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ABSTRACT

This paper investigates whether Chomsky-like grammar representations are useful for learn-
ing cost-effective, comprehensible predictors of members of biological sequence families. The
Inductive Logic Programming (ILP) Bayesian approach to learning from positive examples
is used to generate a grammar for recognising a class of proteins known as human neu-
ropeptide precursors (NPPs). Collectively, � ve of the co-authors of this paper, have extensive
expertise on NPPs and general bioinformatics methods. Their motivation for generating a
NPP grammar was that none of the existing bioinformatics methods could provide suf� cient
cost-savings during the search for new NPPs. Prior to this project experienced specialists at
SmithKline Beecham had tried for many months to hand-code such a grammar but without
success. Our best predictor makes the search for novel NPPs more than 100 times more
ef� cient than randomly selecting proteins for synthesis and testing them for biological activ-
ity. As far as these authors are aware, this is both the � rst biological grammar learnt using
ILP and the � rst real-world scienti� c application of the ILP Bayesian approach to learning
from positive examples. A group of features is derived from this grammar. Other groups of
features of NPPs are derived using other learning strategies. Amalgams of these groups are
formed. A recognition model is generated for each amalgam using C4.5 and C4.5rules and
its performance is measured using both predictive accuracy and a new cost function, Relative
Advantage (RA). The highest RA was achieved by a model which includes grammar-derived
features. This RA is signi� cantly higher than the best RA achieved without the use of the
grammar-derived features. Predictive accuracy is not a good measure of performance for
this domain because it does not discriminate well between NPP recognition models: despite
covering varying numbers of (the rare) positives, all the models are awarded a similar (high)
score by predictive accuracy because they all exclude most of the abundant negatives.
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1. INTRODUCTION

This paper attempts to answer, by way of a case study, the question of whether grammatical
representations are useful for learning from biological sequence data. We address the question with

experimental results that signi� cantly contradict the following null hypothesis.
Null hypothesis. The most cost-effective, comprehensible multistrategy predictors of human neuropep-

tide precursors do not employ a context-free de� nite-clause grammar.
Multistrategy learning (Michalski and Wnek, 1997) aims at integrating multiple strategies in a single

learning system, where strategies may be inferential (e.g., induction, deduction, etc.) or computational.
Computational strategy is de� ned by the representational system and the computational method used in
the learning system (e.g., decision tree learning, neural network learning, etc).

A grammar for a language tells us whether a sentence is properly formed. Noam Chomsky, a founder
of formal language theory, provided an initial classi� cation of language types. Those readers requiring an
introduction to formal grammars or this hierarchy are referred to Linz (1996).

We obtain results which signi� cantly contradict the null hypothesis as follows. A grammar is generated
for a particular class of biological sequences. A group of features is derived from this grammar. Other
groups of features are derived using other learning strategies. Amalgams of these groups are formed. A
recognition model is generated for each amalgam using C4.5 and C4.5 rules. The results signi� cantly
contradict the null hypothesis because:

1. the best performance achieved using any of the models which include grammar-derived features is higher
than the best performance achieved using any of the models which do not include the grammar-derived
features;

2. this increase is shown to be statistically signi� cant;
3. the best model which includes grammar-derived features is suf� ciently more comprehensible than the

best “non-grammar” model.

Performance is measured using a new cost function, relative advantage (RA). Appendix A de� nes RA
and explains why it is used in preference to other performance measures. A method of estimating the RA
of a recognition model is presented which subsequently allows the statistical signi� cance of the difference
between the RA of two models to be gauged.

The domain of the case study is the recognition of a class of proteins known as human neuropeptide
precursors (NPPs). These proteins have considerable therapeutic potential and are of widespread interest in
the pharmaceutical industry (see Section 3). Our best multistrategy predictor of NPPs employs a context-
free de� nite-clause grammar.

An inductive logic programming (ILP) (Muggleton and Raedt, 1994) system is used to generate a
grammar for NPPs. As far as these authors are aware, this is the � rst attempt to generate a grammar for
a biological domain using ILP. ILP is the area of arti� cial intelligence which deals with the induction of
hypothesized predicate de� nitions from examples and background knowledge. Logic programs are used
as a single representation for examples, background knowledge, and hypotheses. For a recent overview of
ILP issues and results see Muggleton (1999).

Most ILP systems require both a set of positive examples of the concept to be learnt and a set of negative
examples. However, it is not possible to identify a large, unbiased set of negative examples of NPPs with
certainty because there will be proteins which have yet to be recognized scienti� cally as a NPP. Therefore,
advantage was taken of the ILP Bayesian approach to learning from positive examples (Muggleton, 1996).
This approach does not require a set of negative examples. It is able to learn a concept from a set of
positive examples and a set of examples sampled at random. As far as these authors are aware, this is the
� rst real-world scienti� c application of this approach.

The paper is organized as follows. Section 2 describes the role of sequence information in molecular
biology and previous techniques for learning from it, including grammatical inference. This section reviews
grammatical inference from the viewpoint of learning cost-effective, comprehensible predictors of members
of biological sequence families. Those readers interested in previous theoretical results and applications
to natural language are referred to Sakikibara (1997) and the references therein. Section 3 introduces
neuropeptide precursor recognition, the domain of the case study. Sections 4 and 5 detail the experimental



ARE GRAMMATICAL REPRESENTATIONS USEFUL? 495

materials, methods, and results. Section 6 is the discussion. Appendix A describes the new cost function,
relative advantage (RA). Appendix B includes the production rules generated by CProgol. Appendix C
includes our best multistrategy predictor of NPPs.

2. SEQUENCE DATA IN BIOLOGY

Research in the biological and medical sciences is being transformed by the volume of data coming from
projects which will reveal the entire genetic code (genome sequence) of Homo sapiens as well as other
organisms. Once complete, these projects should help us understand the genetic basis of human disease. The
growth in the volume of data and improvements in software for interpreting this information has increased
interest in the use of computational methods for identifying genes involved in human disease (Rawlings
and Searls, 1997). Knowing the genes implicated in a disease identi� es the proteins that they code for
and possibly suggests the biochemical processes that may be in� uencing the development of the disease.
This information is crucial for the generation of the experimental reagents needed for the development of
new drugs and explains the widespread investment by the biotechnology and pharmaceutical industries in
bioinformatics staff and technologies (Lyall, 1996; Spence, 1998).

Recent announcements indicate a commitment to complete sequencing of the entire human genome
during the year 2000, through accelerated international funding of public research (Pennisi, 1999). This
initiative has promoted the development of technology to generate raw (uninterpreted) gene sequence data
at a rate of at least 1 Gigabase of new DNA per year. Once the full human genome sequence is available, it
will not be long before the nucleotide sequence of every human gene is known. The amino acid sequences
of the proteins encoded by these genes can then be deduced. Current estimates of the number of genes
in the human genome vary greatly, but tend to average around 60,000. If different, but similar biological
sequences are believed to have arisen by evolution from a common ancestor, the proteins or genes are said
to be homologous to each other. For a signi� cant portion of these deduced protein sequences, a function
can be inferred due to the homology of the sequence to another known protein. However, given the large
numbers of new protein sequences expected to be solved in the near future, there will be a great many for
which no clear homologues of known function exist.

Data deposition at this rate will challenge all aspects of the existing genomic information processing
infrastructure in both commercial and academic research sectors. Current state-of-the-art computational
sequence interpretation methods are not capable of solving the sequence-to-function problem for all new
proteins, and the development of new techniques is still required.

A signi� cant challenge in the analysis and interpretation of genetic sequence data is therefore the accurate
recognition of patterns within the data that are diagnostic for known structural or functional features
within the protein. The language of genes is written in a simple alphabet {A, C, G, T} representing the
four DNA base codes. The language of proteins uses a twenty character alphabet {A, C, D, E, F, G,
H, I, K, L, M, N, P, Q, R, S, T, V, W, Y} representing amino acid residues. These residues are
encoded in genes by successive DNA base triplets. At their simplest, these patterns can be described as
regular expressions. Many features can be described through the use of regular expressions and a database
PROSITE (Bairoch, 1997) is available in which these patterns are curated. A PROSITE pattern such as:
[AC]-x-V-x(4)-{ED} is translated as: [A or C]-any-V-any-any-any-any-{any but E or D}.

A more extensive example of a PROSITE pattern is that for the family of proteins called short-chain de-
hydrogenases (enzymes involved in cell metabolism). The PROSITE pattern that includes two perfectly con-
served residues, a tyrosine (Y) and a lysine (K) is: [LIVSPADNK]-x(12)-Y-[PSTAGNCV]-[STAGNQCIVM]-
[STAGC]-K-{PC}-[SAGFYR]-[LIVMSTAGD]-x(2)-[LIVMFYW]- x(3)-[LIVMFYWGAPTHQ]-[GSACQRHM].

There are, however, limitations inherent in the use of simple regular expressions as a representation of
biological sequence patterns. In recent years, attention has shifted towards both the use of neural network
approaches (see Baldi and Brunak, 1998) and to probabilistic models, in particular hidden Markov models
(see Durbin et al., 1998). Both these methods directly address the extent of variation in the biological
world. A signi� cant advantage of both the probabilistic methods and the neural network approaches is
that they are complemented with well-established methods for training models from examples. Training
regimes generally (but not always) require that the sequences in the training set be arranged so that those
regions of the sequence that have been conserved through evolution are aligned in the same column. The
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accurate multiple alignment of biological sequences has been the subject of much research and discussion
(Doolittle, 1996), and is considered by many to be a solved problem. However, it relies on the assumption
that the sequences to be aligned show some homology at the sequence level with each other. Complex
biological signals also require complex models and it is often the case that considerable expertise is required
in the selection of the optimal neural network architecture or hidden Markov model before training can
take place.

