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Abstract

We review the current state of nonparametric Bayesian inference. The discussion
follows a list of important statistical inference problems, including density estimation,
regression, survival analysis, hierarchical models and model validation. For each in-
ference problem we review relevant nonparametric Bayesian models and approaches
including Dirichlet process (DP) models and variations, Polya trees, wavelet based
models, neural network models, spline regression, CART, dependent DP models, and
model validation with DP and Polya tree extensions of parametric models.

1 Introduction

Nonparametric Bayesian inference is an oxymoron and misnomer. Bayesian inference by
definition always requires a well defined probability model for observable data y and any
other unknown quantities θ, i.e., parameters. Nonparametric Bayesian inference tradition-
ally refers to Bayesian methods that result in inference comparable to classical nonparametric
inference, like kernel density estimation, scatterplot smoothers, etc. Such flexible inference
is typically achieved by models with massively many parameters. In fact, a commonly used
technical definition of nonparametric Bayesian models are probability models with infinitely
many parameters (Bernardo and Smith 1994). Equivalently, nonparametric Bayesian mod-
els are probability models on function spaces. Nonparametric Bayesian models are used to
avoid critical dependence on parametric assumptions, to robustify parametric models, and
to define model diagnostics and sensitivity analysis for parametric models by embedding
them in a larger encompassing nonparametric model. The latter two applications are techni-
cally simplified by the fact that many nonparametric models allow to center the probability
distribution at a given parametric model.

In this article we review the current state of Bayesian nonparametric inference. The
discussion follows a list of important statistical inference problems, including density esti-
mation, regression, survival analysis, hierarchical models and model validation. The list is
not exhaustive. In particular, we will not discuss nonparametric Bayesian approaches in
time series analysis, and in spatial and spatio-temporal inference.
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Other recent surveys of nonparametric Bayesian models appear in Walker et al. (1999)
and Dey et al. (1998). Nonparametric models based on Dirichlet process mixtures are re-
viewed in MacEachern and Müller (2000). A recent review of nonparametric Bayesian infer-
ence in survival analysis can be found in Sinha and Dey (1997).

2 Density estimation

The density estimation problem starts with a random sample xi
iid∼ F (xi), i = 1, . . . , n,

generated from some unknown distribution F . A Bayesian approach to this problem requires
a probability model for the unknown F . Traditional parametric inference considers models
that can be indexed by a finite dimensional parameter, for example, the mean and covariance
matrix of a multivariate normal distribution of the appropriate dimension. In many cases,
however, constraining inference to a specific parametric form may limit the scope and type
of inferences that can be drawn from such models. In contrast, under a nonparametric
perspective we consider a prior probability model p(F ) for the unknown density F , for
F in some infinite dimensional function space. This requires the definition of probability
measures on a collection of distribution functions. Such probability measures are generically
referred to as random probability measures (RPM). Ferguson (1973) states two important
desirable properties for this class of measures (see also Antoniak 1974): (I) their support
should be large and (II) posterior inference should be “analytically manageable.” In the
parametric case, the development of MCMC methods (see, e.g. Gelfand and Smith 1990)
allows to largely overcome the restrictions posed by (II). In the nonparametric context,
however, computational aspects are still the subject of much research.

We next describe some of the most common random probability measures adopted in the
literature.

2.1 The Dirichlet Process

Motivated by properties (I) and (II), Ferguson (1973) introduced the Dirichlet process (DP)
as an RPM. A random probability distribution F is generated by a DP if for any partition
A1, . . . , Ak of the sample space the vector of random probabilities F (Ai) follows a Dirichlet
distribution: (F (A1), . . . , F (Ak)) ∼ D(M · F0(A1), . . . ,M · F0(Ak)). We denote this by
F ∼ D(M,F0). Two parameters need to be specified: the weight parameter M , and the
base measure F0. The base measure F0 defines the expectation, E(B) = F0(B), and M is a
precision parameter that defines variance. For more discussion of the role of these parameter
see Walker et al. (1999). A fundamental motivation for the DP construction is the simplicity
of posterior updating. Assume

x1, . . . , xn|F
iid∼ F, and F ∼ D(M,F0). (1)

Let δx(·) denote a point mass at x. The posterior distribution is F |x1, . . . , xn ∼ D(M+n, F1)
with F1 ∝ F0 +

∑n
i=1 δxi

.
More properties of the DP are discussed, among others, in Ferguson (1973), Korwar and

Hollander (1973), Antoniak (1974), Diaconis and Freedman (1986), Rolin (1992), Diaconis
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and Kemperman (1996) and in Cifarelli and Melilli (2000). Of special relevance for com-
putational purposes is the Polya urn representation by Blackwell and MacQueen (1973).
Another very useful result is the construction by Sethurman (1994): Any F ∼ D(M,F0) can
be represented as

F (·) =
∞∑

h=1

whδµh
(·),

µh
iid∼ F0 and wh = Uh

∏
j<h

(1− Uj) with Uh
iid∼ Beta(1,M) (2)

In words, realizations of the DP can be represented as infinite mixtures of point masses.
The locations µh of the point masses are a sample from F0, and the random weights wh are
generated by a “stick-breaking” procedure. In particular, the DP is an almost surely (a.s.)
discrete RPM.

