The resulting feature classes were then

use across a plethora of languages with very good results. However, it is reasonable to

suspect that language specific feature sets will greatly improve the performance of the

parser when extended to other languages. The fact that simple morphological features

improved parsing performance of highly inflected languagessupports this belief.

Applications

In Chapter 9 we integrated our dependency parser into a sentence compression module to

empirically show its applicability to real world problems.This is a rather limited example

and a major area of future work is to integrate the parsers described here into new and old

NLP applications. In particular, problems such as textual entailment, relation extraction

and translation often require a predicate-argument representation of a sentence to accurately

process it.

145

Further Languages

Though we have shown in this work that discriminative spanning tree parsing generalizes

well across languages, it is always interesting to test thishypothesis on new languages,

and in particular, those languages with little annotated resources. One question is how to

bootstrap annotated resources in different languages to improve parsing performance in a

resource-poor language, which is similar to domain adaptation. There has been limited but

promising work along these lines in the past [68].

Semi-Supervised Dependency Parsing

The recent work of Klein [75] and Smith and Eisner [128] raisequestions of whether these

methods can be combined with the parsers in this work in a semi-supervised way. One

simple technique might be to train an unsupervised parser ona large set of unlabeled data,

and use the output of this parser as features in our supervised model. It is unlikely such

an approach would work for due to the already large size of thelabeled English data set.

However, this method might prove successful at improving parsers for languages with much

smaller labeled resources.

In addition, the work of Ando and Zhang [3] on semi-supervised discriminative learn-

ing might be applied to dependency parsing. In that work, thousands of labeled training

examples are automatically generated from unlabeled data,such asIs the word to the right

of the current word a verb?. Predictors are trained for each of these problems and their

feature spaces are used to map inputs to a low dimensional representation that is indicative

of good features for common sequence classification problems. This system reported very

significant improvements on standard sequence classification tasks. The extension of these

models to parsing would be an exciting area of research.

146

Domain Adaptation

In Chapter 7 we argued that discriminative parsing models have a simple mechanism for

adapting out of domain parsers when limited amounts of in domain data is available –

the feature set. This is acceptableif annotated data does exist, which is not usually the

case. Augmenting the feature space or backing off to unsupervised parsing systems will

be required to adapt the parser when no annotated data is available. The work of Lease

and Charniak [81] address this, however, they still assume some annotated resources in

the new domain (i.e., entity and part-of-speech taggers). Recent work by McColosky et

al. [89] show that a self-training technique [88] can help toadapt statistical parsers when

no annotated resources are available in the new domain.

Another new approach to domain adaptation that assumes no labeled data in the new

domain is the work of Blitzer et al. [8]. That work uses large collections of in and out of

domain unlabeled data to induce feature correspondences across the two domains. The-

oretically, these features are meaningful in both domains and will help an out of domain

classifier generalize better to new domains. Blitzer et al. present results for part-of-speech

tagging and subsequently use that tagger to improve biomedical parsing with a WSJ parser.

However, it is still an open problem of whether such feature correspondences could be

learned directly for parsing.

147

Chapter 11

Summary of Thesis

This chapter summarizes the methods, results and conclusions that have been presented

during the course of this work. Each discussed item is one component of the primary

argument, that is,discriminative training algorithms and maximum spanning tree inference

algorithms combine to provide a highly accurate dependencyparsing framework that works

across languages and is easily extensible.

1. In Chapter 2 we first showed that discriminatively trainedmodels for structure out-

puts can be achieved through the use of highly efficient and accurate online large-

margin techniques. These learning algorithms compare favorably to current state-

of-the-art discriminative models such as conditional random fields [80] and M3 net-

works [137]. A major advantage of the particular learning algorithm used (MIRA)

is that parameter updates are based only on inference (either single-best ork-best),

which essentially abstracts away learning to allow us to focus on defining efficient

inference algorithms for searching the output space. Thus,probabilistic inference

techniques such as forward-backward, inside-outside or marginal distribution calcu-

lations need no longer concern us.

2. The core of the work was presented in Chapter 3. Here, threemajor contributions

148

were made. First, by factoring the score of a dependency by the score of its edges, we

showed that tractable inference is possible for both projective and non-projective de-

pendency trees by appealing to maximum spanning tree algorithms. This result is the

first that provides an exact inference algorithm for non-projective structures1. In fact,

the worst-case run-time complexity for non-projective trees is actually better than

the case of projective trees (O(n2) vs. O(n3)). The second major contribution was

to extend the maximum spanning tree parsing framework, allowing scores to incor-

porate features over pairs of edges in the tree. With this extension, parsing remained

polynomial for the projective case, but became NP-hard for the non-projective case.

This result essentially shows that only under single edge based factorization can non-

projective parsing be obtained tractably. Any attempt to extend scores or constraints

beyond a single edge and the problem makes the problem NP-hard. To overcome this,

we defined a simple approximation that was experimentally validated in Chapter 4.

Finally, we defined a rich feature set that contained features over the words occur-

ring in the dependency relation, but more importantly, features occurring over the

words surrounding and between them. These features (as was shown in Chapter 6)

are crucial to achieving state-of-the-art performance with a spanning tree parser.

3. Chapter 4 contains a set of detailed experiments running the parsing models on En-

glish, Czech and Chinese data sets. It is shown that the parsers provide state-of-

the-art performance across all languages. In particular, allowing scores over pairs

of edges and introducing non-projective edges increases performance significantly.

It was also shown that these models can easily be extended to allow for labeled de-

pendency graphs through either joint or two-stage labeling. In both cases the models

perform very well for English. However, two-stage labelingis much more com-

putationally efficient, which led to its use in later experiments from Chapter 5. In

1This result was discovered independently in Ribarov [112]

149

Chapter 6, we analyzed our English parser both in terms of errors and in terms of

the feature space. We showed that the parser tends to make common parsing errors

on prepositions, conjunctions and multi-verb sentences. One area of future work is

to define new features to handle these specific constructions. English parsing per-

formance was also broken down by part-of-speech errors, sentence length and errors

due to the online nature of learning. One interesting resultis that as sentence length

grows, root attachment accuracy scales relative to overallaccuracy. It was argued

that this was a result of using exact search without any pruning or greedy parse de-

cisions. In the second part of Chapter 6 we analyzed the feature space. The primary

result is that context features are much more important to first-order parsing mod-

els than second-order parsing models. This indicates that these features are in many

ways simulating higher-order parsing decisions and help toexplain the powerful per-

formance of the aggressive edge based factorization model.Finally, we attempted

feature selection and showed that the simplest method, count cut-off, performed bet-

ter than information gain.

4. One of the more exciting aspects of the models presented inthis work is their lan-

guage generality. In Chapter 5 we presented parsing resultsfor 14 diverse languages

using a single learning method and no language specific enhancements. These results

are competitive across all 14 languages (see Buckholz et al.[13]). Furthermore, we

displayed that these discriminative parsing models are easily extensible by defining

new features on derived morphological information for highly inflected languages.

These features improved accuracy by 1-3% absolute for theselanguages. Due to the

discriminative nature of the learning technique, additional features are easily incor-

porated. In contrast, generative models usually require new levels of back-off to be

designed to overcome sparsity. In Chapter 6 we presented a brief analysis of com-

mon parsing errors across languages and attempted to explain the variability in parser

150

performance across languages. In particular, we showed that parser variability can

mostly be explained through properties of the data including sentence length, lexi-

cal sparsity and invalid i.i.d. assumptions between the training and test sets. These

results lend weight to our argument that the parsers are indeed language independent.

5. In Chapter 7 we further showed the extensibility of discriminative parsing models

by incorporating features over auxiliary classifiers. To improve the performance of

our English WSJ parser we incorporated features over the decisions of the Collins

[25] and Charniak [16] parsing models. Including these features improved parsing

accuracy to93.2%, which is significantly higher than the accuracy of any single

individual model. Adding features based on the output of auxiliary classifiers also

improved parser performance for out of domain data. We showed that training a

parser on a small amount of biomedical training data can be significantly improved

by incorporating features over the output of a WSJ parser. This simple technique

should help to quickly create state-of-the-art parsing models for domains in which

little training data is available.

6. One advantageous aspect of inference-based online learning is its robustness to ap-

proximate inference [30, 39], due to the fact that parameters are set relative to infer-

ence. Thus, if inference is approximate, then model parameters can be set to offset

common errors introduced due to search approximations. This feature is important

considering our second-order non-projective parsing model is approximate. We fur-

ther displayed this advantage by building a model to parse general dependency graphs

that do not necessarily satisfy the tree constraint. It has been argued [67] that non-tree

graphs are appropriate for secondary modifiers resulting from relative clause or verb

conjunctions. Unfortunately, producing high scoring non-tree dependency graphs

can be shown to be NP-hard, thus we devised an approximate algorithm to find them.

151

This model was tested empirically on a set of Danish dependency graphs and showed

improved performance over the tree based models.

7. The final contribution of this work was to show that the dependency models created

here could be used in a standard NLP task. We chose to look at sentence compression.

First, we defined a search algorithm that allowed us to searchthrough the space of

compressions efficiently, while at the same time allowing for the introduction of rele-

vant dependency information. Using this inference algorithm we trained a model and

presented empirical results showing state-of-the-art performance on a small data set.

Furthermore, we argued (through the output of the system) that most of the necessary

information for creating accurate compressions is contained in labeled dependency

graphs, and that phrase-structure information does not significantly improve perfor-

mance. Finally, we showed that if dependency information isnot used, the output of

the sentence compressor suffered greatly.

152

Appendix A

English Head Percolation Rules

These are the head percolation rules used to convert the PennTreebank to depedencies in

this work, based on those in [151]. For each non-terminal (onthe left of each rule) we

start searching from the right or left (r or l) for the first element, then the second, etc. If

elements are seperated by a bar, then we search for any of the elements. These rules are run

recursively until pre-terminal nodes are reached and thoselexical items become the head

of the phrase.

NP r POS|NN|NNP|NNPS|NNS NX JJR CD JJ JJS RB QP NP

ADJP r NNS QP NN \$ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS SBAR RB

ADVP l RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN

CONJP l CC RB IN

FRAG l

INTJ r

LST l LS :

NAC r NN|NNS|NNP|NNPS NP NAC EX \$ CD QP PRP VBG JJ JJS JJR ADJP FW

PP l IN TO VBG VBN RP FW

PRN r

PRT l RP

QP r \$ IN NNS NN JJ RB DT CD NCD QP JJR JJS

RRC l VP NP ADVP ADJP PP

S r TO IN VP S SBAR ADJP UCP NP

SBAR r WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG

SBARQ r SQ S SINV SBARQ FRAG

SINV r VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ r VBZ VBD VBP VB MD VP SQ

UCP l

VP l VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP

WHADJP r CC WRB JJ ADJP

153

WHADVP l CC WRB

WHNP r WDT WP WP\$ WHADJP WHPP WHNP

WHPP l IN TO FW

NX r POS|NN|NNP|NNPS|NNS NX JJR CD JJ JJS RB QP NP

X r

154

Appendix B

Feature Example

Here we show a concrete example of the feature representation of an edge in a dependency

tree. The tree is given below and the edge of interest is the dependency between the main

verbhit and its argument headed prepositionwith. We use simplified part-of-speech tags

for illustrative purposes only.

root,RT

hit,V

John,N ball,N with,P

the,D bat,N

the,D

f(i, j) for the edge (hit,with)

Basic Features

xi-word=“hit”, xi-pos=“V”, xj-word=“with”, xj-pos=“P”

xi-pos=“V”, xj-word=“with”, xj-pos=“P”

xi-word=“hit”, xj-word=“with”, xj-pos=“P”

xi-word=“hit”, xi-pos=“V”, xj-pos=“P”

155

xi-word=“hit”, xi-pos=“V”, xj-word=“with”

xi-word=“hit”, xj-word=“with”

xi-pos=“V”, xj-pos=“P”

xi-word=“hit”, xi-pos=“V”

xj-word=“with”, xj-pos=“P”

xi-word=“hit”

xi-pos=“V”

xj-word=“with”

xj-pos=“P”

Extended Features

xi-pos=“V”, b-pos=“D”, xj-pos=“P”

xi-pos=“V”, b-pos=“N”, xj-pos=“P”

xi-pos=“V”, xi-pos+1=“D”,xj-pos-1=“N”, xj-pos=“P”

xi-pos=“V”, xj-pos-1=“N”, xj-pos=“P”

xi-pos=“V”, xi-pos+1=“D”,xj-pos=“P”

xi-pos-1=“N”, xi-pos=“V”, xj-pos-1=“N”, xj-pos=“P”

xi-pos=“V”, xj-pos-1=“N”, xj-pos=“P”

xi-pos-1=“N”, xi-pos=“V”, xj-pos=“P”

xi-pos=“V”, xi-pos+1=“D”,xj-pos=“P”,xj-pos+1=“D”

xi-pos=“V”, xj-pos=“P”,xj-pos+1=“D”

xi-pos=“V”, xi-pos+1=“D”,xj-pos=“P”

xi-pos-1=“N”, xi-pos=“V”, xj-pos=“P”,xj-pos+1=“D”

xi-pos=“V”, xj-pos=“P”,xj-pos+1=“D”

xi-pos-1=“N”, xi-pos=“V”, xj-pos=“P”

156

Note that sincehit andwith are not longer than 5 characters we do not have any additional

5-gram back-off features. If, however, the verb wassmashed, we could have the feature,

xi-word:5=“smash”,xj-word=“with”

along with other 5-gram back-off features.

All features are also conjoined with the direction of attachment and the distance be-

tween the words. So, in addition to the feature,

xi-word=“hit”, xj-word=“with”

the system would also have the feature,

xi-word=“hit”, xj-word=“with”, dir=R, dist=3

to indicate that the modifierwith is 3 words to the right of the headhit. Distances were

calculated into buckets with thresholds of 1, 2, 3, 4, 5 and 10.

B.1 Second-Order Features

If we consider the second-order edge, (hit,ball,with) we will add the following features,

f(i, k, j):

Second-Order Features

xi-pos=“V”, xk-pos=“N”, xj-pos=“P”

xk-pos=“N”, xj-pos=“P”

xk-word=“ball”, xj-pos=“P”

xk-pos=“N”, xj-word=“with”

xk-word=“ball”, xj-word=“with”

157

The features are again conjoined with attachment directionas well as distance between

the siblings unlike the first-order features, which use distance to head. The distances are

bucketed as before. For instance, the representation wouldcontain the following feature

xk-pos=“N”, xj-pos=“P”, dir=R, dist=1

For the cases when a word is the first left/right modifier of a head, the feature representation

encodes this. For instance, if we consider the second order edge, (hit,-,ball), we add the

features:

Second-Order Features

xi-pos=“V”, xk-pos=“N”, xj-pos=“N”

xk-pos=“first-RHS-POS”,xj-pos=“N”

xk-word=“first-RHS”,xj-pos=“N”

xk-pos=“first-RHS-POS”,xj-word=“with”

xk-word=“first-RHS”,xj-word=“with”

158

Appendix C

Detailed Experimental Results

Tables in this appendix were produced using the CoNLL 2006 shared task [13] evaluation

script (http://nextens.uvt.nl/˜conll/software.html).

C.1 Arabic
Labeled attachment score: 3339 / 4990 * 100 = 66.91 %

Unlabeled attachment score: 3959 / 4990 * 100 = 79.34 %

Label accuracy score: 3967 / 4990 * 100 = 79.50 %

==

Evaluation of the results in arabic.proj.pred

vs. gold standard arabic_PADT_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 383

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 4990 | 3959 | 79% | 3967 | 79% | 3339 | 67%

-----------+-------+-------+------+-------+------+-------+-------

N | 2007 | 1775 | 88% | 1462 | 73% | 1363 | 68%

P | 800 | 493 | 62% | 737 | 92% | 467 | 58%

A | 432 | 395 | 91% | 404 | 94% | 376 | 87%

159

V | 417 | 295 | 71% | 331 | 79% | 258 | 62%

C | 392 | 250 | 64% | 314 | 80% | 233 | 59%

S | 349 | 298 | 85% | 290 | 83% | 261 | 75%

Z | 192 | 162 | 84% | 139 | 72% | 124 | 65%

F | 143 | 116 | 81% | 121 | 85% | 112 | 78%

X | 140 | 107 | 76% | 99 | 71% | 86 | 61%

D | 74 | 38 | 51% | 42 | 57% | 33 | 45%

Q | 42 | 29 | 69% | 27 | 64% | 25 | 60%

- | 1 | 1 | 100% | 1 | 100% | 1 | 100%

I | 1 | 0 | 0% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 4990 | 1031 | 21% | 1023 | 21% | 403 | 8%

-----------+-------+-------+------+-------+------+-------+-------

N | 2007 | 232 | 12% | 545 | 27% | 133 | 7%

P | 800 | 307 | 38% | 63 | 8% | 37 | 5%

A | 432 | 37 | 9% | 28 | 6% | 9 | 2%

V | 417 | 122 | 29% | 86 | 21% | 49 | 12%

C | 392 | 142 | 36% | 78 | 20% | 61 | 16%

S | 349 | 51 | 15% | 59 | 17% | 22 | 6%

Z | 192 | 30 | 16% | 53 | 28% | 15 | 8%

F | 143 | 27 | 19% | 22 | 15% | 18 | 13%

X | 140 | 33 | 24% | 41 | 29% | 20 | 14%

D | 74 | 36 | 49% | 32 | 43% | 27 | 36%

Q | 42 | 13 | 31% | 15 | 36% | 11 | 26%

- | 1 | 0 | 0% | 0 | 0% | 0 | 0%

I | 1 | 1 | 100% | 1 | 100% | 1 | 100%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