A general linguistic approach to representing the structure and function of genes and proteins has intrin-
sic appeal as an alternative approach to probabilistic methods because of the declarative and hierarchical
nature of grammars. Searls (1993) has undertaken the most thorough analysis of the linguistic classi� cation
of genetic grammars starting with the de� nite clause grammar (DCG). Searls proposes a string variable
grammar (SVG) extension to a DCG to provide features necessary for representing higher-order interac-
tions among genetic sequence elements found in nucleic acids such as nonlinear features found in RNA
pseudoknots and other secondary structures formed as a result of internal nucleic acid base-pairing.

While linguistic methods have provided some interesting results in the recognition of complex biological
signals (Searls, 1997) general methods for learning new grammars from example sentences are much less
developed. Brazma has reviewed the development of methods for the automatic discovery of biological
patterns (Brazma et al., 1998) much of which has taken place in the context of building databases of
sequence motifs such as PROSITE (Bairoch et al., 1997), BLOCKS (Henikoff and Henikoff, 1996), and
PFAM (Sonnhammer et al., 1997, 1998). Abe and Mamitsuka proposed a method for predicting the protein
secondary structure of a given amino acid sequence using a training algorithm for a class of stochastic tree
grammars (Abe and Mamitsuka, 1997).

We considered it valuable to investigate the application of inductive logic programming methods to the
discovery of a language that would describe a particularly interesting class of sequences—neuropeptide
precursor proteins (NPPs). They are highly variable in length and undergo speci� c enzymatic degradation
(proteolysis) before the biologically active short peptides (neuropeptides) are released. Unlike enzymes or
structural proteins, NPPs tend to show almost no overall sequence similarity with the exception of some
evidence for common ancestry within certain groups. Roughly, the 50 human neuropeptide precursors
currently known contain about 140 known cleaved peptides. These peptides belong to at least 40 different
neuropeptide families, with only 1–5 members per family. Prosite motifs do exist for some of the more
highly populated families, but these are based on the cleaved peptide and not the precursor. These motifs
could be used to discover new members of a neuropeptide family, but they will never detect novel families
of neuropeptides. It is believed that there are a great many more novel subgroups yet to be discovered.
This confounds pattern discovery methods that rely on multiple sequence alignment and recognition of
biological conservation. As a consequence, NPPs pose a particular challenge in sequence pattern discovery
and recognition.

3. NEUROPEPTIDE PRECURSOR PROTEINS

Neuropeptides are an important group of short proteins that act as neurotransmitters mediating the
passage of signals within the central nervous system (CNS) and between the CNS and the rest of the
body. The term “neuropeptide” was � rst introduced in 1971 by D. de Weid (Klavdieva, 1995) to describe
fragments of hormones that produced behavioral changes when injected, but lacked the activity of the intact
hormone. More recently, the term has been accepted to cover peptides united by a number of common
features, including their tissue expression (brain, nervous tissue, secretory cells from organs such as gut,
heart, lungs, placenta, etc.) metabolism, secretion, biosynthesis, and high potency (Klavdieva, 1995).

Drug molecules work by interacting with target sites within the body. These sites commonly are protein
molecules, either enzymes or receptors. By interaction with these protein molecules, drugs can modulate
their actions and generally suppress undesirable biochemical reactions. Neuropeptides exert their biological
actions through binding as ligands to speci� c receptors. The term “ligand” is used for molecules which
bind to the target site. (A ligand might be highly active against the target, but not a “drug,” because of a
lack of other required properties such as metabolic stability or safety.)

Active research has increased the number of known mammalian neuropeptides from about 18 in 1978
to more than 80 by 1999. However, despite all these efforts, the biology of many of these neuropeptides as
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FIG. 1. A neuropeptideprecursor sequence containing the angiotensin neuropeptides.A precursor will always contain
exactly one signal peptide. The number of neuropeptides can vary.

well as their interactions with their receptors remain to be elucidated. The receptors of some neuropeptides
have not yet been identi� ed and there are some orphan receptors with as yet unidenti� ed ligands. The
in-vitro pairing of a novel receptor with its ligand is a critical � rst step in understanding the mechanism of
disease. Thus novel neuropeptides and their orphan receptors have considerable therapeutic potential and
are of widespread interest in the pharmaceutical industry.

Neuropeptides are subsequences of neuropeptide precursor sequences. An example of a neuropeptide
precursor is shown in Fig. 1. This neuropeptide precursor contains the neuropeptides Angiotensin I and
Angiotensin II. A diagrammatic representation of several other precursors is shown in Fig. 2. Precursors
may contain either a single neuropeptide, multiple copies of the same neuropeptide, or several different
neuropeptides. These can occur consecutively in the precursor or can be separated by large stretches of
� ller peptide which is believed to play a purely structural role. Neuropeptide precursors contain a short
pre� x of residues called a signal peptide of about 20–30 amino acids (aa) in length. The known precursors
range in length from 70 to 600 aa, and the cleaved peptides range from 3–200 aa. It is this huge variation

FIG. 2. Some of the different con� gurations of neuropeptides known to occur within human precursors. Precursor
(i) shows a single cleaved peptide � anked by � ller of unknown function. Precursor (ii) shows three different cleaved
peptides, two of which are adjacent to each other, whilst the other is separated by � ller. Precursor (iii) contains the
same short peptide repeated four times. Precursor (iv) shows that cleavage can occur selectively, giving alternative
termini to the released peptides.
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in length, sequence, and internal organization that makes neuropeptide precursors dif� cult to use when
searching for novel remote homologues using sequence database searching methods (e.g., BLAST). They
also confound typical multiple sequence alignment methods used to identify conserved features among
functionally related sequences.

Many proteins are cleaved and trimmed after synthesis. For example, digestive enzymes are synthesized
as inactive precursors that can be stored safely in the pancreas. After being released into the intestine,
these precursors become activated by cleavage. Neuropeptide precursors undergo this “splitting” process.
The signal peptide targets the protein for secretion through a cell membrane where it is then cleaved from
the precursor. The remainder of the precursor is further cleaved to release the neuropeptide. Within the
precursor, the location of the cleavages of the signal sequence and the neuropeptides are referred to as
cleavage sites.

To our knowledge there has been no previous attempt to computationally predict or recognize neuropep-
tides. Several investigators have statistically analyzed various features of neuropeptides and their precursors
(Devi, 1991; Rholam et al., 1995, 1986; Bakalkin et al., 1991). Other investigators have developed methods
for the identi� cation of protein sorting signals and the prediction of their cleavage sites (Claros et al., 1977;
Nielsen et al., 1999, 1997). However the recognition of signal peptides only solves part of the problem of
how to recognize neuropeptide precursors. Within SmithKline Beecham, our previous work in predicting
novel neuropeptide precursors has centered on the use of regular expression searching of translated ex-
pressed sequence tag (EST) databases of gene fragments. The results of this approach were limited by the
rigidity of the regular expressions, the high frequency of errors in EST sequences (Hillier et al., 1996), and
their relatively short length. The ultimate goal of this project will be to differentiate novel neuropeptides
from the wealth of other new sequences produced by the completion of the human genome sequencing
project. This is a task that current sequence analysis tools have so far failed to solve.

4. EXPERIMENT ONE

This section describes an experiment whose results signi� cantly contradict the null hypothesis (see Sec-
tion 1). The section begins by describing the materials (data, background knowledge, and machine learning
systems) used in the experiment. This is followed by an account of the three steps of the experimental
method. Finally, the section ends with the presentation and analysis of the results.

4.1. Materials

4.1.1. Data. The data was taken from the SWISS-PROT database (Bairoch and Apweiler, 2000).
SWISS-PROT is an annotated protein sequence database established in 1986 and maintained, with collab-
orators, by the Department of Medical Biochemistry of the University of Geneva. It can be accessed at
http://www.expasy.ch/sprot/sprot-top.html.

Our data set comprises a subset of positives, i.e., known NPPs, and a subset of randomly selected
sequences. It is not possible to generate a large, unbiased set of negative examples because there will be
proteins which have yet to be recognized scienti� cally as a NPP. The characteristics of the two subsets of
sequences are as follows.

Positives. This subset contains all of the 44 known NPP sequences that were in SWISS-PROT in the
spring of 1997, the time the data-set was prepared (see Table 1). The SWISS-PROT identi� ers of these
44 sequences are listed in Tables 2 and 3. All but three of these are human proteins. The three nonhuman
sequences were included as the human equivalent had not been discovered and they were considered to

Table 1. Properties of Sequences in SWISS-PROT in
Spring 1997 and in May 1999

Spring 1997 May 1999

Number of sequences 64,000 79,449
Number of known human NPPs 44 57
Most probable number of human NPPs Not known 90

http://www.expasy.ch/sprot/sprot-top.html


ARE GRAMMATICAL REPRESENTATIONS USEFUL? 499

Table 2. SWISS-PROT Identi� ers for the NPPs in the Training-Set

P01019 P01042 P01156 P01178 P01185 P01189 P01210 P01213 P01258 P01270 P01275
P01279 P01282 P01286 P01298 P01303 P05060 P05305 P06881 P07491 P08858 P08949
P10082 P10645 P12272 P14138 P16860 P18509 P20366 P20382 P20800 P21591 P22466
P35318

Table 3. SWISS-PROT Identi� ers for the NPPs in the Test-Set

P01148 P01160 P01166 P06307 P06850 P10997 P13521 P23582 P20396 P01350

be important examples. They are expected to be very closely related to the human and are possibly a
reasonable model for humans. Ten of the 44 precursors were selected to constitute part of the test-set.
These sequences are unrelated by sequence homology to the remaining 34.

Randoms. This subset contains all of the 3,910 full-length human sequences in SWISS-PROT in the
spring of 1997. One thousand of the 3,910 randoms were reserved for the test-set. The data-set is available
at ftp://ftp.cs.york.ac.uk/pub/aig/Datasets/neuropeps/.

4.1.2. Machine learning systems. The propositional learning was performed using the decision-tree
learner C4.5 (release 8) in conjunction with the companion program C4.5rules that constructs rules from
a tree built by C4.5 (Quinlan, 1993). The grammar learning was performed using CProgol (Muggleton,
1995) version 4.4 which is available from ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/progol4.4.

4.1.3. Background knowledge. During both the generation of the grammar using CProgol and the
generation of propositional rule sets using C4.5 and C4.5rules, we adopt the background information used
by Muggleton et al. (1992) to describe physical and chemical properties of the amino acids (see Table 4).

4.2. Method

The method may be summarized as follows:

1. A grammar is generated for NPP sequences using CProgol (see Section 4.2.1).
2. A group of features is derived from this grammar. Other groups of features are derived using other

learning strategies (see Section 4.2.2).

Table 4. Physical and Chemical Properties
of the Amino Acids

Physicochemical property Amino acids with property

Hydrophobic H,W,Y,F,M,L,I,V,C,A,G,T,K
Very hydrophobic A,F,G,I,L,M,V
Hydrophilic S,E,Q,R,D,N

Electropositive R,K,H
Electronegative D,E
Neutral A,C,F,G,I,L,M,N,P,Q,S,T,V,W,Y

Large Q,E,R,K,H,W,Y,F,M,L,I
Small P,V,C,A,G,T,S,N,D
Tiny A,G,S

Polar Y,T,S,N,D,E,Q,R,K,H,W
Aliphatic L,I,V
Aromatic H,W,Y,F

Hydrogen donor W,Y,H,T,K,C,S,N,Q,R
Hydrogen acceptor Y,T,C,S,D,E,N,Q



500 MUGGLETON ET AL.

3. Amalgams of these groups are formed. A rule-set is generated for each amalgam using C4.5 and
C4.5rules and its performance is measured using Mean RA. This is a new cost function which is
described in Appendix A. The null hypothesis (see Section 1) is then tested by comparing the Mean RA
achieved from the various amalgams (see Section 4.2.3).

4. A hidden Markov model (HMM) is generated for NPP sequences and its Mean RA is measured (see
Section 4.2.4).

4.2.1. Grammar generation. A NPP grammar contains rules that describe legal neuropeptide precur-
sors. Figure 3 shows an incomplete example of such a grammar written as a Prolog program. This section
describes how production rules for signal peptides and neuropeptide starts, middle-sections, and ends were
generated using CProgol. These were used to complete the context-free de� nite-clause-grammar structure
shown in Fig. 3. The start and end represent cleavage sites and the middle section represents the mature
neuropeptide, i.e., what remains after cleavage has taken place.

The production rules to be learnt by CProgol contain dyadic predicates of the form p(X,Y), which
denote that property p began the sequence X and is followed by a sequence Y. To learn such rules from
the training-set, CProgol was provided with the following extensional de� nitions:

Precursor data. Using details of the start and � nishing positions for signal peptides and neuropeptides
it was possible to generate examples of nonterminals as below:

² signalpep(S,[]) where S is a list of precursor residues constituting the signal peptide.
² start(S,[]) where S is a list of residues constituting the start of a neuropeptide. The length of S was

taken to be two residues.
² middle(S,[]) where S is a list of residues constituting the middle of a neuropeptide. The starting

residue for S is the � rst residue after the end of the sequence for start/2 above. The end of S was
taken to be three residues from the last position of the neuropeptide.

² end(S,[]) where S is a list of three precursor residues constituting the end of a neuropeptide. The list
S commences with the residue after the end of the sequence for middle/2 above.

Random data. One random example for each of signalpep/2, start/2, middle/2 and end/2 was
generated from each sequence in the set of randoms sequences. Random examples are distinguished by
the pre� x *.

² *signalpep(S,[]) where S is a list of residues starting at the � rst position in the sequence. The length
of S is obtained from drawing randomly from the distribution of signal peptide lengths of NPPs in the
training data.

FIG. 3. Grammar rules describing legal NPP sequences. The rules comply with Prolog syntax. npp.X; Y / is true if
there is a precursor at the beginning of the sequence X and it is followed by a sequence Y . The other dyadic predicates
are de� ned similarly. star.X; Y / is true if, at the beginning of the sequence X, there is some sequence of residues
whose length is not speci� ed and which is followed by another sequence Y . De� nitions of the predicates denoted by
“...” are to be learnt from data of known NPP sequences.
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² *start(S,[]) where S is a pair of sequence residues. The starting residue is randomly chosen, and is
ensured not to con� ict with the sequence chosen for *signalpep/2 above.

² *middle(S,[]) where S is a list of residues starting after the end of the sequence for *start/2 above.
The length of S is obtained by drawing randomly from the length of neuropeptide middle sections of
precursors in the training data.

² *end(S,[]) where S is a list of three residues starting at the end of the sequence terminating the
de� nition of *middle/2 above.

CProgol was provided with de� nitions of the nonterminals star/2 and run/3 (see Table 5). Nonterminal
star/2 represents some sequence of unnamed residues whose length is not speci� ed. Nonterminal run/3

represents a run of residues which share a speci� ed property.
The grammar-based approach presents a powerful method for describing NPPs, as it allows for the

natural inclusion of existing biochemical knowledge. Prior knowledge of NPPs suggested that the following
subsequences may be important: KR; GKR and GRR. The subsequences KR and GKR are established proteolytic
cleavage sites found in NPPs; GRR is a relatively common alternative cleavage site to GKR. Pilot experiments
suggested that the following patterns may be signi� cant:

K,positive ;
positive,positive ;
Y,very_hydrophobic ;
hydrophilic,a_gap_of_some_residues,M,negative ;
HP;
WMDF.

All these subsequences and patterns were coded as Prolog predicates and included as background
knowledge (see Table 5).

Table 5. Background Knowledge Predicatesa

rlist([]).
rlist([R|T]) :- res(R), rlist(T).
res(a). res(b). res(c). ... res(z).

any([_|S],S). % residue of any type or property

kr(A,C) :- k(A,B), r(B,C). kp(A,C) :- k(A,B), positive(B,C).
pp(A,C) :- positive(A,B), positive(B,C). gkr(A,D) :- g(A,B), k(B,C), r(C,D).
grr(A,D) :- g(A,B), r(B,C), r(C,D). yvh(A,C) :- y(A,B), very_hydrophobic(B,C).
hp(B,C) :- h(B,C), p(C,D).
hmn(A,E) :- hydrophilic(A,B), star(B,C), m(C,D), negative(D,E).
wmdf(A,B) :- w(A,C), m(C,D), d(E,F), f(F,B), end(B).

very_hydrophobic([R|T],T):- very_hydrophobic(R). small([R|T],T):- small(R).
hydrophobic([R|T],T):- hydrophobic(R). tiny([R|T],T):- tiny(R).
hydrophilic([R|T],T):- hydrophilic(R). polar([R|T],T):- polar(R).
positive([R|T],T):- positive(R). aliphatic([R|T],T):- aliphatic(R).
negative([R|T],T):- negative(R). aromatic([R|T],T):- aromatic(R).
neutral([R|T],T):- neutral(R). hydro_b_don([R|T],T):- hydro_b_don(R).
large([R|T],T):- large(R). hydro_b_acc([R|T],T):- hydro_b_acc(R).

star(S,S).
star([_|S],T) :- star(S,T).

a([a|T],T). b([b|T],T). c([c|T],T). ... z([z|T],T).

run([X|S],T,P) :- prop(P), docall(P,X), run(S,T,P).
run([X,Y|S],S,P) :- prop(P), docall(P,X), docall(P,Y).
docall(P,X) :- Call=.. [P,X], Call.
prop(very_hydrophobic). prop(hydrophobic). prop(hydrophilic).

aThe ground instantiations of the unary predicates representing the properties shown in Table 3 are not shown here for reasons of
space.
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Other pilot experiments on the training data showed that the accuracy of CProgol’s grammar was higher
with certain restrictions on the length of NPPs, signal peptides and neuropeptides. Speci� c constraints
were obtained by progressively checking the following: all lengths less than the mean length on training
data; lengths that are within 1; 2; : : : standard deviations of the mean on training data. This resulted in
the following additional restrictions: 1) NPP lengths not to exceed 200 residues; 2) signal peptide lengths
to be between 19 and 29 residues; and 3) middle-sections of neuropeptides lengths to be between 4 and
52 residues. These constraints only affect the values of features derived from the grammar. They do not
constrain the value of the sequence length feature described at the end of Section 4.2.2.