Adv | 378 | 181 | 349 | 47.88 | 51.86

AdvAtr | 7 | 0 | 0 | 0.00 | NaN

Ante | 7 | 0 | 0 | 0.00 | NaN

Apos | 10 | 2 | 2 | 20.00 | 100.00

Atr | 1930 | 1751 | 2130 | 90.73 | 82.21

AtrAdv | 7 | 0 | 4 | 0.00 | 0.00

AtrAtr | 3 | 0 | 0 | 0.00 | NaN

AtrObj | 1 | 0 | 0 | 0.00 | NaN

Atv | 50 | 18 | 26 | 36.00 | 69.23

AuxC | 102 | 88 | 115 | 86.27 | 76.52

AuxE | 33 | 15 | 26 | 45.45 | 57.69

160

AuxG | 1 | 0 | 0 | 0.00 | NaN

AuxM | 76 | 71 | 76 | 93.42 | 93.42

AuxP | 767 | 733 | 773 | 95.57 | 94.83

AuxY | 324 | 233 | 285 | 71.91 | 81.75

Coord | 171 | 140 | 187 | 81.87 | 74.87

ExD | 71 | 37 | 44 | 52.11 | 84.09

Obj | 520 | 297 | 482 | 57.12 | 61.62

Pnom | 19 | 0 | 4 | 0.00 | 0.00

Pred | 172 | 147 | 168 | 85.47 | 87.50

PredE | 1 | 1 | 2 | 100.00 | 50.00

PredP | 1 | 0 | 0 | 0.00 | NaN

Ref | 3 | 1 | 1 | 33.33 | 100.00

Sb | 336 | 252 | 316 | 75.00 | 79.75

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

Adv | 378 | 173 | 349 | 45.77 | 49.57

AdvAtr | 7 | 0 | 0 | 0.00 | NaN

Ante | 7 | 0 | 0 | 0.00 | NaN

Apos | 10 | 1 | 2 | 10.00 | 50.00

Atr | 1930 | 1605 | 2130 | 83.16 | 75.35

AtrAdv | 7 | 0 | 4 | 0.00 | 0.00

AtrAtr | 3 | 0 | 0 | 0.00 | NaN

AtrObj | 1 | 0 | 0 | 0.00 | NaN

Atv | 50 | 17 | 26 | 34.00 | 65.38

AuxC | 102 | 71 | 115 | 69.61 | 61.74

AuxE | 33 | 10 | 26 | 30.30 | 38.46

AuxG | 1 | 0 | 0 | 0.00 | NaN

AuxM | 76 | 70 | 76 | 92.11 | 92.11

AuxP | 767 | 462 | 773 | 60.23 | 59.77

AuxY | 324 | 197 | 285 | 60.80 | 69.12

Coord | 171 | 86 | 187 | 50.29 | 45.99

ExD | 71 | 35 | 44 | 49.30 | 79.55

Obj | 520 | 261 | 482 | 50.19 | 54.15

Pnom | 19 | 0 | 4 | 0.00 | 0.00

Pred | 172 | 121 | 168 | 70.35 | 72.02

PredE | 1 | 1 | 2 | 100.00 | 50.00

PredP | 1 | 0 | 0 | 0.00 | NaN

Ref | 3 | 1 | 1 | 33.33 | 100.00

Sb | 336 | 228 | 316 | 67.86 | 72.15

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 295 | 247 | 280 | 83.73 | 88.21

left | 4157 | 4035 | 4233 | 97.07 | 95.32

161

right | 538 | 356 | 477 | 66.17 | 74.63

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 295 | 247 | 280 | 83.73 | 88.21

1 | 3081 | 2897 | 3176 | 94.03 | 91.22

2 | 637 | 437 | 639 | 68.60 | 68.39

3-6 | 626 | 402 | 637 | 64.22 | 63.11

7-... | 351 | 158 | 258 | 45.01 | 61.24

C.2 Bulgarian
Labeled attachment score: 4390 / 5013 * 100 = 87.57 %

Unlabeled attachment score: 4614 / 5013 * 100 = 92.04 %

Label accuracy score: 4547 / 5013 * 100 = 90.70 %

==

Evaluation of the results in bulgarian.proj.pred

vs. gold standard bulgarian_bultreebank_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 921

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5013 | 4614 | 92% | 4547 | 91% | 4390 | 88%

-----------+-------+-------+------+-------+------+-------+-------

N | 1566 | 1476 | 94% | 1426 | 91% | 1386 | 89%

V | 831 | 773 | 93% | 786 | 95% | 766 | 92%

R | 827 | 701 | 85% | 655 | 79% | 620 | 75%

P | 469 | 438 | 93% | 435 | 93% | 426 | 91%

A | 436 | 425 | 97% | 427 | 98% | 423 | 97%

C | 274 | 232 | 85% | 268 | 98% | 230 | 84%

T | 223 | 209 | 94% | 204 | 91% | 200 | 90%

D | 170 | 148 | 87% | 141 | 83% | 134 | 79%

M | 147 | 142 | 97% | 136 | 93% | 136 | 93%

H | 70 | 70 | 100% | 69 | 99% | 69 | 99%

-----------+-------+-------+------+-------+------+-------+-------

162

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5013 | 399 | 8% | 466 | 9% | 242 | 5%

-----------+-------+-------+------+-------+------+-------+-------

N | 1566 | 90 | 6% | 140 | 9% | 50 | 3%

V | 831 | 58 | 7% | 45 | 5% | 38 | 5%

R | 827 | 126 | 15% | 172 | 21% | 91 | 11%

P | 469 | 31 | 7% | 34 | 7% | 22 | 5%

A | 436 | 11 | 3% | 9 | 2% | 7 | 2%

C | 274 | 42 | 15% | 6 | 2% | 4 | 1%

T | 223 | 14 | 6% | 19 | 9% | 10 | 4%

D | 170 | 22 | 13% | 29 | 17% | 15 | 9%

M | 147 | 5 | 3% | 11 | 7% | 5 | 3%

H | 70 | 0 | 0% | 1 | 1% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ROOT | 398 | 387 | 398 | 97.24 | 97.24

adjunct | 347 | 237 | 319 | 68.30 | 74.29

clitic | 84 | 77 | 77 | 91.67 | 100.00

comp | 483 | 449 | 481 | 92.96 | 93.35

conj | 184 | 183 | 183 | 99.46 | 100.00

conjarg | 208 | 186 | 199 | 89.42 | 93.47

indobj | 128 | 86 | 124 | 67.19 | 69.35

marked | 91 | 90 | 95 | 98.90 | 94.74

mod | 1299 | 1232 | 1370 | 94.84 | 89.93

obj | 218 | 172 | 217 | 78.90 | 79.26

pragadjunct | 64 | 41 | 48 | 64.06 | 85.42

prepcomp | 831 | 821 | 828 | 98.80 | 99.15

subj | 405 | 348 | 408 | 85.93 | 85.29

xadjunct | 55 | 48 | 56 | 87.27 | 85.71

xcomp | 131 | 121 | 127 | 92.37 | 95.28

xmod | 71 | 56 | 64 | 78.87 | 87.50

xprepcomp | 4 | 4 | 5 | 100.00 | 80.00

xsubj | 12 | 9 | 14 | 75.00 | 64.29

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ROOT | 398 | 387 | 398 | 97.24 | 97.24

163

adjunct | 347 | 227 | 319 | 65.42 | 71.16

clitic | 84 | 76 | 77 | 90.48 | 98.70

comp | 483 | 444 | 481 | 91.93 | 92.31

conj | 184 | 153 | 183 | 83.15 | 83.61

conjarg | 208 | 150 | 199 | 72.12 | 75.38

indobj | 128 | 84 | 124 | 65.62 | 67.74

marked | 91 | 90 | 95 | 98.90 | 94.74

mod | 1299 | 1188 | 1370 | 91.45 | 86.72

obj | 218 | 172 | 217 | 78.90 | 79.26

pragadjunct | 64 | 37 | 48 | 57.81 | 77.08

prepcomp | 831 | 821 | 828 | 98.80 | 99.15

subj | 405 | 339 | 408 | 83.70 | 83.09

xadjunct | 55 | 43 | 56 | 78.18 | 76.79

xcomp | 131 | 119 | 127 | 90.84 | 93.70

xmod | 71 | 47 | 64 | 66.20 | 73.44

xprepcomp | 4 | 4 | 5 | 100.00 | 80.00

xsubj | 12 | 9 | 14 | 75.00 | 64.29

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 398 | 387 | 398 | 97.24 | 97.24

left | 3196 | 3156 | 3200 | 98.75 | 98.62

right | 1419 | 1376 | 1415 | 96.97 | 97.24

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 398 | 387 | 398 | 97.24 | 97.24

1 | 2630 | 2566 | 2664 | 97.57 | 96.32

2 | 926 | 862 | 914 | 93.09 | 94.31

3-6 | 796 | 687 | 795 | 86.31 | 86.42

7-... | 263 | 197 | 242 | 74.90 | 81.40

C.3 Chinese
Labeled attachment score: 4269 / 4970 * 100 = 85.90 %

Unlabeled attachment score: 4526 / 4970 * 100 = 91.07 %

Label accuracy score: 4385 / 4970 * 100 = 88.23 %

==

Evaluation of the results in chinese.proj.pred

164

vs. gold standard chinese_sinica_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 42

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 4970 | 4526 | 91% | 4385 | 88% | 4269 | 86%

-----------+-------+-------+------+-------+------+-------+-------

N | 2021 | 1829 | 90% | 1786 | 88% | 1746 | 86%

V | 1210 | 1082 | 89% | 1080 | 89% | 1064 | 88%

D | 505 | 489 | 97% | 504 | 100% | 488 | 97%

DE | 407 | 389 | 96% | 309 | 76% | 301 | 74%

P | 251 | 231 | 92% | 201 | 80% | 195 | 78%

C | 170 | 155 | 91% | 151 | 89% | 148 | 87%

DM | 148 | 128 | 86% | 122 | 82% | 116 | 78%

Ne | 129 | 114 | 88% | 117 | 91% | 105 | 81%

Ng | 81 | 66 | 81% | 68 | 84% | 63 | 78%

A | 32 | 29 | 91% | 31 | 97% | 29 | 91%

T | 16 | 14 | 88% | 16 | 100% | 14 | 88%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 4970 | 444 | 9% | 585 | 12% | 328 | 7%

-----------+-------+-------+------+-------+------+-------+-------

N | 2021 | 192 | 10% | 235 | 12% | 152 | 8%

V | 1210 | 128 | 11% | 130 | 11% | 112 | 9%

D | 505 | 16 | 3% | 1 | 0% | 0 | 0%

DE | 407 | 18 | 4% | 98 | 24% | 10 | 2%

P | 251 | 20 | 8% | 50 | 20% | 14 | 6%

C | 170 | 15 | 9% | 19 | 11% | 12 | 7%

DM | 148 | 20 | 14% | 26 | 18% | 14 | 9%

Ne | 129 | 15 | 12% | 12 | 9% | 3 | 2%

Ng | 81 | 15 | 19% | 13 | 16% | 10 | 12%

A | 32 | 3 | 9% | 1 | 3% | 1 | 3%

T | 16 | 2 | 12% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

165

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

DUMMY | 320 | 289 | 325 | 90.31 | 88.92

DUMMY1 | 78 | 73 | 75 | 93.59 | 97.33

DUMMY2 | 96 | 87 | 98 | 90.62 | 88.78

Head | 29 | 13 | 25 | 44.83 | 52.00

ROOT | 864 | 812 | 864 | 93.98 | 93.98

addition | 18 | 17 | 17 | 94.44 | 100.00

agent | 128 | 108 | 147 | 84.38 | 73.47

apposition | 42 | 37 | 41 | 88.10 | 90.24

aspect | 39 | 39 | 39 | 100.00 | 100.00

benefactor | 8 | 6 | 6 | 75.00 | 100.00

causer | 10 | 3 | 4 | 30.00 | 75.00

companion | 15 | 14 | 18 | 93.33 | 77.78

comparison | 10 | 9 | 12 | 90.00 | 75.00

complement | 63 | 44 | 62 | 69.84 | 70.97

concession | 7 | 7 | 7 | 100.00 | 100.00

condition | 16 | 7 | 15 | 43.75 | 46.67

contrast | 22 | 20 | 22 | 90.91 | 90.91

conversion | 2 | 1 | 1 | 50.00 | 100.00

degree | 67 | 67 | 68 | 100.00 | 98.53

deixis | 5 | 5 | 5 | 100.00 | 100.00

deontics | 54 | 54 | 54 | 100.00 | 100.00

duration | 4 | 1 | 3 | 25.00 | 33.33

epistemics | 42 | 42 | 42 | 100.00 | 100.00

evaluation | 89 | 89 | 89 | 100.00 | 100.00

experiencer | 18 | 17 | 17 | 94.44 | 100.00

frequency | 7 | 2 | 4 | 28.57 | 50.00

goal | 354 | 301 | 351 | 85.03 | 85.75

head | 333 | 297 | 340 | 89.19 | 87.35

hypothesis | 12 | 12 | 12 | 100.00 | 100.00

instrument | 6 | 4 | 5 | 66.67 | 80.00

location | 77 | 53 | 68 | 68.83 | 77.94

manner | 96 | 72 | 79 | 75.00 | 91.14

negation | 43 | 43 | 43 | 100.00 | 100.00

nominal | 31 | 27 | 28 | 87.10 | 96.43

particle | 16 | 16 | 16 | 100.00 | 100.00

possessor | 36 | 5 | 9 | 13.89 | 55.56

predication | 62 | 15 | 27 | 24.19 | 55.56

property | 849 | 799 | 940 | 94.11 | 85.00

purpose | 1 | 1 | 1 | 100.00 | 100.00

quantifier | 220 | 193 | 208 | 87.73 | 92.79

quantity | 63 | 59 | 63 | 93.65 | 93.65

range | 178 | 167 | 177 | 93.82 | 94.35

reason | 16 | 15 | 18 | 93.75 | 83.33

recipient | 1 | 0 | 0 | 0.00 | NaN

restriction | 6 | 6 | 6 | 100.00 | 100.00

result | 11 | 10 | 14 | 90.91 | 71.43

source | 0 | 0 | 1 | NaN | 0.00

standard | 1 | 1 | 1 | 100.00 | 100.00

target | 12 | 10 | 12 | 83.33 | 83.33

theme | 334 | 281 | 339 | 84.13 | 82.89

time | 144 | 133 | 144 | 92.36 | 92.36

166

topic | 13 | 0 | 5 | 0.00 | 0.00

whatever | 2 | 2 | 3 | 100.00 | 66.67

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

DUMMY | 320 | 288 | 325 | 90.00 | 88.62

DUMMY1 | 78 | 73 | 75 | 93.59 | 97.33

DUMMY2 | 96 | 87 | 98 | 90.62 | 88.78

Head | 29 | 13 | 25 | 44.83 | 52.00

ROOT | 864 | 812 | 864 | 93.98 | 93.98

addition | 18 | 17 | 17 | 94.44 | 100.00

agent | 128 | 106 | 147 | 82.81 | 72.11

apposition | 42 | 37 | 41 | 88.10 | 90.24

aspect | 39 | 39 | 39 | 100.00 | 100.00

benefactor | 8 | 6 | 6 | 75.00 | 100.00

causer | 10 | 3 | 4 | 30.00 | 75.00

companion | 15 | 14 | 18 | 93.33 | 77.78

comparison | 10 | 8 | 12 | 80.00 | 66.67

complement | 63 | 42 | 62 | 66.67 | 67.74

concession | 7 | 7 | 7 | 100.00 | 100.00

condition | 16 | 7 | 15 | 43.75 | 46.67

contrast | 22 | 19 | 22 | 86.36 | 86.36

conversion | 2 | 1 | 1 | 50.00 | 100.00

degree | 67 | 66 | 68 | 98.51 | 97.06

deixis | 5 | 5 | 5 | 100.00 | 100.00

deontics | 54 | 54 | 54 | 100.00 | 100.00

duration | 4 | 1 | 3 | 25.00 | 33.33

epistemics | 42 | 39 | 42 | 92.86 | 92.86

evaluation | 89 | 84 | 89 | 94.38 | 94.38

experiencer | 18 | 17 | 17 | 94.44 | 100.00

frequency | 7 | 2 | 4 | 28.57 | 50.00

goal | 354 | 295 | 351 | 83.33 | 84.05

head | 333 | 295 | 340 | 88.59 | 86.76

hypothesis | 12 | 11 | 12 | 91.67 | 91.67

instrument | 6 | 4 | 5 | 66.67 | 80.00

location | 77 | 51 | 68 | 66.23 | 75.00

manner | 96 | 72 | 79 | 75.00 | 91.14

negation | 43 | 42 | 43 | 97.67 | 97.67

nominal | 31 | 26 | 28 | 83.87 | 92.86

particle | 16 | 14 | 16 | 87.50 | 87.50

possessor | 36 | 5 | 9 | 13.89 | 55.56

predication | 62 | 14 | 27 | 22.58 | 51.85

property | 849 | 746 | 940 | 87.87 | 79.36

purpose | 1 | 1 | 1 | 100.00 | 100.00

quantifier | 220 | 175 | 208 | 79.55 | 84.13

quantity | 63 | 56 | 63 | 88.89 | 88.89

range | 178 | 165 | 177 | 92.70 | 93.22

reason | 16 | 15 | 18 | 93.75 | 83.33

recipient | 1 | 0 | 0 | 0.00 | NaN

167

restriction | 6 | 6 | 6 | 100.00 | 100.00

result | 11 | 10 | 14 | 90.91 | 71.43

source | 0 | 0 | 1 | NaN | 0.00

standard | 1 | 1 | 1 | 100.00 | 100.00

target | 12 | 9 | 12 | 75.00 | 75.00

theme | 334 | 277 | 339 | 82.93 | 81.71

time | 144 | 130 | 144 | 90.28 | 90.28

topic | 13 | 0 | 5 | 0.00 | 0.00

whatever | 2 | 2 | 3 | 100.00 | 66.67

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 864 | 812 | 864 | 93.98 | 93.98

left | 1172 | 1069 | 1166 | 91.21 | 91.68

right | 2934 | 2833 | 2940 | 96.56 | 96.36

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 864 | 812 | 864 | 93.98 | 93.98

1 | 2332 | 2247 | 2375 | 96.36 | 94.61

2 | 792 | 715 | 797 | 90.28 | 89.71

3-6 | 843 | 728 | 815 | 86.36 | 89.33

7-... | 139 | 108 | 119 | 77.70 | 90.76

C.4 Czech
Labeled attachment score: 4009 / 5000 * 100 = 80.18 %

Unlabeled attachment score: 4365 / 5000 * 100 = 87.30 %

Label accuracy score: 4336 / 5000 * 100 = 86.72 %

==

Evaluation of the results in czech.nonproj.pred

vs. gold standard czech_pdt_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 853

The overall accuracy and its distribution over CPOSTAGs

168

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5000 | 4365 | 87% | 4336 | 87% | 4009 | 80%

-----------+-------+-------+------+-------+------+-------+-------

N | 1748 | 1573 | 90% | 1431 | 82% | 1364 | 78%

V | 708 | 591 | 83% | 562 | 79% | 540 | 76%

A | 692 | 668 | 97% | 667 | 96% | 658 | 95%

R | 598 | 473 | 79% | 593 | 99% | 470 | 79%

P | 404 | 386 | 96% | 353 | 87% | 346 | 86%

D | 336 | 274 | 82% | 291 | 87% | 257 | 76%

J | 321 | 242 | 75% | 292 | 91% | 238 | 74%

C | 159 | 129 | 81% | 118 | 74% | 109 | 69%

T | 34 | 29 | 85% | 29 | 85% | 27 | 79%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5000 | 635 | 13% | 664 | 13% | 308 | 6%

-----------+-------+-------+------+-------+------+-------+-------

N | 1748 | 175 | 10% | 317 | 18% | 108 | 6%

V | 708 | 117 | 17% | 146 | 21% | 95 | 13%

A | 692 | 24 | 3% | 25 | 4% | 15 | 2%

R | 598 | 125 | 21% | 5 | 1% | 2 | 0%

P | 404 | 18 | 4% | 51 | 13% | 11 | 3%

D | 336 | 62 | 18% | 45 | 13% | 28 | 8%

J | 321 | 79 | 25% | 29 | 9% | 25 | 8%

C | 159 | 30 | 19% | 41 | 26% | 21 | 13%

T | 34 | 5 | 15% | 5 | 15% | 3 | 9%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