Appendix B shows the mode and type declarations, settings, and prune predicates that were needed to
enable CProgol to complete the grammar shown in Fig. 3. Table 6 shows the production rules that were
generated.

4.2.2. Feature groups. The grammar features. Predictions about a NPP sequence can be made by
parsing it using the NPP grammar. The values of the features shown in Table 7 were obtained by such
parses. Note that, whenever the grammar predicts that a sequence is not a NPP, all of the features are
assigned the value zero.

The SIGNALP features. Each feature in this group is a summary of the result of using the SIGNALP
program on a sequence. The SIGNALP program (Nielson et al., 1997) represents the pre-eminent automated
method for predicting the presence and location of N-terminal signal peptides. SIGNALP is available on
the web at http://www.cbs.dtu.dk/services/SignalP. The technique used combines the predictions of two
different neural networks groups—one that recognizes cleavage sites, and the other that identi� es signal
peptides. When provided with a sequence of N-terminal residues, the following are reported as summaries:
a) C scores, which consist of the maximum value of the score from the cleavage-recognizer, the position
in the sequence where this value is achieved, and a nominal “y” or “n” denoting the answer to whether
a cleavage site is present; b) S scores, the corresponding values from the signal-peptide recognizer; c)
Y scores, which combine the C and S scores; and d) Mean scores, which are means of the S-score and
S-conclusions from the N-terminal end to the predicted cleavage site. For the experiments here, SIGNALP
was provided with 50 amino acids from the N-terminal for each sequence. The summaries were extracted
and represented by 11 features shown in Table 8.

The proportions features. Each feature in this group is a proportion of the number of residues in a
given sequence which either are a speci� c amino acid or which have a speci� c physicochemical property
of an amino acid. Hence there is one such feature for each of the a) 20 amino acids and b) properties
shown in Table 4.

The sequence length feature. This feature is the length of the sequence. In the remainder of this paper
this feature will be referred to as length.

4.2.3. Propositional learning. The training and test data sets for C4.5 were prepared as follows.

1. Recall from Section 4.1.1 that our data comprises 44 positives and 3,910 randoms. Forty of the 44
positives occur in the set of 3,910 randoms. As C4.5 is designed to learn from a set of positives and a
set of negatives, these 40 positives were removed from the set of randoms. Of the 40 positives which
are in the set of randoms, 10 are in the test-set. Hence the set of .3910 ¡ 40/ sequences were split into
a training-set of .2910 ¡ 30 D 2880/ and a test-set of .1000 ¡ 10 D 990/.

2. Values of the features were generated for each training and test sequence. Each sequence was represented
by a data vector comprised of these feature values and one class value (“1” to denote a NPP and “0”
otherwise).

3. Finally, to ensure that there were as many “1” sequences as “0” sequences a training-set of 2,880
NPPs was obtained by sampling with replacement. Thus, the training data-set input to C4.5 comprised
.2 £ 2880/ examples. (No readjusting was done on the test data.)

Amalgams of the feature groups described in the previous section were formed. The amalgams are listed
in Table 9. The following procedure was followed for each one:

1. training- and test-sets were prepared as described above;
2. a decision tree was generated from the training set using C4.5;

http://www.cbs.dtu.dk/services/SignalP.
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Table 6. Production Rules Generated by CProgol

sigpep(A,B) :- g(A,C), star(C,D), s(D,B).
sigpep(A,B) :- m(A,C), star(C,D), hydrophilic(D,E), tiny(E,B).
sigpep(A,B) :- hydrophobic(A,C), star(C,D), w(D,E), hydro_b_acc(E,B).
sigpep(A,B) :- large(A,C), run(C,D,hydrophobic), star(D,E), t(E,B).
sigpep(A,B) :- m(A,C), star(C,D), t(D,E), neutral(E,F), small(F,B).
sigpep(A,B) :- m(A,C), star(C,D), very_hydrophobic(D,E), positive(E,F), tiny(F,B).
sigpep(A,B) :- hydrophobic(A,C), run(C,D,hydrophobic), star(D,E), f(E,F), hydrophobic(F,B).
sigpep(A,B) :- hydrophobic(A,C), star(C,D), h(D,E), hydrophobic(E,F), tiny(F,B).
sigpep(A,B) :- hydrophobic(A,C), star(C,D), v(D,E), hydrophobic(E,F), neutral(F,B).
sigpep(A,B) :- large(A,C), star(C,D), a(D,E), hydrophobic(E,F),small(F,B).
sigpep(A,B) :- large(A,C), star(C,D), s(D,E), neutral(E,F), small(F,B).

start(A,B) :- a(A,C), very_hydrophobic(C,B).
start(A,B) :- d(A,C), t(C,B).
start(A,B) :- g(A,C), v(C,B).
start(A,B) :- h(A,C), r(C,B).
start(A,B) :- k(A,C), r(C,B).
start(A,B) :- l(A,C), r(C,B).
start(A,B) :- q(A,C), g(C,B).

start(A,B) :- s(A,C), l(C,B).
start(A,B) :- w(A,C), q(C,B).
start(A,B) :- hydrophilic(A,C), a(C,B).
start(A,B) :- hydrophilic(A,C), hydrophilic(C,B).
start(A,B) :- positive(A,C), k(C,B).
start(A,B) :- small(A,C), r(C,B).

middle(A,B) :- yvh(A,C), star(C,D), large(D,E), large(E,B).
middle(A,B) :- positive(A,C), star(C,D), neutral(D,E), large(E,F), large(F,B).
middle(A,B) :- hydro_b_acc(A,C), star(C,D), hydrophobic(D,E),neutral(E,F), aromatic(F,B).
middle(A,B) :- hydro_b_acc(A,C), yvh(C,D), star(D,B).
middle(A,B) :- small(A,C), star(C,D), p(D,E), large(E,F), large(F,B).
middle(A,B) :- y(A,C), star(C,D), g(D,E), hydrophobic(E,B).
middle(A,B) :- hydro_b_acc(A,C), star(C,D), k(D,E), neutral(E,F), small(F,B).
middle(A,B) :- small(A,C), star(C,D), l(D,E), m(E,B).
middle(A,B) :- small(A,C), star(C,D), f(D,E), hydrophobic(E,F),aliphatic(F,B).
middle(A,B) :- tiny(A,C), star(C,D), m(D,B).
middle(A,B) :- q(A,C), star(C,D), positive(D,E), neutral(E,F),neutral(F,B).
middle(A,B) :- hydrophobic(A,C), star(C,D), m(D,E), hydrophilic(E,F), neutral(F,B).
middle(A,B) :- e(A,C), star(C,D), i(D,B).
middle(A,B) :- q(A,C), star(C,D), l(D,B).
middle(A,B) :- aromatic(A,C), star(C,D), v(D,E), neutral(E,F),hydro_b_don(F,B).
middle(A,B) :- aromatic(A,C), star(C,D), a(D,E), e(E,B).
middle(A,B) :- c(A,C), star(C,D), c(D,B).
middle(A,B) :- y(A,C), star(C,D), hydro_b_don(D,E), hydro_b_don(E,B).
middle(A,B) :- hmn(A,C), star(C,D), d(D,B).
middle(A,B) :- tiny(A,C), star(C,D), l(D,E), hydro_b_don(E,F),hydro_b_don(F,B).
middle(A,B) :- neutral(A,C), star(C,D), very_hydrophobic(D,E),negative(E,F), aromatic(F,B).
middle(A,B) :- h(A,C), star(C,D), very_hydrophobic(D,E), neutral(E,B).
middle(A,B) :- h(A,C), star(C,D), positive(D,E), neutral(E,F),hydro_b_don(F,B).
middle(A,B) :- hydrophilic(A,C), star(C,D), e(D,E), small(E,B).
middle(A,B) :- hydro_b_don(A,C), star(C,D), g(D,E), hydrophobic(E,F), neutral(F,B).
middle(A,B) :- hydrophobic(A,C), star(C,D), n(D,E), neutral(E,F), large(F,B).
middle(A,B) :- hydrophobic(A,C), star(C,D), a(D,E), f(E,B).
middle(A,B) :- hydro_b_don(A,C), star(C,D), negative(D,E), aromatic(E,B).
middle(A,B) :- hydro_b_acc(A,C), star(C,D), r(D,E), hydrophobic(E,B).
middle(A,B) :- aromatic(A,C), star(C,D), a(D,E), very_hydrophobic(E,F), large(F,B).
middle(A,B) :- tiny(A,C), star(C,D), r(D,E), tiny(E,B).

end(A,B) :- pp(A,C), d(C,B).
end(A,B) :- pp(A,C), large(C,B).
end(A,B) :- e(A,C), l(C,D), s(D,B).
end(A,B) :- e(A,C), v(C,D), v(D,B).
end(A,B) :- g(A,C), positive(C,D),

hydro_b_don(D,B).
end(A,B) :- q(A,C), a(C,D), g(D,B).

end(A,B) :- r(A,C), tiny(C,D), hydro_b_acc(D,B).
end(A,B) :- t(A,C), neutral(C,D), hydro_b_acc(D,B).
end(A,B) :- positive(A,C), r(C,D), small(D,B).
end(A,B) :- positive(A,C), r(C,D), hydro_b_acc(D,B).
end(A,B) :- large(A,C), l(C,D), v(D,B).
end(A,B) :- small(A,C), hydrophobic(C,D), positive(D,B).
end(A,B) :- tiny(A,C), star(C,D), r(D,B).
end(A,B) :- aliphatic(A,C), n(C,D), t(D,B).