Adv | 576 | 474 | 567 | 82.29 | 83.60

AdvAtr | 6 | 0 | 0 | 0.00 | NaN

Adv_Ap | 6 | 0 | 3 | 0.00 | 0.00

Adv_Co | 39 | 13 | 32 | 33.33 | 40.62

Adv_Pa | 7 | 1 | 2 | 14.29 | 50.00

Apos | 3 | 2 | 4 | 66.67 | 50.00

Apos_Co | 1 | 1 | 1 | 100.00 | 100.00

Atr | 1514 | 1441 | 1563 | 95.18 | 92.19

AtrAdv | 9 | 0 | 0 | 0.00 | NaN

AtrAtr | 4 | 0 | 0 | 0.00 | NaN

169

Atr_Ap | 0 | 0 | 4 | NaN | 0.00

Atr_Co | 134 | 81 | 134 | 60.45 | 60.45

Atr_Pa | 2 | 0 | 0 | 0.00 | NaN

Atv | 10 | 6 | 8 | 60.00 | 75.00

AtvV | 2 | 0 | 1 | 0.00 | 0.00

Atv_Co | 2 | 0 | 0 | 0.00 | NaN

AuxC | 101 | 100 | 103 | 99.01 | 97.09

AuxO | 1 | 0 | 2 | 0.00 | 0.00

AuxP | 610 | 608 | 614 | 99.67 | 99.02

AuxR | 23 | 12 | 17 | 52.17 | 70.59

AuxT | 63 | 58 | 74 | 92.06 | 78.38

AuxV | 82 | 76 | 82 | 92.68 | 92.68

AuxY | 52 | 39 | 44 | 75.00 | 88.64

AuxZ | 106 | 93 | 108 | 87.74 | 86.11

Coord | 157 | 146 | 161 | 92.99 | 90.68

Coord_Ap | 1 | 0 | 2 | 0.00 | 0.00

Coord_Co | 11 | 6 | 10 | 54.55 | 60.00

ExD | 59 | 44 | 56 | 74.58 | 78.57

ExD_Ap | 17 | 4 | 6 | 23.53 | 66.67

ExD_Co | 64 | 31 | 74 | 48.44 | 41.89

ExD_Pa | 14 | 10 | 13 | 71.43 | 76.92

Obj | 426 | 362 | 434 | 84.98 | 83.41

Obj_Ap | 7 | 5 | 8 | 71.43 | 62.50

Obj_Co | 48 | 14 | 54 | 29.17 | 25.93

Obj_Pa | 2 | 0 | 0 | 0.00 | NaN

Pnom | 71 | 56 | 66 | 78.87 | 84.85

Pnom_Co | 4 | 2 | 5 | 50.00 | 40.00

Pred | 242 | 219 | 243 | 90.50 | 90.12

Pred_Co | 113 | 80 | 105 | 70.80 | 76.19

Pred_Pa | 7 | 3 | 5 | 42.86 | 60.00

Sb | 360 | 326 | 346 | 90.56 | 94.22

Sb_Ap | 14 | 1 | 4 | 7.14 | 25.00

Sb_Co | 30 | 22 | 45 | 73.33 | 48.89

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

Adv | 576 | 450 | 567 | 78.12 | 79.37

AdvAtr | 6 | 0 | 0 | 0.00 | NaN

Adv_Ap | 6 | 0 | 3 | 0.00 | 0.00

Adv_Co | 39 | 13 | 32 | 33.33 | 40.62

Adv_Pa | 7 | 1 | 2 | 14.29 | 50.00

Apos | 3 | 0 | 4 | 0.00 | 0.00

Apos_Co | 1 | 1 | 1 | 100.00 | 100.00

Atr | 1514 | 1397 | 1563 | 92.27 | 89.38

AtrAdv | 9 | 0 | 0 | 0.00 | NaN

AtrAtr | 4 | 0 | 0 | 0.00 | NaN

Atr_Ap | 0 | 0 | 4 | NaN | 0.00

Atr_Co | 134 | 73 | 134 | 54.48 | 54.48

Atr_Pa | 2 | 0 | 0 | 0.00 | NaN

170

Atv | 10 | 6 | 8 | 60.00 | 75.00

AtvV | 2 | 0 | 1 | 0.00 | 0.00

Atv_Co | 2 | 0 | 0 | 0.00 | NaN

AuxC | 101 | 92 | 103 | 91.09 | 89.32

AuxO | 1 | 0 | 2 | 0.00 | 0.00

AuxP | 610 | 483 | 614 | 79.18 | 78.66

AuxR | 23 | 12 | 17 | 52.17 | 70.59

AuxT | 63 | 57 | 74 | 90.48 | 77.03

AuxV | 82 | 75 | 82 | 91.46 | 91.46

AuxY | 52 | 37 | 44 | 71.15 | 84.09

AuxZ | 106 | 79 | 108 | 74.53 | 73.15

Coord | 157 | 106 | 161 | 67.52 | 65.84

Coord_Ap | 1 | 0 | 2 | 0.00 | 0.00

Coord_Co | 11 | 4 | 10 | 36.36 | 40.00

ExD | 59 | 44 | 56 | 74.58 | 78.57

ExD_Ap | 17 | 4 | 6 | 23.53 | 66.67

ExD_Co | 64 | 24 | 74 | 37.50 | 32.43

ExD_Pa | 14 | 9 | 13 | 64.29 | 69.23

Obj | 426 | 353 | 434 | 82.86 | 81.34

Obj_Ap | 7 | 5 | 8 | 71.43 | 62.50

Obj_Co | 48 | 13 | 54 | 27.08 | 24.07

Obj_Pa | 2 | 0 | 0 | 0.00 | NaN

Pnom | 71 | 55 | 66 | 77.46 | 83.33

Pnom_Co | 4 | 2 | 5 | 50.00 | 40.00

Pred | 242 | 218 | 243 | 90.08 | 89.71

Pred_Co | 113 | 72 | 105 | 63.72 | 68.57

Pred_Pa | 7 | 2 | 5 | 28.57 | 40.00

Sb | 360 | 300 | 346 | 83.33 | 86.71

Sb_Ap | 14 | 1 | 4 | 7.14 | 25.00

Sb_Co | 30 | 21 | 45 | 70.00 | 46.67

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 354 | 310 | 349 | 87.57 | 88.83

left | 2556 | 2422 | 2567 | 94.76 | 94.35

right | 2090 | 1944 | 2084 | 93.01 | 93.28

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 354 | 310 | 349 | 87.57 | 88.83

1 | 2471 | 2364 | 2539 | 95.67 | 93.11

2 | 988 | 899 | 1010 | 90.99 | 89.01

3-6 | 921 | 752 | 864 | 81.65 | 87.04

7-... | 266 | 186 | 238 | 69.92 | 78.15

171

C.5 Danish
Labeled attachment score: 4248 / 5010 * 100 = 84.79 %

Unlabeled attachment score: 4538 / 5010 * 100 = 90.58 %

Label accuracy score: 4470 / 5010 * 100 = 89.22 %

==

Evaluation of the results in danish.nonproj.pred

vs. gold standard danish_ddt_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 842

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5010 | 4538 | 91% | 4470 | 89% | 4248 | 85%

-----------+-------+-------+------+-------+------+-------+-------

N | 1386 | 1291 | 93% | 1258 | 91% | 1234 | 89%

V | 954 | 898 | 94% | 884 | 93% | 864 | 91%

P | 624 | 599 | 96% | 581 | 93% | 576 | 92%

SP | 602 | 477 | 79% | 455 | 76% | 388 | 64%

A | 518 | 471 | 91% | 462 | 89% | 444 | 86%

RG | 394 | 356 | 90% | 351 | 89% | 326 | 83%

C | 324 | 267 | 82% | 306 | 94% | 257 | 79%

U | 172 | 155 | 90% | 154 | 90% | 145 | 84%

X | 32 | 20 | 62% | 18 | 56% | 13 | 41%

I | 4 | 4 | 100% | 1 | 25% | 1 | 25%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5010 | 472 | 9% | 540 | 11% | 250 | 5%

-----------+-------+-------+------+-------+------+-------+-------

N | 1386 | 95 | 7% | 128 | 9% | 71 | 5%

V | 954 | 56 | 6% | 70 | 7% | 36 | 4%

P | 624 | 25 | 4% | 43 | 7% | 20 | 3%

SP | 602 | 125 | 21% | 147 | 24% | 58 | 10%

A | 518 | 47 | 9% | 56 | 11% | 29 | 6%

RG | 394 | 38 | 10% | 43 | 11% | 13 | 3%

C | 324 | 57 | 18% | 18 | 6% | 8 | 2%

U | 172 | 17 | 10% | 18 | 10% | 8 | 5%

X | 32 | 12 | 38% | 14 | 44% | 7 | 22%

172

I | 4 | 0 | 0% | 3 | 75% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

<dobj> | 2 | 0 | 0 | 0.00 | NaN

<mod> | 8 | 0 | 1 | 0.00 | 0.00

<pred> | 2 | 0 | 1 | 0.00 | 0.00

<subj:pobj> | 1 | 0 | 0 | 0.00 | NaN

<subj> | 2 | 0 | 0 | 0.00 | NaN

<xpl> | 0 | 0 | 1 | NaN | 0.00

ROOT | 323 | 307 | 322 | 95.05 | 95.34

aobj | 6 | 0 | 2 | 0.00 | 0.00

appa | 15 | 8 | 14 | 53.33 | 57.14

appr | 13 | 5 | 8 | 38.46 | 62.50

avobj | 15 | 5 | 5 | 33.33 | 100.00

conj | 239 | 208 | 242 | 87.03 | 85.95

coord | 156 | 155 | 158 | 99.36 | 98.10

dobj | 321 | 294 | 350 | 91.59 | 84.00

err | 1 | 0 | 3 | 0.00 | 0.00

expl | 23 | 20 | 22 | 86.96 | 90.91

iobj | 10 | 5 | 6 | 50.00 | 83.33

list | 13 | 2 | 8 | 15.38 | 25.00

lobj | 63 | 44 | 59 | 69.84 | 74.58

mod | 1028 | 885 | 1003 | 86.09 | 88.24

modp | 2 | 0 | 4 | 0.00 | 0.00

name | 1 | 0 | 5 | 0.00 | 0.00

namef | 90 | 84 | 92 | 93.33 | 91.30

namel | 5 | 2 | 5 | 40.00 | 40.00

nobj | 989 | 961 | 1005 | 97.17 | 95.62

numm | 2 | 1 | 1 | 50.00 | 100.00

obl | 1 | 1 | 3 | 100.00 | 33.33

part | 8 | 5 | 7 | 62.50 | 71.43

pobj | 277 | 230 | 310 | 83.03 | 74.19

possd | 112 | 102 | 109 | 91.07 | 93.58

pred | 151 | 113 | 142 | 74.83 | 79.58

qobj | 37 | 30 | 33 | 81.08 | 90.91

rel | 68 | 62 | 76 | 91.18 | 81.58

subj | 558 | 514 | 558 | 92.11 | 92.11

title | 9 | 8 | 11 | 88.89 | 72.73

tobj | 14 | 4 | 5 | 28.57 | 80.00

vobj | 424 | 410 | 427 | 96.70 | 96.02

voc | 2 | 0 | 1 | 0.00 | 0.00

xpl | 14 | 3 | 8 | 21.43 | 37.50

xtop | 5 | 2 | 3 | 40.00 | 66.67

Precision and recall of DEPREL + ATTACHMENT

173

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

<dobj> | 2 | 0 | 0 | 0.00 | NaN

<mod> | 8 | 0 | 1 | 0.00 | 0.00

<pred> | 2 | 0 | 1 | 0.00 | 0.00

<subj:pobj> | 1 | 0 | 0 | 0.00 | NaN

<subj> | 2 | 0 | 0 | 0.00 | NaN

<xpl> | 0 | 0 | 1 | NaN | 0.00

ROOT | 323 | 307 | 322 | 95.05 | 95.34

aobj | 6 | 0 | 2 | 0.00 | 0.00

appa | 15 | 8 | 14 | 53.33 | 57.14

appr | 13 | 5 | 8 | 38.46 | 62.50

avobj | 15 | 5 | 5 | 33.33 | 100.00

conj | 239 | 201 | 242 | 84.10 | 83.06

coord | 156 | 114 | 158 | 73.08 | 72.15

dobj | 321 | 287 | 350 | 89.41 | 82.00

err | 1 | 0 | 3 | 0.00 | 0.00

expl | 23 | 20 | 22 | 86.96 | 90.91

iobj | 10 | 5 | 6 | 50.00 | 83.33

list | 13 | 2 | 8 | 15.38 | 25.00

lobj | 63 | 44 | 59 | 69.84 | 74.58

mod | 1028 | 768 | 1003 | 74.71 | 76.57

modp | 2 | 0 | 4 | 0.00 | 0.00

name | 1 | 0 | 5 | 0.00 | 0.00

namef | 90 | 83 | 92 | 92.22 | 90.22

namel | 5 | 2 | 5 | 40.00 | 40.00

nobj | 989 | 950 | 1005 | 96.06 | 94.53

numm | 2 | 1 | 1 | 50.00 | 100.00

obl | 1 | 1 | 3 | 100.00 | 33.33

part | 8 | 5 | 7 | 62.50 | 71.43

pobj | 277 | 216 | 310 | 77.98 | 69.68

possd | 112 | 95 | 109 | 84.82 | 87.16

pred | 151 | 112 | 142 | 74.17 | 78.87

qobj | 37 | 30 | 33 | 81.08 | 90.91

rel | 68 | 51 | 76 | 75.00 | 67.11

subj | 558 | 513 | 558 | 91.94 | 91.94

title | 9 | 8 | 11 | 88.89 | 72.73

tobj | 14 | 4 | 5 | 28.57 | 80.00

vobj | 424 | 406 | 427 | 95.75 | 95.08

voc | 2 | 0 | 1 | 0.00 | 0.00

xpl | 14 | 3 | 8 | 21.43 | 37.50

xtop | 5 | 2 | 3 | 40.00 | 66.67

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 323 | 307 | 322 | 95.05 | 95.34

left | 3707 | 3649 | 3721 | 98.44 | 98.07

right | 980 | 910 | 967 | 92.86 | 94.11

174

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 323 | 307 | 322 | 95.05 | 95.34

1 | 2893 | 2807 | 2958 | 97.03 | 94.90

2 | 858 | 777 | 846 | 90.56 | 91.84

3-6 | 705 | 575 | 674 | 81.56 | 85.31

7-... | 231 | 168 | 210 | 72.73 | 80.00

C.6 Dutch
Labeled attachment score: 3958 / 4998 * 100 = 79.19 %

Unlabeled attachment score: 4177 / 4998 * 100 = 83.57 %

Label accuracy score: 4193 / 4998 * 100 = 83.89 %

==

Evaluation of the results in dutch.nonproj.pred

vs. gold standard dutch_alpino_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 587

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 4998 | 4177 | 84% | 4193 | 84% | 3958 | 79%

-----------+-------+-------+------+-------+------+-------+-------

N | 1374 | 1143 | 83% | 1105 | 80% | 1074 | 78%

V | 849 | 738 | 87% | 727 | 86% | 720 | 85%

Prep | 674 | 543 | 81% | 563 | 84% | 487 | 72%

Art | 615 | 583 | 95% | 608 | 99% | 582 | 95%

Adj | 350 | 326 | 93% | 326 | 93% | 317 | 91%

Conj | 306 | 178 | 58% | 182 | 59% | 158 | 52%

Adv | 287 | 233 | 81% | 252 | 88% | 219 | 76%

Pron | 256 | 231 | 90% | 217 | 85% | 209 | 82%

MWU | 141 | 104 | 74% | 121 | 86% | 103 | 73%

Num | 129 | 83 | 64% | 78 | 60% | 75 | 58%

Punc | 12 | 12 | 100% | 12 | 100% | 12 | 100%

Misc | 4 | 3 | 75% | 2 | 50% | 2 | 50%

Int | 1 | 0 | 0% | 0 | 0% | 0 | 0%

175

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 4998 | 821 | 16% | 805 | 16% | 586 | 12%

-----------+-------+-------+------+-------+------+-------+-------

N | 1374 | 231 | 17% | 269 | 20% | 200 | 15%

V | 849 | 111 | 13% | 122 | 14% | 104 | 12%

Prep | 674 | 131 | 19% | 111 | 16% | 55 | 8%

Art | 615 | 32 | 5% | 7 | 1% | 6 | 1%

Adj | 350 | 24 | 7% | 24 | 7% | 15 | 4%

Conj | 306 | 128 | 42% | 124 | 41% | 104 | 34%

Adv | 287 | 54 | 19% | 35 | 12% | 21 | 7%

Pron | 256 | 25 | 10% | 39 | 15% | 17 | 7%

MWU | 141 | 37 | 26% | 20 | 14% | 19 | 13%

Num | 129 | 46 | 36% | 51 | 40% | 43 | 33%

Punc | 12 | 0 | 0% | 0 | 0% | 0 | 0%

Misc | 4 | 1 | 25% | 2 | 50% | 1 | 25%

Int | 1 | 1 | 100% | 1 | 100% | 1 | 100%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ROOT | 514 | 366 | 424 | 71.21 | 86.32

app | 75 | 28 | 77 | 37.33 | 36.36

body | 153 | 124 | 150 | 81.05 | 82.67

cnj | 535 | 427 | 526 | 79.81 | 81.18

crd | 4 | 2 | 6 | 50.00 | 33.33

det | 761 | 743 | 778 | 97.63 | 95.50

hdf | 3 | 3 | 4 | 100.00 | 75.00

ld | 23 | 12 | 22 | 52.17 | 54.55

me | 3 | 1 | 2 | 33.33 | 50.00

mod | 1255 | 1137 | 1339 | 90.60 | 84.91

obcomp | 9 | 8 | 8 | 88.89 | 100.00

obj1 | 823 | 716 | 864 | 87.00 | 82.87

obj2 | 8 | 2 | 5 | 25.00 | 40.00

pc | 101 | 48 | 68 | 47.52 | 70.59

pobj1 | 2 | 2 | 3 | 100.00 | 66.67

predc | 91 | 56 | 78 | 61.54 | 71.79

predm | 8 | 2 | 6 | 25.00 | 33.33

punct | 17 | 12 | 12 | 70.59 | 100.00

se | 3 | 3 | 4 | 100.00 | 75.00

su | 306 | 240 | 303 | 78.43 | 79.21

sup | 4 | 2 | 4 | 50.00 | 50.00

176

svp | 42 | 32 | 37 | 76.19 | 86.49

vc | 258 | 227 | 278 | 87.98 | 81.65

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ROOT | 514 | 366 | 424 | 71.21 | 86.32

app | 75 | 27 | 77 | 36.00 | 35.06

body | 153 | 123 | 150 | 80.39 | 82.00

cnj | 535 | 413 | 526 | 77.20 | 78.52

crd | 4 | 2 | 6 | 50.00 | 33.33

det | 761 | 717 | 778 | 94.22 | 92.16

hdf | 3 | 3 | 4 | 100.00 | 75.00

ld | 23 | 12 | 22 | 52.17 | 54.55

me | 3 | 1 | 2 | 33.33 | 50.00

mod | 1255 | 981 | 1339 | 78.17 | 73.26

obcomp | 9 | 7 | 8 | 77.78 | 87.50

obj1 | 823 | 699 | 864 | 84.93 | 80.90

obj2 | 8 | 2 | 5 | 25.00 | 40.00

pc | 101 | 45 | 68 | 44.55 | 66.18

pobj1 | 2 | 2 | 3 | 100.00 | 66.67

predc | 91 | 55 | 78 | 60.44 | 70.51

predm | 8 | 1 | 6 | 12.50 | 16.67

punct | 17 | 12 | 12 | 70.59 | 100.00

se | 3 | 3 | 4 | 100.00 | 75.00

su | 306 | 230 | 303 | 75.16 | 75.91

sup | 4 | 2 | 4 | 50.00 | 50.00

svp | 42 | 32 | 37 | 76.19 | 86.49

vc | 258 | 223 | 278 | 86.43 | 80.22

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 514 | 366 | 424 | 71.21 | 86.32

left | 2336 | 2163 | 2411 | 92.59 | 89.71

right | 2148 | 1974 | 2163 | 91.90 | 91.26

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 514 | 366 | 424 | 71.21 | 86.32