3. a rule set was generated from this tree using C4.5rules;
4. a 2 £ 2 contingency table was drawn up based on the predictions of this rule-set on the test-set;
5. Mean RA was estimated as described in Appendix A.3.

The default settings of C4.5 and C4.5rules were used.
The contradiction of the null hypothesis was then attempted by testing whether:

² the Mean RA of the best model which includes grammar-derived features was higher than the best
performance achieved using any of the models which do not include the grammar-derived features.
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Table 7. The Grammar Group of Features

Feature Description

gram_pred A boolean which indicates whether the grammar predicts a
sequence to be a NPP or not.

gram_sig_l Length of the signal peptide.
gram_np_l Length of the neuropeptide.
gram_first Position of the � rst residue in the neuropeptide.
gram_last Position of the last residue in the neuropeptide.
gram_np_start_first The � rst residue in the neuropeptide or one of its properties.
gram_np_start_second The second residue in neuropeptide or one of its properties.
gram_np_end_first The � rst residue/property/star in the body of the end rule.
gram_np_end_second The second residue/property/star in the body of the end rule.
gram_np_end_third The third residue/property/star in the body of the end rule.

Table 8. The SIGNALP Group of Features

Feature Description

sigp_cmax Maximum SIGNALP C score
sigp_cmaxpos Position where maximum SIGNALP C score is achieved
sigp_cconcl SIGNALP C score conclusion (‘y’ or ‘n’)

sigp_ymax Maximum Y score reported by SIGNALP
sigp_ymaxpos Position where maximum SIGNALP Y score is achieved
sigp_yconcl SIGNALP Y score conclusion (‘y’ or ‘n’)

sigp_smax Maximum SIGNALP S score
sigp_smaxpos Position where maximum SIGNALP S score is achieved
sigp_sconcl SIGNALP S score conclusion (‘y’ or ‘n’)

sigp_smean SIGNALP mean of S scores to cleavage site
sigp_smeanconcl SIGNALP mean S score conclusion

² such an increase was statistically signi� cant. Estimates of Mean RA were compared using the statistical
method described in Appendix A.4.

² the best model which includes grammar-derived features was suf� ciently more comprehensible than the
best “nongrammar” model.

4.2.4. Hidden Markov model comparison. An HMM for NPPs was generated and tested using HMMER1

version 2.1.1 (Eddy, 1998), which is available from http://hmmer.wustl.edu/.
CLUSTAL W (1.8) (Thompson et al., 1994) was used to align the positive sequences in the training-set.

The hmmbuild program of HMMER was then used to generate a HMM from the CLUSTAL W alignment.
The resulting HMM and the hmmsearch program of HMMER were then used to search for NPPs in the
test-set. The default settings of CLUSTAL W and HMMER were used. The Mean RA of the HMM was
estimated based on the predictions on the test-set.

4.3. Results and analysis

Table 6 shows the grammar that was generated using CProgol. The grammar is very rich in terms of non-
terminals. All but one of the nonterminals which represent the properties of residues listed in Table 4 appear
in the grammar. The grammar also includes star/2, run/3 and three of the six nonterminals which rep-
resent the patterns mentioned in Section 4.2.1. The nonterminals yvh and pp, which represent the patterns

1The validity of the result was checked with the author of HMMER.

http://hmmer.wustl.edu/
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Table 9. Estimates of Mean RA and Predictive Accuracy of Both the
HMM and the Decision Trees Generated from the Amalgams

of the Feature Groupsa

Predictor Mean RA Predictive accuracy (%)

Hidden Markov Model 0 99.0 § 0.3

Only props 0 96.7 § 0.6
Only Length 1.6 91.8 § 0.9
Only SignalP 11.7 98.1 § 0.4
Only Grammar 10.8 97.0 § 0.5

Props C Length 49.0 98.6 § 0.4
Props C SignalP 15.0 98.3 § 0.4
Props C Grammar 31.7 98.2 § 0.4
SignalP C Grammar 0 98.6 § 0.4
Length C Grammar 0 96.2 § 0.6
Length C SignalP 34.4 98.7 § 0.4

Length C SignalP C Grammar 0 98.0 § 0.4
Props C Length C SignalP 29.2 98.7 § 0.4
Props C Length C Grammar 33.2 98.5 § 0.4
Props C SignalP C Grammar 15.0 98.3 § 0.4

Props C Length C SignalP C Grammar 107.7 99.0 § 0.3

aMean RA was estimated using the method described in Section A.3.

Y,very_hydrophobic and positive,positive , both appear twice. The third nonterminal which appears
is hmn, which corresponds to the pattern hydrophilic,a_gap_of_some_residues,M,negative .

Table 9 shows that predictive accuracy is not a good measure of performance for this domain because it
does not discriminate well between the amalgams: despite covering varying numbers of (the rare) positives,
all the models are awarded a similar (high) score by predictive accuracy because they all exclude most of
the abundant negatives.

Table 9 shows the Mean RA for both the hidden Markov model and for each amalgam of feature groups.
The Mean RA of the HMM is zero. The highest Mean RA (107.7) was achieved by one of the grammar
amalgams, namely, the “Proportions + Length + SIGNALP + Grammar” amalgam. The best Mean RA
achieved by any of the amalgams which do not include the grammar-derived features was the 49.0 attained
by the “Proportions + Length” amalgam.

The
P90

MD57RA for the “Proportions + Length + SIGNALP + Grammar” amalgam was 3,661.376. TheP90
MD57RA for the “Proportions + Length” amalgam was 1,666.733. For the amalgams “Proportions +

Length + SIGNALP + Grammar” and “Proportions + Length,” O¹D D 1,994.643 and O¾D=
p

n D 2:081.
This difference is statistically signi� cant: substituting these values of O¹D and O¾D=

p
n into Equation 15 in

Appendix A.4 shows that p.d < 0/ is well below 0.0001.
If one searches for a NPP by randomly selecting sequences from SWISS-PROT for synthesis and

subsequent biological testing then, at most, only one in every 2,408 sequences tested is expected to be
a novel NPP. This follows from the fact that number of sequences in SWISS-PROT D 79,449, the most
probable number of novel NPPs in SWISS-PROT D 90 ¡ 57 D 33 (see Table 1) and 33=79449 D 1=2408.
Using our best recognition model as a � lter makes the search for a NPP far more ef� cient. Approximately
one in every 22 of the randomly selected SWISS-PROT sequences which pass through our � lter is expected
to be a novel NPP. This can be seen from the following simple calculation. Rearranging Equation 2 gives
Pr.NPP j Rec/ D RA £ Pr.NPP/. Substituting in the Mean RA for the best recognition model gives
Pr.NPP j Rec/ D 107:688¤ .90=79449/ D 1=8:2. Multiplying 1/8.2 by the proportion of NPPs in SWISS-
PROT which are novel (33/90) gives approximately 1/22.

Appendix C lists the complete rule sets for the amalgams “Proportions + Length + SIGNALP + Gram-
mar” and “Proportions + Length.” The rules that were generated from the “grammar amalgam” suggest
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FIG. 4. (Continued on next page.) Rule-set generated from grammar amalgam.

that the NPP grammar is useful for learning from NPP sequence data. Nine of the 25 rules include a
grammar-derived feature. These rules refer to a variety of the grammar-derived features:

² whether the grammar predicts the existence of an neuropeptide start (e.g., see Rule 14 in Fig. 4);
² the � rst residue in the neuropeptide (e.g., see Rules 20 and 21 in Fig. 4);
² the position of the � rst residue in the neuropeptide (e.g., see Rule 6 in Fig. 4);
² the property of the third from last residue in the neuropeptide (e.g., see Rule 17 in Fig. 4).
² the length of the signal peptide.

Our method did not try to remove the potential redundancy among values of some of the SIGNALP
features and grammar features. The results listed in Table 9 justify this. It is of interest to note that the
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FIG. 4. (Continued)

grammar-derived length of signal peptide is used frequently by C4.5 (see Rules 2, 9, 23, and 24), despite
the availability of similar features derived from SIGNALP (see Table 8).

Finally, it should be noted that two of the rules refer only to grammar-derived features (see Rules 20
and 21).

5. EXPERIMENT TWO

Aim. The aim of the second experiment is to demonstrate that over� tting of the NPP sequences did
not inadvertently occur during the generation of grammar in the � rst experiment (see Section 4.2.1). The
data-set used in the � rst experiment contained all of the 44 known NPP sequences in SWISS-PROT in
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Table 10. SWISS-PROT Identi� ers for the Additional 13 NPPs which Had
Been Added to SWISS-PROT by May 1999

P10092 P23435 O00230 P09681 O43555 P07492 P48645 P01138 P20783 P02818
Q13519 Q00072 P55089

the spring of 1997. The second experiment utilises 13 additional NPP sequences which had been added
to SWISS-PROT by May 1999 (see Table 1). None of these 13 additional NPP sequences were used for
training or testing in the � rst experiment. Indeed, the identi� ers of these 13 sequences were not known to
C.H.B. (who performed the second experiment) until after the results of the � rst experiment were published
(Muggleton et al., 2000).