1 | 2366 | 2231 | 2445 | 94.29 | 91.25

2 | 903 | 792 | 922 | 87.71 | 85.90

177

3-6 | 888 | 701 | 895 | 78.94 | 78.32

7-... | 327 | 226 | 312 | 69.11 | 72.44

C.7 English
Labeled attachment score: 44552 / 49847 * 100 = 89.38 %

Unlabeled attachment score: 45578 / 49847 * 100 = 91.44 %

Label accuracy score: 46984 / 49847 * 100 = 94.26 %

==

Evaluation of the results in /scratch/ryantm/mine/parsers/old_parsers/conll_lab/eng_out/new.out

vs. gold standard ../data/english/ptb/test/conll_english.txt:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 6837

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 49847 | 45578 | 91% | 46984 | 94% | 44552 | 89%

-----------+-------+-------+------+-------+------+-------+-------

NN | 7536 | 6974 | 93% | 6995 | 93% | 6790 | 90%

IN | 5934 | 5039 | 85% | 5645 | 95% | 4884 | 82%

NNP | 5500 | 5215 | 95% | 5270 | 96% | 5126 | 93%

DT | 4834 | 4692 | 97% | 4790 | 99% | 4672 | 97%

JJ | 3663 | 3439 | 94% | 3424 | 93% | 3322 | 91%

NNS | 3561 | 3264 | 92% | 3293 | 92% | 3193 | 90%

RB | 1991 | 1661 | 83% | 1668 | 84% | 1517 | 76%

CD | 1943 | 1792 | 92% | 1862 | 96% | 1776 | 91%

VBD | 1814 | 1695 | 93% | 1722 | 95% | 1689 | 93%

VB | 1549 | 1446 | 93% | 1454 | 94% | 1412 | 91%

CC | 1291 | 1092 | 85% | 1284 | 99% | 1091 | 85%

TO | 1240 | 1151 | 93% | 1209 | 98% | 1147 | 92%

VBZ | 1239 | 1126 | 91% | 1140 | 92% | 1110 | 90%

VBN | 1190 | 1092 | 92% | 1086 | 91% | 1046 | 88%

PRP | 1050 | 1032 | 98% | 1035 | 99% | 1027 | 98%

VBG | 856 | 722 | 84% | 749 | 88% | 693 | 81%

VBP | 811 | 727 | 90% | 731 | 90% | 710 | 88%

MD | 583 | 530 | 91% | 547 | 94% | 525 | 90%

‘‘ | 531 | 426 | 80% | 531 | 100% | 426 | 80%

PRP$ | 511 | 494 | 97% | 511 | 100% | 494 | 97%

POS | 504 | 484 | 96% | 496 | 98% | 483 | 96%

$ | 376 | 342 | 91% | 343 | 91% | 336 | 89%

WDT | 276 | 234 | 85% | 268 | 97% | 233 | 84%

JJR | 190 | 151 | 79% | 147 | 77% | 138 | 73%

178

WRB | 132 | 96 | 73% | 123 | 93% | 93 | 70%

RP | 130 | 129 | 99% | 105 | 81% | 105 | 81%

JJS | 128 | 118 | 92% | 115 | 90% | 112 | 88%

NNPS | 118 | 112 | 95% | 112 | 95% | 111 | 94%

WP | 112 | 95 | 85% | 105 | 94% | 93 | 83%

RBR | 107 | 85 | 79% | 86 | 80% | 76 | 71%

EX | 58 | 56 | 97% | 58 | 100% | 56 | 97%

RBS | 27 | 24 | 89% | 26 | 96% | 24 | 89%

PDT | 21 | 17 | 81% | 21 | 100% | 17 | 81%

WP$ | 21 | 17 | 81% | 20 | 95% | 17 | 81%

UH | 10 | 5 | 50% | 8 | 80% | 5 | 50%

FW | 4 | 2 | 50% | 1 | 25% | 1 | 25%

LS | 4 | 2 | 50% | 4 | 100% | 2 | 50%

, | 2 | 0 | 0% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 49847 | 4269 | 9% | 2863 | 6% | 1837 | 4%

-----------+-------+-------+------+-------+------+-------+-------

NN | 7536 | 562 | 7% | 541 | 7% | 357 | 5%

IN | 5934 | 895 | 15% | 289 | 5% | 134 | 2%

NNP | 5500 | 285 | 5% | 230 | 4% | 141 | 3%

DT | 4834 | 142 | 3% | 44 | 1% | 24 | 0%

JJ | 3663 | 224 | 6% | 239 | 7% | 122 | 3%

NNS | 3561 | 297 | 8% | 268 | 8% | 197 | 6%

RB | 1991 | 330 | 17% | 323 | 16% | 179 | 9%

CD | 1943 | 151 | 8% | 81 | 4% | 65 | 3%

VBD | 1814 | 119 | 7% | 92 | 5% | 86 | 5%

VB | 1549 | 103 | 7% | 95 | 6% | 61 | 4%

CC | 1291 | 199 | 15% | 7 | 1% | 6 | 0%

TO | 1240 | 89 | 7% | 31 | 2% | 27 | 2%

VBZ | 1239 | 113 | 9% | 99 | 8% | 83 | 7%

VBN | 1190 | 98 | 8% | 104 | 9% | 58 | 5%

PRP | 1050 | 18 | 2% | 15 | 1% | 10 | 1%

VBG | 856 | 134 | 16% | 107 | 12% | 78 | 9%

VBP | 811 | 84 | 10% | 80 | 10% | 63 | 8%

MD | 583 | 53 | 9% | 36 | 6% | 31 | 5%

‘‘ | 531 | 105 | 20% | 0 | 0% | 0 | 0%

PRP$ | 511 | 17 | 3% | 0 | 0% | 0 | 0%

POS | 504 | 20 | 4% | 8 | 2% | 7 | 1%

$ | 376 | 34 | 9% | 33 | 9% | 27 | 7%

WDT | 276 | 42 | 15% | 8 | 3% | 7 | 3%

JJR | 190 | 39 | 21% | 43 | 23% | 30 | 16%

WRB | 132 | 36 | 27% | 9 | 7% | 6 | 5%

RP | 130 | 1 | 1% | 25 | 19% | 1 | 1%

JJS | 128 | 10 | 8% | 13 | 10% | 7 | 5%

NNPS | 118 | 6 | 5% | 6 | 5% | 5 | 4%

179

WP | 112 | 17 | 15% | 7 | 6% | 5 | 4%

RBR | 107 | 22 | 21% | 21 | 20% | 12 | 11%

EX | 58 | 2 | 3% | 0 | 0% | 0 | 0%

RBS | 27 | 3 | 11% | 1 | 4% | 1 | 4%

PDT | 21 | 4 | 19% | 0 | 0% | 0 | 0%

WP$ | 21 | 4 | 19% | 1 | 5% | 1 | 5%

UH | 10 | 5 | 50% | 2 | 20% | 2 | 20%

FW | 4 | 2 | 50% | 3 | 75% | 2 | 50%

LS | 4 | 2 | 50% | 0 | 0% | 0 | 0%

, | 2 | 2 | 100% | 2 | 100% | 2 | 100%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ADJP | 732 | 519 | 636 | 70.90 | 81.60

ADVP | 1166 | 1003 | 1178 | 86.02 | 85.14

CONJP | 21 | 7 | 12 | 33.33 | 58.33

DEP | 19010 | 18572 | 19178 | 97.70 | 96.84

FRAG | 19 | 2 | 11 | 10.53 | 18.18

INTJ | 10 | 8 | 11 | 80.00 | 72.73

LST | 4 | 4 | 5 | 100.00 | 80.00

NAC | 30 | 18 | 22 | 60.00 | 81.82

NP | 7225 | 6779 | 7196 | 93.83 | 94.21

NP-OBJ | 1974 | 1768 | 2006 | 89.56 | 88.14

NP-PRD | 344 | 290 | 365 | 84.30 | 79.45

NP-SBJ | 4097 | 3848 | 4039 | 93.92 | 95.27

NX | 44 | 4 | 9 | 9.09 | 44.44

PP | 5429 | 5318 | 5532 | 97.96 | 96.13

PRN | 140 | 90 | 119 | 64.29 | 75.63

PRT | 159 | 105 | 133 | 66.04 | 78.95

QP | 187 | 156 | 185 | 83.42 | 84.32

ROOT | 2410 | 2282 | 2411 | 94.69 | 94.65

RRC | 0 | 0 | 3 | NaN | 0.00

S | 2773 | 2523 | 2806 | 90.98 | 89.91

SBAR | 1757 | 1537 | 1685 | 87.48 | 91.22

SBARQ | 2 | 0 | 0 | 0.00 | NaN

SINV | 11 | 2 | 3 | 18.18 | 66.67

SQ | 1 | 0 | 2 | 0.00 | 0.00

UCP | 28 | 3 | 13 | 10.71 | 23.08

VP | 2231 | 2115 | 2248 | 94.80 | 94.08

WHADJP | 0 | 0 | 2 | NaN | 0.00

WHADVP | 8 | 5 | 6 | 62.50 | 83.33

WHNP | 30 | 25 | 28 | 83.33 | 89.29

WHPP | 0 | 0 | 2 | NaN | 0.00

X | 5 | 1 | 1 | 20.00 | 100.00

Precision and recall of DEPREL + ATTACHMENT

180

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ADJP | 732 | 498 | 636 | 68.03 | 78.30

ADVP | 1166 | 900 | 1178 | 77.19 | 76.40

CONJP | 21 | 5 | 12 | 23.81 | 41.67

DEP | 19010 | 17803 | 19178 | 93.65 | 92.83

FRAG | 19 | 2 | 11 | 10.53 | 18.18

INTJ | 10 | 5 | 11 | 50.00 | 45.45

LST | 4 | 2 | 5 | 50.00 | 40.00

NAC | 30 | 18 | 22 | 60.00 | 81.82

NP | 7225 | 6447 | 7196 | 89.23 | 89.59

NP-OBJ | 1974 | 1744 | 2006 | 88.35 | 86.94

NP-PRD | 344 | 290 | 365 | 84.30 | 79.45

NP-SBJ | 4097 | 3811 | 4039 | 93.02 | 94.36

NX | 44 | 4 | 9 | 9.09 | 44.44

PP | 5429 | 4587 | 5532 | 84.49 | 82.92

PRN | 140 | 73 | 119 | 52.14 | 61.34

PRT | 159 | 105 | 133 | 66.04 | 78.95

QP | 187 | 154 | 185 | 82.35 | 83.24

ROOT | 2410 | 2282 | 2411 | 94.69 | 94.65

RRC | 0 | 0 | 3 | NaN | 0.00

S | 2773 | 2386 | 2806 | 86.04 | 85.03

SBAR | 1757 | 1333 | 1685 | 75.87 | 79.11

SBARQ | 2 | 0 | 0 | 0.00 | NaN

SINV | 11 | 1 | 3 | 9.09 | 33.33

SQ | 1 | 0 | 2 | 0.00 | 0.00

UCP | 28 | 3 | 13 | 10.71 | 23.08

VP | 2231 | 2068 | 2248 | 92.69 | 91.99

WHADJP | 0 | 0 | 2 | NaN | 0.00

WHADVP | 8 | 5 | 6 | 62.50 | 83.33

WHNP | 30 | 25 | 28 | 83.33 | 89.29

WHPP | 0 | 0 | 2 | NaN | 0.00

X | 5 | 1 | 1 | 20.00 | 100.00

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 2410 | 2282 | 2409 | 94.69 | 94.73

left | 22207 | 21394 | 22194 | 96.34 | 96.40

right | 25230 | 24436 | 25244 | 96.85 | 96.80

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 2410 | 2282 | 2409 | 94.69 | 94.73

181

1 | 24338 | 23454 | 24425 | 96.37 | 96.02

2 | 10379 | 9716 | 10475 | 93.61 | 92.75

3-6 | 9224 | 8210 | 9198 | 89.01 | 89.26

7-... | 3496 | 2863 | 3340 | 81.89 | 85.72

C.8 German
Labeled attachment score: 4374 / 5008 * 100 = 87.34 %

Unlabeled attachment score: 4526 / 5008 * 100 = 90.38 %

Label accuracy score: 4613 / 5008 * 100 = 92.11 %

==

Evaluation of the results in german.nonproj.pred

vs. gold standard german_tiger_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 686

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5008 | 4526 | 90% | 4613 | 92% | 4374 | 87%

-----------+-------+-------+------+-------+------+-------+-------

NN | 1201 | 1093 | 91% | 1067 | 89% | 1041 | 87%

ART | 593 | 584 | 98% | 592 | 100% | 583 | 98%

APPR | 463 | 368 | 79% | 375 | 81% | 340 | 73%

NE | 343 | 323 | 94% | 318 | 93% | 311 | 91%

ADJA | 321 | 311 | 97% | 318 | 99% | 310 | 97%

ADV | 274 | 212 | 77% | 264 | 96% | 209 | 76%

VVFIN | 227 | 212 | 93% | 210 | 93% | 207 | 91%

VAFIN | 157 | 142 | 90% | 142 | 90% | 137 | 87%

KON | 141 | 114 | 81% | 139 | 99% | 113 | 80%

$(| 123 | 106 | 86% | 122 | 99% | 106 | 86%

ADJD | 116 | 103 | 89% | 108 | 93% | 101 | 87%

APPRART | 109 | 82 | 75% | 88 | 81% | 78 | 72%

VVPP | 103 | 99 | 96% | 95 | 92% | 94 | 91%

PPER | 90 | 88 | 98% | 82 | 91% | 80 | 89%

VVINF | 89 | 82 | 92% | 79 | 89% | 77 | 87%

CARD | 86 | 77 | 90% | 80 | 93% | 76 | 88%

VMFIN | 62 | 56 | 90% | 57 | 92% | 55 | 89%

PPOSAT | 49 | 48 | 98% | 48 | 98% | 48 | 98%

KOUS | 48 | 47 | 98% | 47 | 98% | 47 | 98%

PTKNEG | 45 | 33 | 73% | 44 | 98% | 33 | 73%

PIAT | 40 | 39 | 98% | 39 | 98% | 39 | 98%

PRF | 37 | 36 | 97% | 35 | 95% | 34 | 92%

182

PRELS | 34 | 33 | 97% | 33 | 97% | 32 | 94%

PTKVZ | 31 | 31 | 100% | 31 | 100% | 31 | 100%

PIS | 31 | 26 | 84% | 23 | 74% | 23 | 74%

PROAV | 29 | 26 | 90% | 27 | 93% | 24 | 83%

PTKZU | 26 | 26 | 100% | 26 | 100% | 26 | 100%

PDS | 24 | 21 | 88% | 20 | 83% | 18 | 75%

VAINF | 16 | 16 | 100% | 16 | 100% | 16 | 100%

PDAT | 16 | 16 | 100% | 16 | 100% | 16 | 100%

VVIZU | 11 | 9 | 82% | 7 | 64% | 7 | 64%

PWAV | 11 | 10 | 91% | 11 | 100% | 10 | 91%

FM | 9 | 8 | 89% | 4 | 44% | 4 | 44%

KOKOM | 9 | 8 | 89% | 9 | 100% | 8 | 89%

PWS | 8 | 5 | 62% | 6 | 75% | 5 | 62%

VAPP | 7 | 7 | 100% | 7 | 100% | 7 | 100%

TRUNC | 5 | 5 | 100% | 4 | 80% | 4 | 80%

KOUI | 5 | 5 | 100% | 5 | 100% | 5 | 100%

XY | 4 | 4 | 100% | 4 | 100% | 4 | 100%

PTKANT | 3 | 3 | 100% | 3 | 100% | 3 | 100%

VVIMP | 2 | 2 | 100% | 2 | 100% | 2 | 100%

PTKA | 2 | 2 | 100% | 2 | 100% | 2 | 100%

VMINF | 2 | 2 | 100% | 2 | 100% | 2 | 100%

APPO | 2 | 2 | 100% | 2 | 100% | 2 | 100%

APZR | 1 | 1 | 100% | 1 | 100% | 1 | 100%

PRELAT | 1 | 1 | 100% | 1 | 100% | 1 | 100%

NNE | 1 | 1 | 100% | 1 | 100% | 1 | 100%

VAIMP | 1 | 1 | 100% | 1 | 100% | 1 | 100%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5008 | 482 | 10% | 395 | 8% | 243 | 5%