Data. Two test-sets are used in this experiment.

1. The test-set used in the � rst experiment, i.e., the one which contains 10 of the 44 original NPPs and
the 990 “other” sequences.

2. A new test-set comprising the 990 “other” sequences from the test-set used in the � rst experiment and 10
of the 13 additional NPP sequences which had been added to SWISS-PROT by May 1999. The SWISS-
PROT identi� ers of the additional 13 sequences are listed in Table 10 and the sequences are available at
ftp://ftp.cs.york.ac.uk/pub/aig/Datasets/neuropeps/. Three of the 13 additional NPP sequences (P10092,
P07492, and Q00072) were not used as they are homologues of NPPs in the original training set of 34
NPPs.

Method. The Mean RA of the grammar on both the original test-set and the new test-set was measured.
Note that it was the Mean RA of the grammar generated by CProgol that was measured as opposed to one
of the decision trees generated by C4.5 and C4.5rules. Mean RA was estimated using the method described
in Section A.3.

Result. The Mean RA of the grammar was the 5.6 for both the original test-set and the new test-set.
Conclusion. Over� tting of the original set of NPP sequences did not occur during the generation of

the grammar: the performance of the grammar on the new and original data-sets is the same. This result
provides further evidence to support our conclusion that we have developed a NPP recognition method
which would provide cost-savings during a search for novel NPPs.

6. DISCUSSION

This paper has shown that the most cost-effective, comprehensible multistrategy predictor of human
neuropeptide precursors does employ a context-free de� nite-clause grammar.

The ILP Bayesian approach to learning from positive examples was used to generate a grammar for
recognizing a class of proteins known as human neuropeptide precursors (NPPs). Collectively, � ve of
the coauthors of this paper have extensive expertise on NPPs and general bioinformatics methods. Their
motivation for generating a NPP grammar was that none of the existing bioinformatics methods could
provide suf� cient cost-savings during the search for new NPPs. Prior to this project, experienced specialists
at SmithKline Beecham had tried for many months to hand-code such a grammar but without success.
Our best predictor makes the search for novel NPPs more than 100 times more ef� cient than randomly
selecting proteins for synthesis and testing them for biological activity (see Fig. 5). As far as these authors
are aware, this is both the � rst attempt to learn a biological grammar using ILP and the � rst real-world
scienti� c application of the ILP Bayesian approach to learning from positive examples.

We � rst published that our best predictor delivers more than a hundredfold cost-saving in the Proceedings
of Seventeenth International Conference on Machine Learning (Muggleton et al., 2000). Since then we
have obtained further evidence to support our conclusion that we have developed a NPP recognition method
which would provide cost-savings during a search for novel NPPs. We have shown, using NPP sequences
which had not been used previously on this project, that over� tting of the original set of NPP sequences
did not occur during the generation of the grammar.
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FIG. 5. The advantageof using our best recognitionmodel to search for a novel NPP in SWISS-PROT. If one searches
for a NPP by randomly selecting sequences from SWISS-PROT for synthesis and subsequent biological testing then,
at most, only one in every 2,408 sequences tested is expected to be a novel NPP. Using our best recognition model
as a � lter makes the search for a NPP far more ef� cient. Approximately one in every 22 of the randomly selected
SWISS-PROT sequences which pass through our � lter is expected to be a novel NPP. To put this in terms of the
economies of the search for new and valuable neuropeptides, our best predictor delivers more than a hundred-fold
saving.

A shortcoming of the NPP grammar generated is that it will not recognize all NPPs because it implies
that 1) both start and end cleavage sites are compulsory; 2) a mature neuropeptide cannot be adjacent
to the signal peptide or at the C-terminus unless it contains a start or an end cleavage site respectively.
These restrictions could be removed by adding extra clauses to the de� nition of the predicates npp/2 and
neuro_peptide/ 2 shown in Fig. 3. Experiments with a more � exible grammar should therefore form the
subject of future work.

In our opinion, the best “nongrammar” recognition model does not provide any biological insight.
However, the best recognition model which includes grammar-derived features is broadly comprehensible
and contains some intriguing associations that may warrant further analysis. This model is being evaluated
as an extension to existing methods used in SmithKline Beecham for the selection of potential neuropeptides
for use in experiments to help elucidate the biological functions of G-protein coupled receptors. It is clear,
however, that the rules of the model are not an optimal representation of sequence data and residue
properties. A more intuitive (e.g., graphically oriented, sequence-centred) display of the meaning of these
rules would be required to build tools that the experts in the � eld would � nd acceptable.

The new cost function presented in this paper, relative advantage (RA), may be used to measure perfor-
mance of a recognition model for any domain where

1. the proportion of positives in the set of examples is very small.
2. there is no guarantee that all positives can be identi� ed as such. In such domains, the proportion of

positive examples in the population is not known and a large, unbiased set of negatives cannot be
identi� ed with complete con� dence.

3. there is no benchmark recognition method.

In Appendix A we have developed a general method for assessing the signi� cance of the difference
between RA values obtained in comparative trials. RA is estimated by summing the estimate of performance
on each test-set instance. The method uses a) identically distributed random variables representing the
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outcome for each instance, b) a sample mean which approaches the population mean in the limit, and c)
a relatively small sample variance.

CONTRIBUTIONS OF AUTHORS

The coauthors from SmithKline Beecham identi� ed the problem addressed by the case study, prepared
the data-set, provided expertise on NPPs and general bioinformatics methods, and also helped to write
the domain-speci� c aspects of the paper. S.H.M. developed CProgol and the method of generating a NPP
grammar. A.S. developed the method of using C4.5 to learn propositional rules from features derived from
SIGNALP, proportions, and sequence length. C.H.B. devised the set of grammar features, performed the
experiments described in this paper, and prepared all the sections of this paper except those on the domain.
C.H.B. and S.H.M. developed the method for assessing the signi� cance of the difference between the RA
of two models and an associated method estimating RA.

APPENDIX A. RELATIVE ADVANTAGE

NPPs are identi� ed either through purely biological means or by screening genomic or protein sequence
databases for likely NPPs, followed by biological evaluation. If we wish to go beyond using sequence
homology to � nd new members of the (generally small) NPP families, we need a recognition model for
NPPs in general. However, if this recognition model is poor, then it may not be much better than random
sampling of sequence databases (e.g., SWISS-PROT) and the cost-bene� t of any experimental evaluation
of NPPs found by such a procedure would be prohibitively small.

In developing a general recognition model for human NPPs, we are faced with three signi� cant obstacles.

1. The number of known NPPs in the public domain databases of protein sequence (e.g., SWISS-PROT) is
very small in proportion to the total number of sequences. When we developed our method of estimating
RA (May 1999), SWISS-PROT contained 79,449 sequences, of which some 57 could de� nitely be
identi� ed as human NPPs.

2. There is no guarantee that all the human NPPs in SWISS-PROT have been properly identi� ed. We
estimate there may, in fact, be up to 90 NPPs in SWISS-PROT.

3. There is no benchmark method for NPP recognition that can be used to compare any new methods. We
must, therefore, compare our recognition model with random sampling to evaluate success.

This domain requires a performance measure which addresses all of these issues.
Table 1 summarizes how some of the properties of SWISS-PROT changed over the duration of the

experiments described in this paper. All the RA measurements in this paper are based on the properties as
they stood in May 1999. When measuring performance using RA, there is no requirement that the size of
the test data-set is equal to the number of known human NPPs in SWISS-PROT.

A.1. Limitations of existing performance measures

For domains in which positives are rare, predictive accuracy, as it is normally measured in machine
learning (assuming equal misclassi� cation costs):

² gives a poor estimate of the performance of a recognition model. For instance, if a learner induces a
very speci� c model for such a domain, the predictive accuracy of the model may be very high despite
the number of true positives being very small or even zero.

² does not discriminate well between models which exclude most of the (abundant) negatives but cover
varying numbers of (the rare) positives. (This was illustrated earlier in this paper; see Table 9.)

For domains in which there is no benchmark recognition method that can be used to compare any new
methods, Lift (Ling and Li, 1998) is not the appropriate measure of performance because it does not
quantify the reduction in cost in using the predictor versus random sampling. Furthermore, in their paper,
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Table 11. 2 £ 2 Contingency Table for the Test-Seta

Set of test NPP sequences Set of test random sequences

H n1 n2
H n3 n4

aThe axes of the 2£ 2 matrix are labeled by the sets NPP sequences, random
sequences, H (hypothesis predictions) and H (complement of H). The cells of
the matrix represent the cardinalities of the corresponding intersections of these
sets, and n1 C n2 C n3 C n4 D n, where n is the number of instances in the
test-set.

Ling and Li gave no explanation of how to assess the signi� cance of the difference between the Lift of two
models. ROC curves (or Lorentz diagrams) (Provost and Fawcett, 1998) also do not quantify the reduction
in cost in using the predictor versus random sampling.

Therefore we de� ne a relative advantage (RA) function which predicts the reduction in cost in using the
model versus random sampling. In contrast to other performance measures, RA is meaningful and relevant
to experts in the domain.