-----------+-------+-------+------+-------+------+-------+-------

NN | 1201 | 108 | 9% | 134 | 11% | 82 | 7%

ART | 593 | 9 | 2% | 1 | 0% | 0 | 0%

APPR | 463 | 95 | 21% | 88 | 19% | 60 | 13%

NE | 343 | 20 | 6% | 25 | 7% | 13 | 4%

ADJA | 321 | 10 | 3% | 3 | 1% | 2 | 1%

ADV | 274 | 62 | 23% | 10 | 4% | 7 | 3%

VVFIN | 227 | 15 | 7% | 17 | 7% | 12 | 5%

VAFIN | 157 | 15 | 10% | 15 | 10% | 10 | 6%

KON | 141 | 27 | 19% | 2 | 1% | 1 | 1%

$(| 123 | 17 | 14% | 1 | 1% | 1 | 1%

ADJD | 116 | 13 | 11% | 8 | 7% | 6 | 5%

APPRART | 109 | 27 | 25% | 21 | 19% | 17 | 16%

VVPP | 103 | 4 | 4% | 8 | 8% | 3 | 3%

PPER | 90 | 2 | 2% | 8 | 9% | 0 | 0%

VVINF | 89 | 7 | 8% | 10 | 11% | 5 | 6%

CARD | 86 | 9 | 10% | 6 | 7% | 5 | 6%

183

VMFIN | 62 | 6 | 10% | 5 | 8% | 4 | 6%

PPOSAT | 49 | 1 | 2% | 1 | 2% | 1 | 2%

KOUS | 48 | 1 | 2% | 1 | 2% | 1 | 2%

PTKNEG | 45 | 12 | 27% | 1 | 2% | 1 | 2%

PIAT | 40 | 1 | 2% | 1 | 2% | 1 | 2%

PRF | 37 | 1 | 3% | 2 | 5% | 0 | 0%

PRELS | 34 | 1 | 3% | 1 | 3% | 0 | 0%

PTKVZ | 31 | 0 | 0% | 0 | 0% | 0 | 0%

PIS | 31 | 5 | 16% | 8 | 26% | 5 | 16%

PROAV | 29 | 3 | 10% | 2 | 7% | 0 | 0%

PTKZU | 26 | 0 | 0% | 0 | 0% | 0 | 0%

PDS | 24 | 3 | 12% | 4 | 17% | 1 | 4%

VAINF | 16 | 0 | 0% | 0 | 0% | 0 | 0%

PDAT | 16 | 0 | 0% | 0 | 0% | 0 | 0%

VVIZU | 11 | 2 | 18% | 4 | 36% | 2 | 18%

PWAV | 11 | 1 | 9% | 0 | 0% | 0 | 0%

FM | 9 | 1 | 11% | 5 | 56% | 1 | 11%

KOKOM | 9 | 1 | 11% | 0 | 0% | 0 | 0%

PWS | 8 | 3 | 38% | 2 | 25% | 2 | 25%

VAPP | 7 | 0 | 0% | 0 | 0% | 0 | 0%

TRUNC | 5 | 0 | 0% | 1 | 20% | 0 | 0%

KOUI | 5 | 0 | 0% | 0 | 0% | 0 | 0%

XY | 4 | 0 | 0% | 0 | 0% | 0 | 0%

PTKANT | 3 | 0 | 0% | 0 | 0% | 0 | 0%

VVIMP | 2 | 0 | 0% | 0 | 0% | 0 | 0%

PTKA | 2 | 0 | 0% | 0 | 0% | 0 | 0%

VMINF | 2 | 0 | 0% | 0 | 0% | 0 | 0%

APPO | 2 | 0 | 0% | 0 | 0% | 0 | 0%

APZR | 1 | 0 | 0% | 0 | 0% | 0 | 0%

PRELAT | 1 | 0 | 0% | 0 | 0% | 0 | 0%

NNE | 1 | 0 | 0% | 0 | 0% | 0 | 0%

VAIMP | 1 | 0 | 0% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

AC | 4 | 4 | 4 | 100.00 | 100.00

AG | 150 | 129 | 152 | 86.00 | 84.87

AMS | 0 | 0 | 1 | NaN | 0.00

APP | 21 | 11 | 20 | 52.38 | 55.00

CC | 6 | 4 | 8 | 66.67 | 50.00

CD | 129 | 129 | 132 | 100.00 | 97.73

CJ | 172 | 148 | 174 | 86.05 | 85.06

CM | 9 | 9 | 9 | 100.00 | 100.00

CP | 52 | 52 | 53 | 100.00 | 98.11

CVC | 2 | 1 | 2 | 50.00 | 50.00

DA | 22 | 11 | 17 | 50.00 | 64.71

DH | 3 | 2 | 3 | 66.67 | 66.67

DM | 2 | 2 | 2 | 100.00 | 100.00

184

EP | 11 | 9 | 11 | 81.82 | 81.82

JU | 12 | 10 | 10 | 83.33 | 100.00

MNR | 153 | 114 | 160 | 74.51 | 71.25

MO | 772 | 690 | 755 | 89.38 | 91.39

NG | 44 | 43 | 44 | 97.73 | 97.73

NK | 1721 | 1692 | 1724 | 98.31 | 98.14

NMC | 24 | 23 | 24 | 95.83 | 95.83

OA | 206 | 175 | 220 | 84.95 | 79.55

OA2 | 0 | 0 | 1 | NaN | 0.00

OC | 220 | 210 | 236 | 95.45 | 88.98

OP | 46 | 22 | 26 | 47.83 | 84.62

PAR | 10 | 4 | 4 | 40.00 | 100.00

PD | 62 | 46 | 61 | 74.19 | 75.41

PG | 22 | 21 | 29 | 95.45 | 72.41

PH | 1 | 0 | 0 | 0.00 | NaN

PM | 27 | 27 | 27 | 100.00 | 100.00

PNC | 67 | 65 | 67 | 97.01 | 97.01

PUNC | 122 | 121 | 121 | 99.18 | 100.00

RC | 36 | 36 | 39 | 100.00 | 92.31

RE | 13 | 7 | 9 | 53.85 | 77.78

ROOT | 357 | 346 | 357 | 96.92 | 96.92

RS | 2 | 1 | 1 | 50.00 | 100.00

SB | 425 | 376 | 423 | 88.47 | 88.89

SBP | 10 | 7 | 10 | 70.00 | 70.00

SVP | 31 | 31 | 31 | 100.00 | 100.00

UC | 4 | 2 | 5 | 50.00 | 40.00

VO | 1 | 1 | 1 | 100.00 | 100.00

_ | 37 | 32 | 35 | 86.49 | 91.43

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

AC | 4 | 4 | 4 | 100.00 | 100.00

AG | 150 | 123 | 152 | 82.00 | 80.92

AMS | 0 | 0 | 1 | NaN | 0.00

APP | 21 | 8 | 20 | 38.10 | 40.00

CC | 6 | 4 | 8 | 66.67 | 50.00

CD | 129 | 103 | 132 | 79.84 | 78.03

CJ | 172 | 128 | 174 | 74.42 | 73.56

CM | 9 | 8 | 9 | 88.89 | 88.89

CP | 52 | 52 | 53 | 100.00 | 98.11

CVC | 2 | 1 | 2 | 50.00 | 50.00

DA | 22 | 9 | 17 | 40.91 | 52.94

DH | 3 | 2 | 3 | 66.67 | 66.67

DM | 2 | 2 | 2 | 100.00 | 100.00

EP | 11 | 9 | 11 | 81.82 | 81.82

JU | 12 | 10 | 10 | 83.33 | 100.00

MNR | 153 | 98 | 160 | 64.05 | 61.25

MO | 772 | 598 | 755 | 77.46 | 79.21

NG | 44 | 32 | 44 | 72.73 | 72.73

185

NK | 1721 | 1666 | 1724 | 96.80 | 96.64

NMC | 24 | 23 | 24 | 95.83 | 95.83

OA | 206 | 170 | 220 | 82.52 | 77.27

OA2 | 0 | 0 | 1 | NaN | 0.00

OC | 220 | 206 | 236 | 93.64 | 87.29

OP | 46 | 22 | 26 | 47.83 | 84.62

PAR | 10 | 4 | 4 | 40.00 | 100.00

PD | 62 | 45 | 61 | 72.58 | 73.77

PG | 22 | 19 | 29 | 86.36 | 65.52

PH | 1 | 0 | 0 | 0.00 | NaN

PM | 27 | 27 | 27 | 100.00 | 100.00

PNC | 67 | 65 | 67 | 97.01 | 97.01

PUNC | 122 | 105 | 121 | 86.07 | 86.78

RC | 36 | 30 | 39 | 83.33 | 76.92

RE | 13 | 7 | 9 | 53.85 | 77.78

ROOT | 357 | 346 | 357 | 96.92 | 96.92

RS | 2 | 1 | 1 | 50.00 | 100.00

SB | 425 | 374 | 423 | 88.00 | 88.42

SBP | 10 | 7 | 10 | 70.00 | 70.00

SVP | 31 | 31 | 31 | 100.00 | 100.00

UC | 4 | 2 | 5 | 50.00 | 40.00

VO | 1 | 1 | 1 | 100.00 | 100.00

_ | 37 | 32 | 35 | 86.49 | 91.43

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 357 | 346 | 357 | 96.92 | 96.92

left | 2526 | 2439 | 2557 | 96.56 | 95.39

right | 2125 | 2006 | 2094 | 94.40 | 95.80

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 357 | 346 | 357 | 96.92 | 96.92

1 | 2122 | 2038 | 2137 | 96.04 | 95.37

2 | 895 | 823 | 888 | 91.96 | 92.68

3-6 | 1055 | 948 | 1069 | 89.86 | 88.68

7-... | 579 | 501 | 557 | 86.53 | 89.95

C.9 Japanese
Labeled attachment score: 4538 / 5003 * 100 = 90.71 %

186

Unlabeled attachment score: 4645 / 5003 * 100 = 92.84 %

Label accuracy score: 4690 / 5003 * 100 = 93.74 %

==

Evaluation of the results in japanese.nonproj.pred

vs. gold standard japanese_verbmobil_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 708

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5003 | 4645 | 93% | 4690 | 94% | 4538 | 91%

-----------+-------+-------+------+-------+------+-------+-------

P | 1045 | 958 | 92% | 965 | 92% | 912 | 87%

N | 1043 | 971 | 93% | 968 | 93% | 939 | 90%

PS | 505 | 443 | 88% | 460 | 91% | 442 | 88%

V | 407 | 377 | 93% | 381 | 94% | 374 | 92%

PV | 353 | 345 | 98% | 350 | 99% | 345 | 98%

CD | 297 | 279 | 94% | 278 | 94% | 271 | 91%

ADV | 252 | 218 | 87% | 237 | 94% | 214 | 85%

ITJ | 219 | 217 | 99% | 217 | 99% | 217 | 99%

ADJ | 218 | 208 | 95% | 211 | 97% | 205 | 94%

NAME | 203 | 201 | 99% | 199 | 98% | 199 | 98%

CNJ | 138 | 116 | 84% | 117 | 85% | 116 | 84%

VS | 99 | 94 | 95% | 95 | 96% | 93 | 94%

VAUX | 87 | 86 | 99% | 86 | 99% | 85 | 98%

NT | 56 | 54 | 96% | 53 | 95% | 53 | 95%

VADJ | 41 | 41 | 100% | 41 | 100% | 41 | 100%

UNIT | 21 | 21 | 100% | 16 | 76% | 16 | 76%

GR | 11 | 11 | 100% | 11 | 100% | 11 | 100%

-- | 6 | 3 | 50% | 3 | 50% | 3 | 50%

xxx | 2 | 2 | 100% | 2 | 100% | 2 | 100%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5003 | 358 | 7% | 313 | 6% | 206 | 4%

-----------+-------+-------+------+-------+------+-------+-------

P | 1045 | 87 | 8% | 80 | 8% | 34 | 3%

N | 1043 | 72 | 7% | 75 | 7% | 43 | 4%

PS | 505 | 62 | 12% | 45 | 9% | 44 | 9%

187

V | 407 | 30 | 7% | 26 | 6% | 23 | 6%

PV | 353 | 8 | 2% | 3 | 1% | 3 | 1%

CD | 297 | 18 | 6% | 19 | 6% | 11 | 4%

ADV | 252 | 34 | 13% | 15 | 6% | 11 | 4%

ITJ | 219 | 2 | 1% | 2 | 1% | 2 | 1%

ADJ | 218 | 10 | 5% | 7 | 3% | 4 | 2%

NAME | 203 | 2 | 1% | 4 | 2% | 2 | 1%

CNJ | 138 | 22 | 16% | 21 | 15% | 21 | 15%

VS | 99 | 5 | 5% | 4 | 4% | 3 | 3%

VAUX | 87 | 1 | 1% | 1 | 1% | 0 | 0%

NT | 56 | 2 | 4% | 3 | 5% | 2 | 4%

VADJ | 41 | 0 | 0% | 0 | 0% | 0 | 0%

UNIT | 21 | 0 | 0% | 5 | 24% | 0 | 0%

GR | 11 | 0 | 0% | 0 | 0% | 0 | 0%

-- | 6 | 3 | 50% | 3 | 50% | 3 | 50%

xxx | 2 | 0 | 0% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

- | 56 | 40 | 43 | 71.43 | 93.02

ADJ | 854 | 706 | 801 | 82.67 | 88.14

COMP | 2406 | 2367 | 2440 | 98.38 | 97.01

HD | 110 | 102 | 114 | 92.73 | 89.47

MRK | 436 | 435 | 436 | 99.77 | 99.77

ROOT | 937 | 865 | 962 | 92.32 | 89.92

SBJ | 204 | 175 | 207 | 85.78 | 84.54

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

- | 56 | 40 | 43 | 71.43 | 93.02

ADJ | 854 | 595 | 801 | 69.67 | 74.28

COMP | 2406 | 2354 | 2440 | 97.84 | 96.48

HD | 110 | 99 | 114 | 90.00 | 86.84

MRK | 436 | 425 | 436 | 97.48 | 97.48

ROOT | 937 | 865 | 962 | 92.32 | 89.92

SBJ | 204 | 160 | 207 | 78.43 | 77.29

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 937 | 865 | 962 | 92.32 | 89.92

188

left | 417 | 409 | 413 | 98.08 | 99.03

right | 3649 | 3549 | 3628 | 97.26 | 97.82

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 937 | 865 | 962 | 92.32 | 89.92

1 | 3228 | 3200 | 3273 | 99.13 | 97.77

2 | 270 | 224 | 265 | 82.96 | 84.53

3-6 | 356 | 291 | 357 | 81.74 | 81.51

7-... | 212 | 117 | 146 | 55.19 | 80.14

C.10 Portuguese
Labeled attachment score: 4349 / 5009 * 100 = 86.82 %

Unlabeled attachment score: 4576 / 5009 * 100 = 91.36 %

Label accuracy score: 4531 / 5009 * 100 = 90.46 %

==

Evaluation of the results in portuguese.nonproj.pred

vs. gold standard portuguese_bosque_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 858

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5009 | 4576 | 91% | 4531 | 90% | 4349 | 87%

-----------+-------+-------+------+-------+------+-------+-------

n | 1143 | 1071 | 94% | 1071 | 94% | 1044 | 91%

prp | 898 | 753 | 84% | 716 | 80% | 662 | 74%

art | 780 | 777 | 100% | 778 | 100% | 777 | 100%

v | 732 | 643 | 88% | 629 | 86% | 595 | 81%

prop | 332 | 307 | 92% | 305 | 92% | 289 | 87%

pron | 321 | 313 | 98% | 298 | 93% | 297 | 93%

adv | 248 | 201 | 81% | 203 | 82% | 186 | 75%

adj | 230 | 226 | 98% | 220 | 96% | 219 | 95%

conj | 182 | 152 | 84% | 176 | 97% | 150 | 82%

num | 134 | 126 | 94% | 128 | 96% | 124 | 93%

pp | 9 | 7 | 78% | 7 | 78% | 6 | 67%

189

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5009 | 433 | 9% | 478 | 10% | 251 | 5%

-----------+-------+-------+------+-------+------+-------+-------

n | 1143 | 72 | 6% | 72 | 6% | 45 | 4%

prp | 898 | 145 | 16% | 182 | 20% | 91 | 10%

art | 780 | 3 | 0% | 2 | 0% | 2 | 0%

v | 732 | 89 | 12% | 103 | 14% | 55 | 8%

prop | 332 | 25 | 8% | 27 | 8% | 9 | 3%

pron | 321 | 8 | 2% | 23 | 7% | 7 | 2%

adv | 248 | 47 | 19% | 45 | 18% | 30 | 12%

adj | 230 | 4 | 2% | 10 | 4% | 3 | 1%

conj | 182 | 30 | 16% | 6 | 3% | 4 | 2%

num | 134 | 8 | 6% | 6 | 4% | 4 | 3%

pp | 9 | 2 | 22% | 2 | 22% | 1 | 11%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

>A | 42 | 31 | 47 | 73.81 | 65.96

>N | 1043 | 1032 | 1037 | 98.95 | 99.52

>P | 10 | 1 | 2 | 10.00 | 50.00

? | 9 | 1 | 1 | 11.11 | 100.00

A< | 29 | 26 | 39 | 89.66 | 66.67

ACC | 316 | 288 | 327 | 91.14 | 88.07

ACC>-PASS | 2 | 0 | 0 | 0.00 | NaN

ADVL | 451 | 349 | 459 | 77.38 | 76.03

ADVO | 8 | 1 | 1 | 12.50 | 100.00

ADVS | 20 | 5 | 10 | 25.00 | 50.00

APP | 25 | 18 | 29 | 72.00 | 62.07

AUX | 8 | 7 | 13 | 87.50 | 53.85

AUX< | 2 | 0 | 0 | 0.00 | NaN

CJT | 166 | 139 | 157 | 83.73 | 88.54

CJT&ADVL | 2 | 0 | 0 | 0.00 | NaN

CO | 127 | 126 | 126 | 99.21 | 100.00

COM | 2 | 0 | 0 | 0.00 | NaN

DAT | 5 | 5 | 5 | 100.00 | 100.00

EXC | 1 | 0 | 0 | 0.00 | NaN

FOC | 4 | 4 | 4 | 100.00 | 100.00

KOMP< | 3 | 1 | 2 | 33.33 | 50.00

MV | 83 | 76 | 87 | 91.57 | 87.36

N< | 712 | 675 | 732 | 94.80 | 92.21

190

N<PRED | 139 | 97 | 142 | 69.78 | 68.31

OC | 8 | 3 | 9 | 37.50 | 33.33

P | 2 | 0 | 1 | 0.00 | 0.00

P< | 884 | 871 | 884 | 98.53 | 98.53

PASS | 17 | 17 | 20 | 100.00 | 85.00

PCJT | 1 | 0 | 1 | 0.00 | 0.00

PIV | 82 | 48 | 74 | 58.54 | 64.86

PMV | 2 | 0 | 0 | 0.00 | NaN

PRED | 11 | 5 | 5 | 45.45 | 100.00

PRT-AUX | 1 | 0 | 0 | 0.00 | NaN

PRT-AUX< | 10 | 10 | 14 | 100.00 | 71.43

QUE | 6 | 0 | 3 | 0.00 | 0.00

S< | 5 | 0 | 0 | 0.00 | NaN

SC | 77 | 62 | 79 | 80.52 | 78.48

STA | 249 | 233 | 254 | 93.57 | 91.73

SUB | 50 | 48 | 54 | 96.00 | 88.89

SUBJ | 352 | 318 | 354 | 90.34 | 89.83

TOP | 1 | 0 | 0 | 0.00 | NaN

UTT | 41 | 34 | 37 | 82.93 | 91.89

VOC | 1 | 0 | 0 | 0.00 | NaN

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

>A | 42 | 31 | 47 | 73.81 | 65.96

>N | 1043 | 1031 | 1037 | 98.85 | 99.42

>P | 10 | 1 | 2 | 10.00 | 50.00

? | 9 | 1 | 1 | 11.11 | 100.00

A< | 29 | 26 | 39 | 89.66 | 66.67

ACC | 316 | 284 | 327 | 89.87 | 86.85

ACC>-PASS | 2 | 0 | 0 | 0.00 | NaN

ADVL | 451 | 308 | 459 | 68.29 | 67.10

ADVO | 8 | 1 | 1 | 12.50 | 100.00

ADVS | 20 | 4 | 10 | 20.00 | 40.00

APP | 25 | 11 | 29 | 44.00 | 37.93

AUX | 8 | 7 | 13 | 87.50 | 53.85

AUX< | 2 | 0 | 0 | 0.00 | NaN

CJT | 166 | 111 | 157 | 66.87 | 70.70

CJT&ADVL | 2 | 0 | 0 | 0.00 | NaN

CO | 127 | 100 | 126 | 78.74 | 79.37

COM | 2 | 0 | 0 | 0.00 | NaN

DAT | 5 | 5 | 5 | 100.00 | 100.00

EXC | 1 | 0 | 0 | 0.00 | NaN

FOC | 4 | 2 | 4 | 50.00 | 50.00

KOMP< | 3 | 0 | 2 | 0.00 | 0.00

MV | 83 | 76 | 87 | 91.57 | 87.36

N< | 712 | 640 | 732 | 89.89 | 87.43

N<PRED | 139 | 72 | 142 | 51.80 | 50.70

OC | 8 | 3 | 9 | 37.50 | 33.33

P | 2 | 0 | 1 | 0.00 | 0.00

191

P< | 884 | 871 | 884 | 98.53 | 98.53

PASS | 17 | 16 | 20 | 94.12 | 80.00

PCJT | 1 | 0 | 1 | 0.00 | 0.00

PIV | 82 | 48 | 74 | 58.54 | 64.86

PMV | 2 | 0 | 0 | 0.00 | NaN

PRED | 11 | 4 | 5 | 36.36 | 80.00

PRT-AUX | 1 | 0 | 0 | 0.00 | NaN

PRT-AUX< | 10 | 10 | 14 | 100.00 | 71.43

QUE | 6 | 0 | 3 | 0.00 | 0.00

S< | 5 | 0 | 0 | 0.00 | NaN

SC | 77 | 61 | 79 | 79.22 | 77.22

STA | 249 | 232 | 254 | 93.17 | 91.34

SUB | 50 | 48 | 54 | 96.00 | 88.89

SUBJ | 352 | 311 | 354 | 88.35 | 87.85

TOP | 1 | 0 | 0 | 0.00 | NaN

UTT | 41 | 34 | 37 | 82.93 | 91.89

VOC | 1 | 0 | 0 | 0.00 | NaN

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 288 | 271 | 288 | 94.10 | 94.10

left | 3006 | 2966 | 3003 | 98.67 | 98.77

right | 1715 | 1680 | 1718 | 97.96 | 97.79

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 288 | 271 | 288 | 94.10 | 94.10