A.2. De� nition of RA

In the following, “the model” refers to the learned recognition model for predicting whether a sequence
is a NPP.

We de� ne a relative advantage (RA) function which predicts the reduction in cost in using the model
versus random sampling:

RA D
A

B
(1)

where

² A D the expected cost of � nding one NPP by repeated independent random sampling from SWISS-PROT
and performing a laboratory analysis of each protein.

² B D the expected cost of � nding one NPP by repeated independent random sampling from SWISS-PROT
and analyzing only those proteins which are predicted by the learned model to be a NPP.

RA can be de� ned in terms of probability as follows. Let

² C D the cost of testing the biological activity of one protein via wet-experiments in the laboratory;
² NPP D Sequence is a NPP;
² Rec D Model recognizes sequence as a NPP.

Equation 1 can now be rewritten as:

RA D
C=Pr.NPP/

C=Pr.NPP j Rec/
D

Pr.NPP j Rec/

Pr.NPP/
: (2)

Let testing the model on test data yield the 2 £ 2 contingency table shown in Table 11 with the cells n1,
n2, n3, and n4. Let n D n1 C n2 C n3 C n4 be the number of instances in the test-set. Note that the random
set of sequences referred to in the right-hand column may include some NPP sequences. Table 12 shows
an estimate of the contingency table that would be obtained if it were possible to identify and remove
all the positives from the set of randoms. If the proportion of NPPs in the test-set was known to be the
same as the proportion of NPPs in the database, then we could estimate Pr.NPP/ to be .n1 C n3/=n and
Pr.NPP j Rec/ to be n1=.n1 C n2/. These estimates cannot be used with our method because we cannot
assume that the proportion of NPPs is the same in the test-set and database.
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Table 12. A 2 £ 2 Contingency Table for the Positives and
Negatives in the Test-Seta

Set of test NPP sequences Set of test negative sequences

H n1 n2 .1 ¡ ±/

H n3 n4 .1 ¡ ±/

aThe axes of the 2£2 matrix are labeled by the sets NPP sequences, negative
sequences, H (hypothesis predictions) and H (complement of H). The cells of
the matrix represent the cardinalities of the corresponding intersections of these
sets, and ± D M=S where S is the total number of sequences in the entire
SWISS-PROT database, of which M are NPPs.

In order to derive a formula for estimating RA given both a set of positives and a set of randoms, we
estimate Pr.NPP/ and Pr.NPP j Rec/ as follows. Let S be the total number of sequences in the database,
of which M are NPPs.

Pr.NPP/ D
no: of NPPs in the database

no: of sequences in the database

D M=S (3)

Pr.NPP j Rec/ D
Ndb_NPP_recog

Ndb_seq_pred_pos
(4)

where Ndb_NPP_recog is the number of NPPs in db which are recognized by model and Ndb_seq_pred_pos is
the number of sequences in db which the model predicts to be NPP.

Table 13 shows the expected result of using the learned recognition model on the entire SWISS-PROT
database. Note that the factor .1 ¡ ±/ does not appear as it cancels out. From Equation 4 and Table 13 it
follows that:

Pr.NPP j Rec/ ’

³
n1

n1 C n3

´
£ M

³
n1

n1 C n3

´
M C

³
n2

n2 C n4

´
.S ¡ M/

D .Mp1/=.Mp1 C .S ¡ M/p2/ (5)

where p1 D n1=.n1 C n3/ and p2 D n2=.n2 C n4/. Substituting Equations 3 and 5 into Equation 2 gives

RA D
.Mp1/=.Mp1 C .S ¡ M/p2/

M=S

D
Sp1

Mp1 C .S ¡ M/p2

D
Sp1

Sp2 C M.p1 ¡ p2/
: (6)

A.3. Estimating relative advantage

In the following, relative advantage over the entire population is represented by RA in capital letters
whereas relative advantage over a sample is denoted by lower case, i.e., ra. As the value of M is not
known, we estimate

P90
MD57RA. Therefore, we integrate Equation 6 with respect to M. The lower limit of

M is equal to the number of known NPPs in SWISS-PROT. The upper limit of M is the most probable
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Table 13. A 2 £ 2 Contingency Table for SWISS-PROTa

NPP sequences in SWISS-PROT Negative sequences in SWISS-PROT

H

³
n1

n1 C n3

´
M

³
n2

n2 C n4

´
.S ¡ M/

H

³
n3

n1 C n3

´
M

³
n4

n2 C n4

´
.S ¡ M/

aThe axes of the 2 £ 2 matrix are labelled by the sets NPP sequences, random sequences,
H (hypothesis predictions) and H (complement of H). The total of the counts/frequencies in
the four cells D S, where S is the total number of sequences in the SWISS-PROT database.

number of NPPs in SWISS-PROT, i.e., a total of the known NPPs and those proteins which have yet to
be scienti� cally recognized as a NPP.

90X

MD57

RA ’ Sp1 £
Z 91

MD57

1
.p1 ¡ p2/M C Sp2

@M

D
µ

Sp1

.p1 ¡ p2/
ln..p1 ¡ p2/M C Sp2/ C k

¶91

57

D
Sp1

.p1 ¡ p2/
ln

91.p1 ¡ p2/ C Sp2

57.p1 ¡ p2/ C Sp2
(7)

We estimate
P90

MD57 RA by summing an estimate of the
P90

MD57 RA for each instance in the test-set as
follows, where n is the number of instances in the test-set. This method has the advantage that it allows
the signi� cance of the difference between the RA of two models to be gauged (see Section A.4).

nX

kD1

90X

MD57

rak (8)

From Equation 8 and the contingency table it follows that:

90X

MD57

ra D 1
n

4X

iD1

³
ni

90X

MD57

rai

!
: (9)

Each
P90

MD57 rai is estimated by substituting p1 D a
aCc and p2 D b

bCd into Equation 7. The values of a,
b, c, and d are determined by three steps.

1. Whatever the i value, a, b, c, and d are initially given the values of the corresponding counts/frequencies
in the contingency table for the test-set (see Table 11).

2. Each one of a, b, c, and d , is decremented providing that the value before subtraction is greater than
one.

We do not decrement when the value before subtraction is zero because this can result in p1 or
p2 having negative values; this does not make sense because p1 and p2 are probabilities. We do not
decrement when the value is one because this can cause p1 or p2 to have the value zero, which in turn
has a highly disproportionate effect on the value of

P90
MD57 rai .

3. The value of either a, b, c, or d is incremented to re� ect the classi� cation of an instance in the cell ni .

For instance, if i D 2 and all the counts in the contingency table are greater than one, then a D n1 ¡1; b D
n2; c D n3 ¡ 1; d D n4 ¡ 1.
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Note that Steps 1 and 2 assign the same prior probability to each instance because the effect of each
step is not dependent upon which cell the current instance belongs to. Therefore, this method of estimatingP90

MD57 RA has the properties of a) producing identically distributed random variables representing the
outcome for each instance, b) having a sample mean which approaches the population mean in the limit,
and c) having a relatively small sample variance.

The � nal step of our method for estimating RA is to take the mean of the summed values.

Mean RA D
P90

MD57 rai

90 ¡ .57 ¡ 1/
D

P90
MD57 rai

34
(10)

A.4. Assessing the signi� cance of the difference between the RA of two models

Next we develop a method for assessing the signi� cance of the difference between the RA of two models.
This method tackles a problem which is similar to that posed by the third question in Dietterich’s (1999)
taxonomy of statistical questions in machine learning. That is, how to choose between classi� ers for a
single application domain in which the amount of available data is suf� cient to allow some of it to be set
aside for evaluating classi� ers. However, a new method is needed because of the fundamental differences
between relative advantage and predictive accuracy.

We compare the performance of two recognition models, H1 and H2, by comparing their
P90

MD57 RA

values. Let d be difference in
P90

MD57 RA values over the entire population, i.e., for all the proteins in
SWISS-PROT, and Od be the observed difference on the test-set.

d D
90X

MD57

RAH1 ¡
90X

MD57

RAH2 (11)

Od D
90X

MD57

raH1 ¡
90X

MD57

raH2 (12)

The quantity Od is an unbiased estimator for the true difference because it is calculated using an independent
test-set. To determine whether the observed difference is statistically signi� cant, we address the following
question. What is the probability that

P90
MD57 RAH1 >

P90
MD57 RAH2 , given the observed difference, Od?

If D is a random variable representing the outcome of estimating d by random sampling then, according
to the Central Limit Theorem, O¹D is normally distributed in the limit. It has an estimated mean Od and
has an estimated variance of O¾ 2

D=n. The variance of a random variable, X, is ¾ 2
X D E..X/2/ ¡ .E.X//2.

Therefore, since D is a random variable,

O¾ 2
D D O¹D2 ¡ O¹2

D : (13)

We calculate O¹D2 as follows. Let testing the model on test data yield the 4 £ 4 contingency table shown
in Table 14 with the cells ni;j .

O¹D2 D 1
n

4X

iD1

4X

jD1

0

@ni;j

³
90X

MD57

rai ¡
90X

MD57

raj

!2
1

A (14)

Given that p.
P90

MD57 RAH1 >
P90

MD57 RAH2/ D p.
P90

MD57 RAH1 ¡
P90

MD57 RAH2 > 0/ we evaluate our
null hypothesis by estimating p.d < 0/ using the Central Limit Theorem.