1 | 2658 | 2610 | 2696 | 98.19 | 96.81

2 | 1117 | 1059 | 1121 | 94.81 | 94.47

3-6 | 623 | 512 | 630 | 82.18 | 81.27

7-... | 323 | 223 | 274 | 69.04 | 81.39

C.11 Slovene
Labeled attachment score: 3675 / 5004 * 100 = 73.44 %

Unlabeled attachment score: 4162 / 5004 * 100 = 83.17 %

Label accuracy score: 4129 / 5004 * 100 = 82.51 %

==

Evaluation of the results in slovene.nonproj.pred

192

vs. gold standard slovene_sdt_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 1386

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5004 | 4162 | 83% | 4129 | 83% | 3675 | 73%

-----------+-------+-------+------+-------+------+-------+-------

Verb | 1483 | 1256 | 85% | 1229 | 83% | 1138 | 77%

Noun | 994 | 875 | 88% | 740 | 74% | 693 | 70%

Pronoun | 583 | 517 | 89% | 437 | 75% | 413 | 71%

Conjunction | 448 | 283 | 63% | 408 | 91% | 279 | 62%

Adposition | 419 | 327 | 78% | 415 | 99% | 324 | 77%

Adverb | 399 | 334 | 84% | 339 | 85% | 303 | 76%

Adjective | 395 | 347 | 88% | 346 | 88% | 330 | 84%

Particle | 214 | 168 | 79% | 164 | 77% | 149 | 70%

Numeral | 45 | 38 | 84% | 29 | 64% | 29 | 64%

Interjection | 15 | 8 | 53% | 13 | 87% | 8 | 53%

Abbreviation | 9 | 9 | 100% | 9 | 100% | 9 | 100%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5004 | 842 | 17% | 875 | 17% | 388 | 8%

-----------+-------+-------+------+-------+------+-------+-------

Verb | 1483 | 227 | 15% | 254 | 17% | 136 | 9%

Noun | 994 | 119 | 12% | 254 | 26% | 72 | 7%

Pronoun | 583 | 66 | 11% | 146 | 25% | 42 | 7%

Conjunction | 448 | 165 | 37% | 40 | 9% | 36 | 8%

Adposition | 419 | 92 | 22% | 4 | 1% | 1 | 0%

Adverb | 399 | 65 | 16% | 60 | 15% | 29 | 7%

Adjective | 395 | 48 | 12% | 49 | 12% | 32 | 8%

Particle | 214 | 46 | 21% | 50 | 23% | 31 | 14%

Numeral | 45 | 7 | 16% | 16 | 36% | 7 | 16%

Interjection | 15 | 7 | 47% | 2 | 13% | 2 | 13%

Abbreviation | 9 | 0 | 0% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

193

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

Adv | 680 | 552 | 727 | 81.18 | 75.93

AdvAtr | 11 | 0 | 2 | 0.00 | 0.00

Atr | 760 | 658 | 799 | 86.58 | 82.35

AtrAdv | 9 | 0 | 7 | 0.00 | 0.00

AtrAtr | 4 | 0 | 0 | 0.00 | NaN

AtrObj | 1 | 0 | 0 | 0.00 | NaN

Atv | 57 | 27 | 39 | 47.37 | 69.23

AtvV | 27 | 6 | 7 | 22.22 | 85.71

AuxC | 234 | 225 | 233 | 96.15 | 96.57

AuxG | 0 | 0 | 1 | NaN | 0.00

AuxP | 412 | 410 | 411 | 99.51 | 99.76

AuxR | 2 | 0 | 1 | 0.00 | 0.00

AuxT | 47 | 37 | 61 | 78.72 | 60.66

AuxV | 631 | 616 | 645 | 97.62 | 95.50

AuxX | 0 | 0 | 1 | NaN | 0.00

AuxY | 154 | 91 | 125 | 59.09 | 72.80

AuxZ | 110 | 91 | 122 | 82.73 | 74.59

Coord | 174 | 161 | 177 | 92.53 | 90.96

ExD | 156 | 75 | 141 | 48.08 | 53.19

Obj | 501 | 367 | 517 | 73.25 | 70.99

ObjAtr | 3 | 0 | 0 | 0.00 | NaN

Pnom | 158 | 114 | 172 | 72.15 | 66.28

Pred | 496 | 430 | 504 | 86.69 | 85.32

Sb | 377 | 269 | 312 | 71.35 | 86.22

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

Adv | 680 | 510 | 727 | 75.00 | 70.15

AdvAtr | 11 | 0 | 2 | 0.00 | 0.00

Atr | 760 | 626 | 799 | 82.37 | 78.35

AtrAdv | 9 | 0 | 7 | 0.00 | 0.00

AtrAtr | 4 | 0 | 0 | 0.00 | NaN

AtrObj | 1 | 0 | 0 | 0.00 | NaN

Atv | 57 | 27 | 39 | 47.37 | 69.23

AtvV | 27 | 5 | 7 | 18.52 | 71.43

AuxC | 234 | 161 | 233 | 68.80 | 69.10

AuxG | 0 | 0 | 1 | NaN | 0.00

AuxP | 412 | 320 | 411 | 77.67 | 77.86

AuxR | 2 | 0 | 1 | 0.00 | 0.00

AuxT | 47 | 36 | 61 | 76.60 | 59.02

AuxV | 631 | 602 | 645 | 95.40 | 93.33

AuxX | 0 | 0 | 1 | NaN | 0.00

AuxY | 154 | 82 | 125 | 53.25 | 65.60

AuxZ | 110 | 82 | 122 | 74.55 | 67.21

Coord | 174 | 99 | 177 | 56.90 | 55.93

ExD | 156 | 65 | 141 | 41.67 | 46.10

Obj | 501 | 336 | 517 | 67.07 | 64.99

194

ObjAtr | 3 | 0 | 0 | 0.00 | NaN

Pnom | 158 | 109 | 172 | 68.99 | 63.37

Pred | 496 | 368 | 504 | 74.19 | 73.02

Sb | 377 | 247 | 312 | 65.52 | 79.17

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 392 | 312 | 378 | 79.59 | 82.54

left | 2339 | 2140 | 2327 | 91.49 | 91.96

right | 2273 | 2085 | 2299 | 91.73 | 90.69

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 392 | 312 | 378 | 79.59 | 82.54

1 | 2336 | 2197 | 2375 | 94.05 | 92.51

2 | 1063 | 952 | 1113 | 89.56 | 85.53

3-6 | 976 | 755 | 931 | 77.36 | 81.10

7-... | 237 | 120 | 207 | 50.63 | 57.97

C.12 Spanish
Labeled attachment score: 4105 / 4991 * 100 = 82.25 %

Unlabeled attachment score: 4295 / 4991 * 100 = 86.05 %

Label accuracy score: 4512 / 4991 * 100 = 90.40 %

==

Evaluation of the results in spanish.proj.pred

vs. gold standard spanish_cast3lb_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 703

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 4991 | 4295 | 86% | 4512 | 90% | 4105 | 82%

195

-----------+-------+-------+------+-------+------+-------+-------

n | 1310 | 1208 | 92% | 1225 | 94% | 1159 | 88%

d | 856 | 844 | 99% | 855 | 100% | 844 | 99%

s | 815 | 653 | 80% | 665 | 82% | 595 | 73%

v | 695 | 495 | 71% | 586 | 84% | 476 | 68%

a | 415 | 372 | 90% | 396 | 95% | 364 | 88%

c | 350 | 250 | 71% | 327 | 93% | 245 | 70%

p | 277 | 247 | 89% | 231 | 83% | 218 | 79%

r | 224 | 184 | 82% | 183 | 82% | 166 | 74%

w | 20 | 20 | 100% | 19 | 95% | 19 | 95%

z | 15 | 12 | 80% | 15 | 100% | 12 | 80%

Z | 13 | 10 | 77% | 9 | 69% | 7 | 54%

i | 1 | 0 | 0% | 1 | 100% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 4991 | 696 | 14% | 479 | 10% | 289 | 6%

-----------+-------+-------+------+-------+------+-------+-------

n | 1310 | 102 | 8% | 85 | 6% | 36 | 3%

d | 856 | 12 | 1% | 1 | 0% | 1 | 0%

s | 815 | 162 | 20% | 150 | 18% | 92 | 11%

v | 695 | 200 | 29% | 109 | 16% | 90 | 13%

a | 415 | 43 | 10% | 19 | 5% | 11 | 3%

c | 350 | 100 | 29% | 23 | 7% | 18 | 5%

p | 277 | 30 | 11% | 46 | 17% | 17 | 6%

r | 224 | 40 | 18% | 41 | 18% | 23 | 10%

w | 20 | 0 | 0% | 1 | 5% | 0 | 0%

z | 15 | 3 | 20% | 0 | 0% | 0 | 0%

Z | 13 | 3 | 23% | 4 | 31% | 1 | 8%

i | 1 | 1 | 100% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ATR | 85 | 72 | 86 | 84.71 | 83.72

CAG | 12 | 10 | 15 | 83.33 | 66.67

CC | 383 | 289 | 417 | 75.46 | 69.30

CD | 289 | 205 | 265 | 70.93 | 77.36

CD.Q | 15 | 13 | 14 | 86.67 | 92.86

CI | 47 | 32 | 45 | 68.09 | 71.11

CPRED | 2 | 0 | 0 | 0.00 | NaN

CPRED.CD | 6 | 3 | 4 | 50.00 | 75.00

CPRED.SUJ | 6 | 3 | 3 | 50.00 | 100.00

196

CREG | 45 | 15 | 23 | 33.33 | 65.22

ET | 17 | 11 | 15 | 64.71 | 73.33

IMPERS | 7 | 3 | 4 | 42.86 | 75.00

MOD | 15 | 9 | 9 | 60.00 | 100.00

NEG | 43 | 41 | 42 | 95.35 | 97.62

PASS | 17 | 16 | 20 | 94.12 | 80.00

ROOT | 197 | 172 | 199 | 87.31 | 86.43

SUJ | 340 | 278 | 333 | 81.76 | 83.48

_ | 3465 | 3340 | 3497 | 96.39 | 95.51

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ATR | 85 | 72 | 86 | 84.71 | 83.72

CAG | 12 | 9 | 15 | 75.00 | 60.00

CC | 383 | 264 | 417 | 68.93 | 63.31

CD | 289 | 190 | 265 | 65.74 | 71.70

CD.Q | 15 | 13 | 14 | 86.67 | 92.86

CI | 47 | 31 | 45 | 65.96 | 68.89

CPRED | 2 | 0 | 0 | 0.00 | NaN

CPRED.CD | 6 | 3 | 4 | 50.00 | 75.00

CPRED.SUJ | 6 | 3 | 3 | 50.00 | 100.00

CREG | 45 | 15 | 23 | 33.33 | 65.22

ET | 17 | 10 | 15 | 58.82 | 66.67

IMPERS | 7 | 3 | 4 | 42.86 | 75.00

MOD | 15 | 8 | 9 | 53.33 | 88.89

NEG | 43 | 40 | 42 | 93.02 | 95.24

PASS | 17 | 16 | 20 | 94.12 | 80.00

ROOT | 197 | 172 | 199 | 87.31 | 86.43

SUJ | 340 | 263 | 333 | 77.35 | 78.98

_ | 3465 | 2993 | 3497 | 86.38 | 85.59

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 197 | 172 | 199 | 87.31 | 86.43

left | 3028 | 2940 | 3030 | 97.09 | 97.03

right | 1766 | 1677 | 1762 | 94.96 | 95.18

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 197 | 172 | 199 | 87.31 | 86.43

197

1 | 2671 | 2576 | 2708 | 96.44 | 95.13

2 | 979 | 886 | 989 | 90.50 | 89.59

3-6 | 736 | 560 | 722 | 76.09 | 77.56

7-... | 408 | 280 | 373 | 68.63 | 75.07

C.13 Swedish
Labeled attachment score: 4145 / 5021 * 100 = 82.55 %

Unlabeled attachment score: 4465 / 5021 * 100 = 88.93 %

Label accuracy score: 4297 / 5021 * 100 = 85.58 %

==

Evaluation of the results in swedish.proj.pred

vs. gold standard swedish_talbanken05_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 635

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5021 | 4465 | 89% | 4297 | 86% | 4145 | 83%

-----------+-------+-------+------+-------+------+-------+-------

NN | 1109 | 1008 | 91% | 994 | 90% | 976 | 88%

PR | 689 | 551 | 80% | 430 | 62% | 399 | 58%

PO | 620 | 586 | 95% | 582 | 94% | 572 | 92%

VV | 455 | 397 | 87% | 384 | 84% | 372 | 82%

AB | 365 | 315 | 86% | 315 | 86% | 282 | 77%

AJ | 322 | 302 | 94% | 302 | 94% | 297 | 92%

VN | 221 | 204 | 92% | 197 | 89% | 193 | 87%

++ | 178 | 166 | 93% | 177 | 99% | 166 | 93%

RO | 145 | 124 | 86% | 112 | 77% | 110 | 76%

ID | 114 | 113 | 99% | 114 | 100% | 113 | 99%

UK | 111 | 105 | 95% | 111 | 100% | 105 | 95%

PN | 106 | 91 | 86% | 87 | 82% | 86 | 81%

EN | 97 | 94 | 97% | 95 | 98% | 94 | 97%

AV | 70 | 61 | 87% | 54 | 77% | 53 | 76%

HV | 60 | 45 | 75% | 44 | 73% | 42 | 70%

QV | 58 | 50 | 86% | 50 | 86% | 49 | 84%

TP | 53 | 47 | 89% | 45 | 85% | 45 | 85%

IM | 45 | 43 | 96% | 45 | 100% | 43 | 96%

AN | 38 | 33 | 87% | 31 | 82% | 30 | 79%

FV | 35 | 31 | 89% | 32 | 91% | 31 | 89%

MN | 35 | 20 | 57% | 19 | 54% | 15 | 43%

SV | 32 | 30 | 94% | 28 | 88% | 27 | 84%

198

BV | 21 | 17 | 81% | 15 | 71% | 15 | 71%

MV | 13 | 11 | 85% | 10 | 77% | 10 | 77%

GV | 8 | 7 | 88% | 7 | 88% | 7 | 88%

KV | 8 | 7 | 88% | 7 | 88% | 7 | 88%

PU | 4 | 3 | 75% | 4 | 100% | 3 | 75%

WV | 4 | 2 | 50% | 2 | 50% | 2 | 50%

XX | 3 | 1 | 33% | 3 | 100% | 1 | 33%

IK | 1 | 1 | 100% | 0 | 0% | 0 | 0%

IG | 1 | 0 | 0% | 1 | 100% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5021 | 556 | 11% | 724 | 14% | 404 | 8%

-----------+-------+-------+------+-------+------+-------+-------

NN | 1109 | 101 | 9% | 115 | 10% | 83 | 7%

PR | 689 | 138 | 20% | 259 | 38% | 107 | 16%

PO | 620 | 34 | 5% | 38 | 6% | 24 | 4%

VV | 455 | 58 | 13% | 71 | 16% | 46 | 10%

AB | 365 | 50 | 14% | 50 | 14% | 17 | 5%

AJ | 322 | 20 | 6% | 20 | 6% | 15 | 5%

VN | 221 | 17 | 8% | 24 | 11% | 13 | 6%

++ | 178 | 12 | 7% | 1 | 1% | 1 | 1%

RO | 145 | 21 | 14% | 33 | 23% | 19 | 13%

ID | 114 | 1 | 1% | 0 | 0% | 0 | 0%

UK | 111 | 6 | 5% | 0 | 0% | 0 | 0%

PN | 106 | 15 | 14% | 19 | 18% | 14 | 13%

EN | 97 | 3 | 3% | 2 | 2% | 2 | 2%

AV | 70 | 9 | 13% | 16 | 23% | 8 | 11%

HV | 60 | 15 | 25% | 16 | 27% | 13 | 22%

QV | 58 | 8 | 14% | 8 | 14% | 7 | 12%

TP | 53 | 6 | 11% | 8 | 15% | 6 | 11%

IM | 45 | 2 | 4% | 0 | 0% | 0 | 0%

AN | 38 | 5 | 13% | 7 | 18% | 4 | 11%

FV | 35 | 4 | 11% | 3 | 9% | 3 | 9%

MN | 35 | 15 | 43% | 16 | 46% | 11 | 31%

SV | 32 | 2 | 6% | 4 | 12% | 1 | 3%

BV | 21 | 4 | 19% | 6 | 29% | 4 | 19%

MV | 13 | 2 | 15% | 3 | 23% | 2 | 15%

GV | 8 | 1 | 12% | 1 | 12% | 1 | 12%

KV | 8 | 1 | 12% | 1 | 12% | 1 | 12%

PU | 4 | 1 | 25% | 0 | 0% | 0 | 0%

WV | 4 | 2 | 50% | 2 | 50% | 2 | 50%

XX | 3 | 2 | 67% | 0 | 0% | 0 | 0%

IK | 1 | 0 | 0% | 1 | 100% | 0 | 0%

IG | 1 | 1 | 100% | 0 | 0% | 0 | 0%

-----------+-------+-------+------+-------+------+-------+-------

199

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

++ | 181 | 180 | 181 | 99.45 | 99.45

+A | 51 | 49 | 54 | 96.08 | 90.74

+F | 49 | 24 | 46 | 48.98 | 52.17

AA | 266 | 155 | 234 | 58.27 | 66.24

AG | 6 | 5 | 9 | 83.33 | 55.56

AN | 29 | 11 | 25 | 37.93 | 44.00

AT | 234 | 230 | 236 | 98.29 | 97.46

BS | 1 | 0 | 2 | 0.00 | 0.00

C+ | 12 | 9 | 10 | 75.00 | 90.00

CA | 41 | 35 | 39 | 85.37 | 89.74

CC | 218 | 203 | 237 | 93.12 | 85.65

DB | 3 | 2 | 3 | 66.67 | 66.67

DT | 554 | 533 | 582 | 96.21 | 91.58

EF | 2 | 0 | 1 | 0.00 | 0.00

ES | 15 | 7 | 8 | 46.67 | 87.50

ET | 341 | 265 | 348 | 77.71 | 76.15

FS | 16 | 11 | 11 | 68.75 | 100.00

FV | 2 | 0 | 0 | 0.00 | NaN

HD | 129 | 114 | 122 | 88.37 | 93.44

IG | 1 | 1 | 1 | 100.00 | 100.00

IK | 1 | 0 | 1 | 0.00 | 0.00

IM | 45 | 45 | 45 | 100.00 | 100.00

IO | 12 | 7 | 9 | 58.33 | 77.78

IV | 11 | 11 | 11 | 100.00 | 100.00

KA | 15 | 7 | 9 | 46.67 | 77.78

MA | 6 | 5 | 8 | 83.33 | 62.50

MS | 17 | 8 | 27 | 47.06 | 29.63

NA | 42 | 42 | 43 | 100.00 | 97.67

OA | 160 | 118 | 211 | 73.75 | 55.92

OO | 284 | 243 | 294 | 85.56 | 82.65

PA | 677 | 642 | 688 | 94.83 | 93.31

PL | 48 | 32 | 39 | 66.67 | 82.05

PT | 19 | 9 | 11 | 47.37 | 81.82

RA | 134 | 64 | 107 | 47.76 | 59.81

ROOT | 389 | 359 | 389 | 92.29 | 92.29

SP | 89 | 75 | 90 | 84.27 | 83.33

SS | 507 | 464 | 508 | 91.52 | 91.34

TA | 139 | 77 | 112 | 55.40 | 68.75

UK | 111 | 111 | 111 | 100.00 | 100.00

VA | 8 | 7 | 7 | 87.50 | 100.00

VG | 135 | 130 | 140 | 96.30 | 92.86

VO | 0 | 0 | 2 | NaN | 0.00

XA | 0 | 0 | 1 | NaN | 0.00

XT | 3 | 3 | 3 | 100.00 | 100.00

XX | 18 | 4 | 6 | 22.22 | 66.67

200

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

++ | 181 | 169 | 181 | 93.37 | 93.37

+A | 51 | 45 | 54 | 88.24 | 83.33

+F | 49 | 18 | 46 | 36.73 | 39.13

AA | 266 | 145 | 234 | 54.51 | 61.97

AG | 6 | 5 | 9 | 83.33 | 55.56

AN | 29 | 8 | 25 | 27.59 | 32.00

AT | 234 | 230 | 236 | 98.29 | 97.46

BS | 1 | 0 | 2 | 0.00 | 0.00

C+ | 12 | 8 | 10 | 66.67 | 80.00

CA | 41 | 25 | 39 | 60.98 | 64.10

CC | 218 | 179 | 237 | 82.11 | 75.53

DB | 3 | 2 | 3 | 66.67 | 66.67

DT | 554 | 523 | 582 | 94.40 | 89.86

EF | 2 | 0 | 1 | 0.00 | 0.00

ES | 15 | 7 | 8 | 46.67 | 87.50

ET | 341 | 245 | 348 | 71.85 | 70.40

FS | 16 | 11 | 11 | 68.75 | 100.00

FV | 2 | 0 | 0 | 0.00 | NaN

HD | 129 | 113 | 122 | 87.60 | 92.62

IG | 1 | 0 | 1 | 0.00 | 0.00

IK | 1 | 0 | 1 | 0.00 | 0.00

IM | 45 | 43 | 45 | 95.56 | 95.56

IO | 12 | 7 | 9 | 58.33 | 77.78

IV | 11 | 11 | 11 | 100.00 | 100.00

KA | 15 | 7 | 9 | 46.67 | 77.78

MA | 6 | 5 | 8 | 83.33 | 62.50

MS | 17 | 8 | 27 | 47.06 | 29.63

NA | 42 | 35 | 43 | 83.33 | 81.40

OA | 160 | 113 | 211 | 70.62 | 53.55

OO | 284 | 239 | 294 | 84.15 | 81.29

PA | 677 | 640 | 688 | 94.53 | 93.02

PL | 48 | 32 | 39 | 66.67 | 82.05

PT | 19 | 9 | 11 | 47.37 | 81.82

RA | 134 | 53 | 107 | 39.55 | 49.53

ROOT | 389 | 359 | 389 | 92.29 | 92.29

SP | 89 | 75 | 90 | 84.27 | 83.33

SS | 507 | 459 | 508 | 90.53 | 90.35

TA | 139 | 73 | 112 | 52.52 | 65.18

UK | 111 | 105 | 111 | 94.59 | 94.59

VA | 8 | 6 | 7 | 75.00 | 85.71

VG | 135 | 128 | 140 | 94.81 | 91.43

VO | 0 | 0 | 2 | NaN | 0.00

XA | 0 | 0 | 1 | NaN | 0.00

XT | 3 | 3 | 3 | 100.00 | 100.00

XX | 18 | 2 | 6 | 11.11 | 33.33

Precision and recall of binned HEAD direction

201

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 389 | 359 | 389 | 92.29 | 92.29

left | 2745 | 2652 | 2748 | 96.61 | 96.51

right | 1887 | 1797 | 1884 | 95.23 | 95.38

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 389 | 359 | 389 | 92.29 | 92.29

1 | 2512 | 2389 | 2522 | 95.10 | 94.73

2 | 1107 | 1031 | 1130 | 93.13 | 91.24

3-6 | 803 | 670 | 805 | 83.44 | 83.23

7-... | 210 | 132 | 175 | 62.86 | 75.43

C.14 Turkish
Labeled attachment score: 3173 / 5021 * 100 = 63.19 %

Unlabeled attachment score: 3749 / 5021 * 100 = 74.67 %

Label accuracy score: 3889 / 5021 * 100 = 77.45 %

==

Evaluation of the results in turkish.proj.pred

vs. gold standard turkish_metu_sabanci_test.conll:

Legend: ’.S’ - the beginning of a sentence, ’.E’ - the end of a sentence

Number of non-scoring tokens: 2526

The overall accuracy and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Accuracy | words | right | % | right | % | both | %

| | head | | dep | | right |

-----------+-------+-------+------+-------+------+-------+-------

total | 5021 | 3749 | 75% | 3889 | 77% | 3173 | 63%

-----------+-------+-------+------+-------+------+-------+-------

Noun | 2209 | 1565 | 71% | 1491 | 67% | 1186 | 54%

Verb | 891 | 767 | 86% | 753 | 85% | 722 | 81%

Adj | 552 | 440 | 80% | 496 | 90% | 407 | 74%

Adv | 346 | 234 | 68% | 303 | 88% | 215 | 62%

Pron | 297 | 214 | 72% | 221 | 74% | 168 | 57%

Conj | 244 | 175 | 72% | 212 | 87% | 163 | 67%

202

Det | 213 | 183 | 86% | 178 | 84% | 155 | 73%

Postp | 146 | 77 | 53% | 132 | 90% | 71 | 49%

Num | 58 | 46 | 79% | 51 | 88% | 44 | 76%

Ques | 40 | 33 | 82% | 37 | 92% | 32 | 80%

Interj | 25 | 15 | 60% | 15 | 60% | 10 | 40%

-----------+-------+-------+------+-------+------+-------+-------

The overall error rate and its distribution over CPOSTAGs

-----------+-------+-------+------+-------+------+-------+-------

Error | words | head | % | dep | % | both | %

Rate | | err | | err | | wrong |

-----------+-------+-------+------+-------+------+-------+-------

total | 5021 | 1272 | 25% | 1132 | 23% | 556 | 11%

-----------+-------+-------+------+-------+------+-------+-------

Noun | 2209 | 644 | 29% | 718 | 33% | 339 | 15%

Verb | 891 | 124 | 14% | 138 | 15% | 93 | 10%

Adj | 552 | 112 | 20% | 56 | 10% | 23 | 4%

Adv | 346 | 112 | 32% | 43 | 12% | 24 | 7%

Pron | 297 | 83 | 28% | 76 | 26% | 30 | 10%

Conj | 244 | 69 | 28% | 32 | 13% | 20 | 8%

Det | 213 | 30 | 14% | 35 | 16% | 7 | 3%

Postp | 146 | 69 | 47% | 14 | 10% | 8 | 5%

Num | 58 | 12 | 21% | 7 | 12% | 5 | 9%

Ques | 40 | 7 | 18% | 3 | 7% | 2 | 5%

Interj | 25 | 10 | 40% | 10 | 40% | 5 | 20%

-----------+-------+-------+------+-------+------+-------+-------

Precision and recall of DEPREL

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ABLATIVE.ADJUNCT | 51 | 36 | 64 | 70.59 | 56.25

APPOSITION | 32 | 2 | 8 | 6.25 | 25.00

CLASSIFIER | 191 | 150 | 245 | 78.53 | 61.22

COLLOCATION | 7 | 0 | 0 | 0.00 | NaN

COORDINATION | 249 | 180 | 279 | 72.29 | 64.52

DATIVE.ADJUNCT | 178 | 126 | 189 | 70.79 | 66.67

DETERMINER | 180 | 176 | 213 | 97.78 | 82.63

INSTRUMENTAL.ADJUNCT | 19 | 4 | 20 | 21.05 | 20.00

INTENSIFIER | 103 | 87 | 101 | 84.47 | 86.14

LOCATIVE.ADJUNCT | 124 | 102 | 136 | 82.26 | 75.00

MODIFIER | 1362 | 1103 | 1301 | 80.98 | 84.78

NEGATIVE.PARTICLE | 17 | 12 | 15 | 70.59 | 80.00

OBJECT | 1010 | 742 | 974 | 73.47 | 76.18

POSSESSOR | 135 | 109 | 133 | 80.74 | 81.95

QUESTION.PARTICLE | 43 | 37 | 43 | 86.05 | 86.05

RELATIVIZER | 13 | 7 | 9 | 53.85 | 77.78

ROOT | 659 | 597 | 639 | 90.59 | 93.43

S.MODIFIER | 76 | 43 | 63 | 56.58 | 68.25

203

SENTENCE | 25 | 16 | 20 | 64.00 | 80.00

SUBJECT | 491 | 340 | 539 | 69.25 | 63.08

VOCATIVE | 56 | 20 | 30 | 35.71 | 66.67

Precision and recall of DEPREL + ATTACHMENT

----------------+------+---------+--------+------------+---------------

deprel | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

ABLATIVE.ADJUNCT | 51 | 30 | 64 | 58.82 | 46.88

APPOSITION | 32 | 1 | 8 | 3.12 | 12.50

CLASSIFIER | 191 | 148 | 245 | 77.49 | 60.41

COLLOCATION | 7 | 0 | 0 | 0.00 | NaN

COORDINATION | 249 | 129 | 279 | 51.81 | 46.24

DATIVE.ADJUNCT | 178 | 90 | 189 | 50.56 | 47.62

DETERMINER | 180 | 154 | 213 | 85.56 | 72.30

INSTRUMENTAL.ADJUNCT | 19 | 3 | 20 | 15.79 | 15.00

INTENSIFIER | 103 | 81 | 101 | 78.64 | 80.20

LOCATIVE.ADJUNCT | 124 | 59 | 136 | 47.58 | 43.38

MODIFIER | 1362 | 798 | 1301 | 58.59 | 61.34

NEGATIVE.PARTICLE | 17 | 12 | 15 | 70.59 | 80.00

OBJECT | 1010 | 606 | 974 | 60.00 | 62.22

POSSESSOR | 135 | 109 | 133 | 80.74 | 81.95

QUESTION.PARTICLE | 43 | 32 | 43 | 74.42 | 74.42

RELATIVIZER | 13 | 7 | 9 | 53.85 | 77.78

ROOT | 659 | 597 | 639 | 90.59 | 93.43

S.MODIFIER | 76 | 34 | 63 | 44.74 | 53.97

SENTENCE | 25 | 16 | 20 | 64.00 | 80.00

SUBJECT | 491 | 254 | 539 | 51.73 | 47.12

VOCATIVE | 56 | 13 | 30 | 23.21 | 43.33

Precision and recall of binned HEAD direction

----------------+------+---------+--------+------------+---------------

direction | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 659 | 597 | 639 | 90.59 | 93.43

left | 288 | 247 | 291 | 85.76 | 84.88

right | 4074 | 4014 | 4091 | 98.53 | 98.12

self | 0 | 0 | 0 | NaN | NaN

Precision and recall of binned HEAD distance

----------------+------+---------+--------+------------+---------------

distance | gold | correct | system | recall (%) | precision (%)

----------------+------+---------+--------+------------+---------------

to_root | 659 | 597 | 639 | 90.59 | 93.43

1 | 2187 | 1989 | 2389 | 90.95 | 83.26

2 | 844 | 556 | 850 | 65.88 | 65.41

3-6 | 897 | 577 | 820 | 64.33 | 70.37

204

7-... | 434 | 232 | 323 | 53.46 | 71.83

205

Bibliography

[1] A. Abeillé, editor. Treebanks: Building and Using Parsed Corpora, volume 20 of

Text, Speech and Language Technology. Kluwer Academic Publishers, Dordrecht,

2003.

[2] S. Afonso, E. Bick, R. Haber, and D. Santos. “Floresta sintá(c)tica”: A treebank

for Portuguese. InProceedings of the Third International Conference on Language

Resources and Evaluation (LREC), pages 1698–1703, 2002.

[3] R.K. Ando and T. Zhang. A high-performance semi-supervised learning method

for text chunking. InProceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), 2005.

[4] N. B. Atalay, K. Oflazer, and B. Say. The annotation process in the Turkish Tree-

bank. InProceedings of the 4th International Workshop on Linguistically Inter-

preteted Corpora (LINC), 2003.

[5] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A maximum entropy approach

to natural language processing.Computational Linguistics, 22(1), 1996.

[6] Dan Bikel. On the Parameter Space of Generative Lexicalized Statistical Parsing

Models. PhD thesis, University of Pennsylvania, 2004.

[7] D.M. Bikel. Intricacies of Collins parsing model.Computational Linguistics, 2004.

206

[8] J. Blitzer, R. McDonald, and F. Pereira. Doman adaptation with structural corre-

spondence learning. InProceedings of the Empirical Methods in Natural Language

Processing (EMNLP), 2006.

[9] A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. The PDT: a 3-level annotation

scenario. In Abeillé [1], chapter 7.

[10] B.E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin clas-

sifiers. InProceedings COLT, pages 144–152, 1992.

[11] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.The TIGER treebank.

In Proceedings of the First Workshop on Treebanks and Linguistic Theories (TLT),

2002.

[12] L. Breiman. Random forests.Machine Learning, 1(45), 2001.

[13] S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski. CoNLL-X shared task on

multilingual dependency parsing. InProceedings of the Conference on Computa-

tional Natural Language Learning (CoNLL), 2006.

[14] P. M. Camerini, L. Fratta, and F. Maffioli. Thek best spanning arborescences of a

network.Networks, 10(2):91–110, 1980.

[15] Y. Censor and S.A. Zenios.Parallel optimization: theory, algorithms, and applica-

tions. Oxford University Press, 1997.

[16] E. Charniak. A maximum-entropy-inspired parser. InProceedings of the Annual

Meeting of the North American Chapter of the Association forComputational Lin-

guistics (ACL), 2000.

207

[17] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discrimina-

tive reranking. InProceedings of the Annual Meeting of the Association for Compu-

tational Linguistics (ACL), 2005.

[18] K. Chen and C. Huang. The sinica corpus.

[19] K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang, and Z. Gao. Sinica

Treebank: Design criteria, representational issues and implementation. In Abeillé

[1], chapter 13, pages 231–248.

[20] D.M. Chickering, D. Geiger, and D. Heckerman. Learningbayesian networks: The

combination of knowledge and statistical data. Technical Report MSR-TR-94-09,

Microsoft Research, 1994.

[21] Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph.Science

Sinica, 14:1396–1400, 1965.

[22] M. Civit, Ma A. Martı́, B. Navarro, N. Bufi, B. Fernández, and R. Marcos. Issues

in the syntactic annotation of Cast3LB. InProceedings of the 4th International

Workshop on Linguistically Interpreteted Corpora (LINC), 2003.

[23] M. Civit Torruella and Ma A. Martı́ Antonı́n. Design principles for a Spanish tree-

bank. InProceedings of the First Workshop on Treebanks and Linguistic Theories

(TLT), 2002.

[24] S. Clark and J.R. Curran. Parsing the WSJ using CCG and log-linear models. In

Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL), 2004.

[25] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD

thesis, University of Pennsylvania, 1999.

208

[26] M. Collins. Discriminative training methods for hidden Markov models: Theory and

experiments with perceptron algorithms. InProceedings of the Empirical Methods

in Natural Language Processing (EMNLP), 2002.

[27] M. Collins and J. Brooks. Prepositional phrase attachment through a backed-off

model. InProceedings of the Third Workshop on Very Large Corpora, 1995.

[28] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels

over discrete structures, and the voted perceptron. InProceedings of the Annual

Meeting of the Association for Computational Linguistics (ACL), 2002.

[29] M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann. A statistical parser for Czech. In

Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL), 1999.

[30] M. Collins and B. Roark. Incremental parsing with the perceptron algorithm. In

Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL), 2004.

[31] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. MIT

Press/McGraw-Hill, 1990.

[32] S. Corston-Oliver, A. Aue, K. Duh, and E. Ringger. Multilingual dependency pars-

ing using bayes point machines. InProceedings of the Joint Conference on Human

Language Technology and North American Chapter of the Association for Compu-

tational Linguistics (HLT/NAACL), 2006.

[33] K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, andY. Singer. Online passive

aggressive algorithms.Journal of Machine Learning Research, 2006.

209

[34] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer.Online passive aggressive

algorithms. InProceedings of Neural Information Processing Systems (NIPS), 2003.

[35] K. Crammer, R. McDonald, and F. Pereira. Scalable large-margin online learning

for structured classification, 2005. Unpublished.

[36] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel

based vector machines.Journal of Machine Learning Research, 2001.

[37] K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass prob-

lems.Journal of Machine Learning Research, 2003.

[38] A. Culotta and J. Sorensen. Dependency tree kernels forrelation extraction. In

Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL), 2004.

[39] H. Daumé and D. Marcu. Learning as search optimization: Approximate large mar-

gin methods for structured prediction. InProceedings of the International Confer-

ence on Machine Learning, 2005.

[40] Y. Ding and M. Palmer. Machine translation using probabilistic synchronous depen-

dency insertion grammars. InProceedings of the Annual Meeting of the Association

for Computational Linguistics (ACL), 2005.