Z 0

xD¡1
P r.d D x/dx D

Z 0

xD¡1

1
p

2¼¾ 2
e¡ 1

2 . x¡¹
¾

/2
dx (15)

where ¹ D O¹D and ¾ D O¾D=
p

n.
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Table 14. A 4 £ 4 Contingency Tablea

n1 n2 n3 n4

n1 n1;1 n1;2 n1;3 n1;4
n2 n2;1 n2;2 n2;3 n2;4
n3 n3;1 n3;2 n3;3 n3;4
n4 n4;1 n4;2 n4;3 n4;4

aThe rows of the 4 £ 4 matrix are labeled by the cells
of the 2 £ 2 contingency table for H1. The columns of the
4 £ 4 matrix are labeled by the cells of the 2 £ 2 contin-
gency table for H2 . The cells of the 4 £ 4 matrix represent
the cardinalities of the corresponding intersections of these
sets, and

P4
iD1

P4
jD1 ni;j D n, where n is the number of

instances in the test-set.

APPENDIX B. CPROGOL AND THE PRODUCTION RULES GENERATED

Table 6 shows the production rules generated by CProgol. The rules comply with Prolog syntax;
signal.X; Y / is true if there is a signal peptide at the beginning of the sequence X and it is followed
by a sequence Y . The other dyadic predicates are de� ned similarly. Nonterminals and terminals which ap-
pear on the right-hand side of the production rules listed in Table 6 are de� ned in Table 5. Table 5 shows
the Prolog code representing the background knowledge input to Progol. The production rules, when taken
together with the partial grammar shown in Fig. 3, form a grammar for NPP sequences.

B.1. De� ning a hypothesis language for Progol

A Hypothesis Language for Progol is de� ned by:

² mode and type declarations which state the forms that atoms in hypotheses may take (see Sections B.1.1
and B.1.2);

Table 15. Mode Declarations Used During Training with CProgol
TARGET_PREDICATE is either sigpep, start, middle or end

:- modeh(1,TARGET_PREDICATE(+rlist,-rlist))?

:- modeb(1,yvh(+rlist,-rlist))? :- modeb(*,hmn(+rlist,-rlist))?
:- modeb(1,hp(+rlist,-rlist))? :- modeb(1,wmdf(+rlist,-rlist))?

:- modeb(1,a(+rlist,-rlist))? :- modeb(1,b(+rlist,-rlist))? ... :- modeb(1,z(+rlist,-
rlist))?

:- modeb(1,hydrophobic(+rlist,-rlist))? :- modeb(1,small(+rlist,-rlist))?
:- modeb(1,very_hydrophobic(+rlist,-rlist))? :- modeb(1,tiny(+rlist,-rlist))?
:- modeb(1,hydrophilic(+rlist,-rlist))? :- modeb(1,tiny(+rlist,-rlist))?
:- modeb(1,positive(+rlist,-rlist))? :- modeb(1,aliphatic(+rlist,-rlist))?
:- modeb(1,negative(+rlist,-rlist))? :- modeb(1,aromatic(+rlist,-rlist))?
:- modeb(1,neutral(+rlist,-rlist))? :- modeb(1,hydro_b_don(+rlist,-rlist))?
:- modeb(1,large(+rlist,-rlist))? :- modeb(1,hydro_b_acc(+rlist,-rlist))?

% The next five mode declarations were only used when generating rules for the ends.

:- modeb(1,pp(+rlist,-rlist))? :- modeb(1,gkr(+rlist,-rlist))?
:- modeb(1,kp(+rlist,-rlist))? :- modeb(*,run(+rlist,-rlist,#prop))?
:- modeb(1,kr(+rlist,-rlist))?

% The next mode declaration was only used when generating rules for signals, middles and ends.

:- modeb(*,star(+rlist,-rlist))?



516 MUGGLETON ET AL.

Table 16. Prune Predicates Used During Training with CProgol
TARGET_PREDICATE is either sigpep, start, middle or end

prune(_,Body):- in(star(A,B),Body), A==B. % No star(X,X) in body

prune(Head,Body):- Head=.. [_,U,_], not(chain(U,Body)). % Body must form vari-
able chain from head

prune(_,Body):- suffix(Body,Suffix), % No star(X,Y),star(Y,Z) in body
(Suffix=(star(_,_),(star(_,_),_))
; Suffix=(star(_,_),(star(_,_))) ).

% The following prune was not used when generating the rules for the starts or middles.

prune(_,Body):- suffix(Body,Suffix), % No run(X,Y),run(Y,Z) in body
( Suffix=(run(_,_,P),(run(_,_,P),_))
; Suffix=(run(_,_,P),(run(_,_,P))) ).

% The following prune was not used when generating the start rules.

prune(_,star(_,_)).

:- TARGET_PREDICATE(x,y). % Not allowed everything a NPP

chain(U,true).
chain(U,A):- A=.. [_,V,_|_], U==V.
chain(U,(A,B)):- A=.. [_,V,W|_], U==V, chain(W,B).

suffix(S,S).
suffix((_,S),S1):- suffix(S,S1).

² prune declarations which further restrict the form of hypotheses (see Section B.1.3);
² the maximum number of layers of variables introduced by atoms in the body of induced clauses from

variables in the head of the clauses;
² the maximum number of literals in the body of induced clauses.

The hypothesis language used in the experiment is de� ned by Tables 15, 16, and 17.

B.1.1. Mode declarations. The mode declarations state the mode of call for those predicates that can
appear in a hypothesis induced by Progol. There are two types of mode declarations, as shown below.

Table 17. CProgol Settings Used for Training

pos in� ate i c nodes v h r s

signal yes 100000 6 5 4000 0 100000000 100000000 100000000
start yes 100000 6 5 4000 0 100000000 100000000 100000000
middle yes 100000 6 5 1000 0 200 400 100000000
end yes 100000 3 3 4000 0 100000000 100000000 100000000

pos The posonly setting. When this is set to yes CProgol adopts the ILP Bayesian approach to learning from positive examples.
in� ate Controls the speci� city of clauses obtained.
i An upper bound on the number of layers of variables introduced by atoms in the body of induced clauses from variables in the

head of the clauses.
c An upper bound on the number of literals in the body of induced clauses.
nodes An upper bound on the nodes to be explored by CProgol when searching for a consistent clause.
v The verbosity of the output.
h A depth bound on the theorem prover.
r An upper bound on the number of resolutions beyond which the whole proof fails i.e. backtracking does not occur.
s Size of the uni� cation stack in bytes.
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FIG. 6. (Continued on next 2 pages.) Rule-set generated from “Proportions + Length” amalgam.

The � rst describes the form of literals that may appear in the head of clauses induced by Progol, and the
second describes those that may appear in the body.

:- modeh(Recall_number, Head_template)?
:- modeb(Recall_number, Body_literal_template)?

Head_template and Body_literal_template are templates of predicates and take the form predi-
cate(ts1, ts2, ...), where ts is a term speci� cation. Each term speci� cation comprises two parts: a
mode and a type. Types are described in Section B.1.2. The three possible modes are:
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FIG. 6. (Continued)

+ This indicates that the term is an input. That is, in all calls to this predicate, the term will be bound to
a value.

– This indicates the term is an output.
# This indicates that a constant should appear in this term.

Recall_number refers to the determinacy of the predicate template; that is, it speci� es the maximum
number of times a call to the predicate can succeed for a given set of input variables. Hence, for determinate
predicate templates it is set to one and for indeterminate predicate templates to values greater than one. If
the User speci� es a Recall_number to be * then Progol assigns a default value of 100 to it.

B.1.2. Type declarations. Types that are included in mode declarations may be unary predicates de� ned
in the background knowledge. All but one of the mode declarations listed in Table 15 refer to the type
rlist/1; this is a predicate whose de� nition is listed in Table 5. Progol type-checks a constant by executing
a query in which the predicate corresponds to the type and the term is instantiated to the constant. If the
query succeeds, then Progol accepts that the constant is of the correct type.
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FIG. 6. (Continued)

B.1.3. Prune declarations. Prune declarations are used to prevent Progol from considering speci� ed
forms of clauses. A declaration is made by the User de� ning the predicate prune(Head, Body). Progol
will not consider a clause if a call to prune(Head, Body) succeeds when Head is instantiated to the
literal in the head of the proposed clause and Body is instantiated to the proposed body of the clause.

B.2. The time and space complexity of Progol

The Progol algorithm, as analyzed by Muggleton (1995), has time and space complexity which increases
linearly in both the number of examples and the number of clauses in the learned theory. However, the
scaling constants involved vary depending on the size of the hypothesis space searched for each clause.
This is controlled using a number of parameters, including a clause length bound and a proof depth bound.

APPENDIX C. RULE-SETS GENERATED BY C4.5 AND C4.5RULES

The rule-set that was generated from the “Proportions + Length + SIGNALP + Grammar” amalgam
is shown in Fig. 4. Each box contains a rule as it was output by C4.5rules together with the English
translation, which is shown in italics. The percentage in square brackets refers to the predicted accuracy
of the corresponding rule. Each column of rules is tried in turn. Within each column, each rule is tried in
order of appearance . The last rule is the “default” rule which is used if none of the other rules apply.

The rule-set that was generated from the “Proportions + Length” amalgam is shown in Fig. 6.
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