[41] S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z.Žabokrtsky, and A.̌Zele. Towards a

Slovene dependency treebank. InProceedings of the Fifth International Conference

on Language Resources and Evaluation (LREC), 2006.

[42] J. Early.An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie Mellon

University, 1968.

210

[43] J. Edmonds. Optimum branchings.Journal of Research of the National Bureau of

Standards, 71B:233–240, 1967.

[44] J. Einarsson. Talbankens skriftspråkskonkordans, 1976.

[45] J. Eisner. Three new probabilistic models for dependency parsing: An exploration.

In Proceedings of the International Conference on Computational Linguistics (COL-

ING), 1996.

[46] J. Eisner and N. Smith. Parsing with soft and hard constraints on dependency length.

In Proceedings of the International Workshop on Parsing Technologies (IWPT),

2005.

[47] D. Eppstein. Finding the k smallest spanning trees. In2nd Scandanavian Workshop

on Algorithm Theory, 1990.

[48] T. Finley and T. Joachims. Supervised clustering with support vector machines. In

Proceedings of the International Conference on Machine Learning, 2005.

[49] R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo, N. Nicolov,

S. Roukos, and T. Zhang. A statistical method for multilingual entity detection and

tracking. InProceedings of the Joint Conference on Human Language Technol-

ogy and North American Chapter of the Association for Computational Linguistics

(HLT/NAACL), 2004.

[50] G. Forman. An extensive empirical study of feature selection metrics for text clas-

sification. Journal of Machine Learning Research: Special Issue on Variable and

Feature Selection, (3):1289–1305, 2003.

211

[51] K. Foth, W. Menzel, and I. Schröder. A transformation-based parsing technique

with anytime properties. InProceedings of the International Workshop on Parsing

Technologies (IWPT), 2000.

[52] Y. Freund and R.E. Schapire. Large margin classification using the perceptron algo-

rithm. Machine Learning, 37(3):277–296, 1999.

[53] H. Gaifman. Dependency systems and phrase-structure systems. Information and

Control, 1965.

[54] L. Georgiadis. Arborescence optimization problems solvable by Edmonds’ algo-

rithm. Theoretical Computer Science, 301:427 – 437, 2003.

[55] D. Gildea. Corpus variation and parser performance. InProceedings of the Empirical

Methods in Natural Language Processing (EMNLP), 2001.

[56] J. Hajič. Building a syntactically annotated corpus:The Prague dependency tree-

bank. Issues of Valency and Meaning, pages 106–132, 1998.

[57] J. Hajič, E. Hajičová, P. Pajas, J. Panevova, P. Sgall, and B. Vidova Hladka. The

Prague Dependency Treebank 1.0 CDROM, 2001. Linguistics Data Consortium

Cat. No. LDC2001T10.

[58] J. Hajič, O. Smrž, P. Zemánek, J.Šnaidauf, and E. Beška. Prague Arabic Depen-

dency Treebank: Development in data and tools. InProceedings of the NEMLAR

International Conference on Arabic Language Resources andTools, pages 110–117,

2004.

[59] K. Hall and V. Nóvák. Corrective modeling for non-projective dependency pars-

ing. In Proceedings of the International Workshop on Parsing Technologies (IWPT),

2005.

212

[60] M. P. Harper and R. A. Helzerman. Extensions to constraint dependency parsing for

spoken language processing.Computer Speech and Language, 1995.

[61] D. G. Hays. Dependency theory: A formalism and some observations. Language,

40(4):511–525, 1964.

[62] X. He, R. Zemel, and M. Carreira-Perpinan. Multiscale conditional random fields for

image labelling. InProceedings of Conference on Vision and Pattern Recognition,

2004.

[63] J. Henderson. Inducing history representations for broad coverage statistical parsing.

In Proceedings of the Joint Conference on Human Language Technology and North

American Chapter of the Association for Computational Linguistics (HLT/NAACL),

2003.

[64] J. Henderson and E. Brill. Exploiting diversity in natural language processing: Com-

bining parsers. InProceedings of the Empirical Methods in Natural Language Pro-

cessing (EMNLP), 1999.

[65] H. Hirakawa. Semantic dependency analysis method for Japanese based on optimum

tree search algorithm. InProceedings of the Pacific Association for Computational

Linguistics, 2001.

[66] L. Huang and D. Chiang. Betterk-best parsing. InProceedings of the International

Workshop on Parsing Technologies (IWPT), 2005.

[67] R. Hudson.Word Grammar. Blackwell, 1984.

[68] R. Hwa, P. Resnik, A. Weinberg, C. Cabezas, and O. Kolak.Bootstrapping parsers

via syntactic projection across parallel texts.Special Issue of the Journal of Natural

Language Engineering on Parallel Texts, 11(3):311–325, 2005.

213

[69] F. Jelinek.Statistical Methods for Speech Recognition. MIT Press, 1997.

[70] A.K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to

provide reasonable structural descriptions?Natural Language Parsing, 1985.

[71] S. Kahane, A. Nasr, and O Rambow. Pseudo-projectivity:A polynomially parsable

non-projective dependency grammar. InProceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL), 1998.

[72] R. Kassel.A comparison of approaches to on-line character handwritten digit recog-

nition. PhD thesis, MIT Spoken Language Systems Group, 1995.

[73] Y. Kawata and J. Bartels. Stylebook for the Japanese Treebank in VERBMO-

BIL. Verbmobil-Report 240, Seminar für Sprachwissenschaft, Universität Tübingen,

2000.

[74] M. Kay. Experiments with a powerful parser. InProceedings 2eme Conference

Internationale sue le Traitement Automatique des Languages, 1967.

[75] D. Klein. The Unsupervised Learning of Natural Language Structure. PhD thesis,

Stanford University, 2004.

[76] K. Knight and D. Marcu. Statistical-based summarization - step one: Sentence com-

pression. InProceedings the American Association of Artificial Intelligence, 2000.

[77] T. Koo and M. Collins. Hidden-variable models for discriminative reranking. In

Proceedings of the Joint Conference on Human Language Technology and Empirical

Methods in Natural Language Processing (HLT/EMNLP), 2005.

[78] M. T. Kromann. Optimaility parsing and local cost functions in discontinuous gram-

mars. InProceedings of Joint Conference on Formal Grammars and the Mathemat-

ics of Language, 2001.

214

[79] M. T. Kromann. The Danish Dependency Treebank and the underlying linguistic

theory. InProceedings of the Second Workshop on Treebanks and Linguistic Theo-

ries (TLT), 2003.

[80] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. InProceedings of the Interna-

tional Conference on Machine Learning, 2001.

[81] M. Lease and E. Charniak. Parsing biomedical literature. In Proceedings of the

International Joint Conference on Natural Language Processing, 2005.

[82] D. Lin. Dependency-based evaluation of MINIPAR. InWorkshop on the Evaluation

of Parsing Systems, 1998.

[83] D.M. Magerman. Statistical decision-tree models for parsing. InProceedings of the

Annual Meeting of the Association for Computational Linguistics (ACL), 1995.

[84] M. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large annotated corpus

of English: the Penn Treebank.Computational Linguistics, 19(2):313–330, 1993.

[85] H. Maruyama. Structural disambiguation with constraint propagation. InProceed-

ings of the Annual Meeting of the Association for Computational Linguistics (ACL),

1990.

[86] A. McCallum. Efficiently inducing features of conditional random fields. InPro-

ceedings of the Conference on Uncertainty in Artificial Intelligence, 2003.

[87] A. K. McCallum. MALLET: A machine learning for languagetoolkit, 2002.

http://mallet.cs.umass.edu.

[88] D. McCloskly, E. Charniak, and M. Johnson. Effective self-training for parsing. In

Proceedings of the Joint Conference on Human Language Technology and North

215

American Chapter of the Association for Computational Linguistics (HLT/NAACL),

2006.

[89] D. McCloskly, E. Charniak, and M. Johnson. Reranking and self-training for parser

adaptation. InProceedings of the Annual Meeting of the Association for Computa-

tional Linguistics (ACL), 2006.

[90] R. McDonald, K. Crammer, and F. Pereira. Flexible text segmentation with struc-

tured multilabel classification. InProceedings of the Joint Conference on Hu-

man Language Technology and Empirical Methods in Natural Language Processing

(HLT/EMNLP), 2005.

[91] R. McDonald, K. Crammer, and F. Pereira. Online large-margin training of depen-

dency parsers. InProceedings of the Annual Meeting of the Association for Compu-

tational Linguistics (ACL), 2005.

[92] R. McDonald, K. Lerman, and F. Pereira. Multilingual dependency analysis with a

two-stage discriminative parser. InProceedings of the Conference on Computational

Natural Language Learning (CoNLL), 2006.

[93] R. McDonald and F. Pereira. Identifying gene and protein mentions in text using

conditional random fields.BMC Bioinformatics, 6:Supp1(S6), 2005.

[94] R. McDonald and F. Pereira. Online learning of approximate dependency parsing al-

gorithms. InProceedings of the Annual Meeting of the European American Chapter

of the Association for Computational Linguistics (ACL), 2006.

[95] R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. Non-projective dependency pars-

ing using spanning tree algorithms. InProceedings of the Joint Conference on Hu-

man Language Technology and Empirical Methods in Natural Language Processing

(HLT/EMNLP), 2005.

216

[96] I.A. Meĺčuk. Dependency Syntax: Theory and Practice. State University of New

York Press, 1988.

[97] R. Moore. A discriminative framework for bilingual word alignment. InProceedings

of the Joint Conference on Human Language Technology and Empirical Methods in

Natural Language Processing (HLT/EMNLP), 2005.

[98] K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to

kernel-based learning algorithms.IEEE Neural Networks, 12(2):181–201, 2001.

[99] B. Navarro, M. Civit, Ma A. Martı́, R. Marcos, and B. Fernández. Syntactic, se-

mantic and pragmatic annotation in Cast3LB. InProceedings of the Workshop on

Shallow Processing of Large Corpora (SProLaC), 2003.

[100] The Nordic Treebank Network. http://w3.msi.vxu.se/˜nivre/research/nt.html.

[101] P. Neuhaus and N. Böker. The complexity of recognition of linguistically adequate

dependency grammars. InProceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), 1997.

[102] J. Nilsson, J. Hall, and J. Nivre. MAMBA meets TIGER: Reconstructing a Swedish

treebank from antiquity. InProceedings of the NODALIDA Special Session on Tree-

banks, 2005.

[103] J. Nivre. Dependency grammar and dependency parsing.Technical Report MSI

report 05133, Vxj University: School of Mathematics and Systems Engineering,

2005.

[104] J. Nivre and J. Nilsson. Pseudo-projective dependency parsing. InProceedings of

the Annual Meeting of the Association for Computational Linguistics (ACL), 2005.

217

[105] J. Nivre and M. Scholz. Deterministic dependency parsing of english text. InPro-

ceedings of the International Conference on ComputationalLinguistics (COLING),

2004.

[106] Joakim Nivre. Penn2malt, 2004. http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html.

[107] K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.Building a Turkish treebank.

In Abeillé [1], chapter 15.

[108] P. Osenova and K. Simov. BTB-TR05: BulTreeBank stylebook. BulTree-

Bank version 1.0. Bultreebank project technical report, 2004. Available at:

http://www.bultreebank.org/TechRep/BTB-TR05.pdf.

[109] PennBioIE. Mining The Bibliome Project, 2005. http://bioie.ldc.upenn.edu/.

[110] A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. InProceed-

ings of the Empirical Methods in Natural Language Processing (EMNLP), pages

133–142, 1996.

[111] A. Ratnaparkhi. Learning to parse natural language with maximum entropy models.

Machine Learning, 34:151–175, 1999.

[112] K. Ribarov.Automatic building of a dependency tree. PhD thesis, Charles University,

2004.

[113] S. Riezler, T. King, R. Kaplan, R. Crouch, J. Maxwell, and M. Johnson. Parsing

the Wall Street Journal using a lexical-functional grammarand discriminative es-

timation techniques. InProceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), 2002.

[114] S. Riezler, T. H. King, R. Crouch, and A. Zaenen. Statistical sentence condensa-

tion using ambiguity packing and stochastic disambiguation methods for lexical-

218

functional grammar. InProceedings of the Joint Conference on Human Language

Technology and North American Chapter of the Association for Computational Lin-

guistics (HLT/NAACL), 2003.

[115] B. Roark, M. Saraclar, M. Collins, and M. Johnson. Discriminative language model-

ing with conditional random fields and the perceptron algorithm. InProceedings of

the Annual Meeting of the Association for Computational Linguistics (ACL), 2004.

[116] F. Rosenblatt. The perceptron: A probabilistic modelfor information storage and

organization in the brain.Psych. Rev., 68:386–407, 1958.

[117] K. Sagae and A. Lavie. Parser combination by reparsing. In Proceedings of the

Joint Conference on Human Language Technology and North American Chapter of

the Association for Computational Linguistics (HLT/NAACL), 2006.

[118] S. Sarawagi and W. Cohen. Semi-Markov conditional random fields for information

extraction. InProceedings of Neural Information Processing Systems (NIPS), 2004.

[119] P. Sgall, E. Hajičová, and J. Panevová.The Meaning of the Sentence in Its Pragmatic

Aspects. Reidel, 1986.

[120] F. Sha and F. Pereira. Shallow parsing with conditional random fields. InProceed-

ings of the Joint Conference on Human Language Technology and North Ameri-

can Chapter of the Association for Computational Linguistics (HLT/NAACL), pages

213–220, 2003.

[121] L. Shen and A. Joshi. Incremental LTAG parsing. InProceedings of the Joint Confer-

ence on Human Language Technology and Empirical Methods in Natural Language

Processing (HLT/EMNLP), 2005.

219

[122] Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman. Automatic paraphrase acquisi-

tion from news articles. InProceedings of the Human Language Technology Con-

ference (HLT), 2002.

[123] K. Simov and P. Osenova. Practical annotation scheme for an HPSG treebank of

Bulgarian. InProceedings of the 4th International Workshop on Linguistically In-

terpreteted Corpora (LINC), pages 17–24, 2003.

[124] K. Simov, P. Osenova, A. Simov, and M. Kouylekov. Design and implementation

of the Bulgarian HPSG-based treebank. InJournal of Research on Language and

Computation – Special Issue, pages 495–522. Kluwer Academic Publishers, 2005.

[125] K. Simov, P. Osenova, and M. Slavcheva. BTB-TR03: BulTreeBank morphosyntac-

tic tagset. BTB-TS version 2.0. Bultreebank project technical report, 2004. Available

at: http://www.bultreebank.org/TechRep/BTB-TR03.pdf.

[126] K. Simov, G. Popova, and P. Osenova. HPSG-based syntactic treebank of Bulgar-

ian (BulTreeBank). In A. Wilson, P. Rayson, and T. McEnery, editors,A Rainbow

of Corpora: Corpus Linguistics and the Languages of the World, pages 135–142.

Lincom-Europa, Munich, 2002.

[127] D. Sleator and D. Temperley. Parsing English with a link grammar. InProceedings

of the International Workshop on Parsing Technologies (IWPT), 1993.

[128] N. Smith and J. Eisner. Guiding unsupervised grammar induction using contrastive

estimation. InWorking Notes of the International Joint Conference on Artificial

Intelligence Workshop on Grammatical Inference Applications, 2005.

[129] O. Smrž, J.̌Snaidauf, and P. Zemánek. Prague Dependency Treebank for Arabic:

Multi-level annotation of Arabic corpus. InProceedings of the International Sym-

posium on Processing of Arabic, pages 147–155, 2002.

220

[130] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic hyper-

nym discovery. InProceedings of Neural Information Processing Systems (NIPS),

2004.

[131] M. Steedman.The Syntactic Process. MIT Press, 2000.

[132] C. Sutton, C. Pal, and A. McCallum. Reducing weight undertraining in struc-

tured discriminative learning. InProceedings of the Joint Conference on Human

Language Technology and Empirical Methods in Natural Language Processing

(HLT/EMNLP).

[133] R.S. Sutton and A.G. Barto.Reinforcement Learning: An Introduction. MIT Press,

1998.

[134] P. Tapanainen and T. Järvinen. A non-projective dependency parser. InProceedings

of the 5th Conference on Applied Natural Language Processing, 1997.

[135] R.E. Tarjan. Finding optimum branchings.Networks, 7:25–35, 1977.

[136] B. Taskar.Learning Structured Prediction Models: A Large Margin Approach. PhD

thesis, Stanford, 2004.

[137] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. InProceed-

ings of Neural Information Processing Systems (NIPS), 2003.

[138] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. In

Proceedings of the Empirical Methods in Natural Language Processing (EMNLP),

2004.

[139] U. Teleman. Manual f̈or grammatisk beskrivning av talad och skriven svenska

(MAMBA), 1974.

221

[140] L. Tesnière.Éléments de syntaxe structurale. Editions Klincksieck, 1959.

[141] E.F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 shared task:

Chunking. InProceedings of the Conference on Computational Natural Language

Learning (CoNLL), 2000.

[142] E.F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 shared

task: Language-independent named entity recognition. InProceedings of the Con-

ference on Computational Natural Language Learning (CoNLL), 2003.

[143] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector learning

for interdependent and structured output spaces. InProceedings of the International

Conference on Machine Learning, 2004.

[144] J. Turian and D. Melamed. Constituent parsing by classification. InProceedings of

the International Workshop on Parsing Technologies (IWPT), 2005.

[145] J. Turian and D. Melamed. Advances in discriminative parsing. InProceedings of

the Annual Meeting of the Association for Computational Linguistics (ACL), 2006.

[146] J. Turner and E. Charniak. Supervised and unsupervised learning for sentence com-

pression. InProceedings of the Annual Meeting of the Association for Computa-

tional Linguistics (ACL), 2005.

[147] L. van der Beek, G. Bouma, J. Daciuk, T. Gaustad, R. Malouf, G. van Noord,

R. Prins, and B. Villada. The Alpino dependency treebank. InAlgorithms for Lin-

guistic Processing, NWO PIONIER progress report 5. 2002.

[148] L. van der Beek, G. Bouma, R. Malouf, and G. van Noord. The Alpino dependency

treebank. InComputational Linguistics in the Netherlands (CLIN), 2002.

222

[149] W. Wang and M. P. Harper. A statistical constraint dependency grammar (CDG)

parser. InWorkshop on Incremental Parsing: Bringing Engineering andCognition

Together (ACL), 2004.

[150] N. Xue, F. Xia, F. Chiou, and M. Palmer. The Penn ChineseTreebank: Phrase

structure annotation of a large corpus.Natural Language Engineering, 2004.

[151] H. Yamada and Y. Matsumoto. Statistical dependency analysis with support vector

machines. InProceedings of the International Workshop on Parsing Technologies

(IWPT), 2003.

[152] D.H. Younger. Recognition and parsing of context-free languages in timen3. Infor-

mation and Control, 12(4):361–379, 1967.

[153] D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction.

Journal of Machine Learning Research, 3:1083–1106, 2003.

[154] D. Zeman. Parsing with a Statistical Dependency Model. PhD thesis, Univerzita

Karlova, Praha, 2004.

223