The DP is by far the most popular nonparametric model in the literature (for a recent
review, see MacEachern and Müller 2000). However, the a.s. discreteness is in many appli-
cations inappropriate. A simple extension to remove the constraint to discrete measures is
to introduce an additional convolution, representing the RPM F as

F (x) =

∫
f(x|θ)dG(θ) with G ∼ D(M,G0). (3)

Such models are known as DP mixtures (MDP) (Escobar 1988, MacEachern 1994, Escobar
and West 1995). Using a Gaussian kernel, f(x|µ, S) = φµ,S(x) ∝ exp[−(x−µ)TS−1(x−µ)/2],
and mixing with respect to θ = (µ, S) we obtain density estimates resembling traditional
kernel density estimation. Related models have been studied in Lo (1984), Escobar and
West (1995) and in Gasparini (1996). Posterior consistency is discussed in Ghosal, Ghosh
and Ramamoorthi (1999).

Posterior inference in MDP models is based on MCMC posterior simulation. Most ap-
proaches proceed by breaking the mixture in (3) with the introduction of latent variables θi

as xi|θi ∼ f(x|θ) and θi ∼ G. Efficient MCMC simulation for general MDP models is dis-
cussed, among others, in Bush and MacEachern (1996), MacEachern and Müller (1998), Neal
(2000) and West, Müller and Escobar (1994). For related algorithms in a more general set-
ting, see Ishwaran and James (2001). Alternatively to MCMC simulation, sequential im-
portance sampling-based methods have been proposed for MDP models. Examples can be
found in Liu (1996), Quintana (1998), MacEachern, Clyde and Liu (1999), Ishwaran and
Takahara (2002) and references therein. A third class of methods for MDP models, called
the predictive recursion, was proposed by Newton and Zhang (1999). Consider the pos-

terior predictive distribution in model (3). Let Fn(B)
def
= E(F (B)|x1, . . . , xn) denote the

posterior mean of the RPM. The posterior mean is identical to the predictive distribution,
Fn(B) = P (θn+1 ∈ B|x1, . . . , xn) for any Borel set B in the appropriate space. The Polya
urn representation implies

F1(B) =
M

M + 1
F0(B) +

1

M + 1
P (θ1 ∈ B|x1).
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Newton and Zhang (1999) extrapolate this representation to a recursion in the general case:

Fi(B) = (1− wi)Fi−1(B) + wiPi−1(θi ∈ B|xi), (4)

where the probability in the second term in the right-hand side of (4) is computed under
the current approximation Fi−1, and the nominal values for the weights are wi = 1/(M + i),
i ≥ 1. The approximation is exact for i = 1. In general Fn(B) depends on the order in
which x1, . . . , xn are processed, but this dependence is rather week, and in practice, it is
recommended to average over a number of permutations of the data. The method is very
fast to execute and produces very good approximations, although it tends to oversmooth the
results. For a comparison of the computational strategies mentioned here, see Quintana and
Newton (2000).

Model (1) has the advantage of the conjugate form. However, getting exact draws from a
DP is impossible because this requires the generation of an infinite mixture of point masses.
Typical MCMC schemes are based on integrating out the DP via Blackwell and MacQueen’s
(1973) representation. This makes it difficult to produce inference on functionals of the
posterior DP. A similar problem is found in the more general MDP models. Some authors
propose MCMC strategies where, instead of integrating out the DP, an approximation to
the DP is considered. This is usually done by drawing from

∑N
h=1whδµh

(·) for large enough
N . Examples of this strategy can be found in Muliere and Tardella (1998), Ishwaran and
James (2002), Kottas and Gelfand (2001), and Gelfand and Kottas (2002).

2.2 Other Discrete Random Probability Measures

An interesting extension of the DP that has been used in the context of density estimation
is the invariant DP introduced by Dalal (1979). The idea is to define a prior process on
the space of distribution functions that have a structure that can be characterized via in-
variance, for example, symmetry or exchangeability. Dalal’s (1979) construction is based on
invariance under a finite group, essentially by restricting Ferguson’s (1973) definition to in-
variant centering measures and partitions. This guarantees that the posterior process is also
invariant. Dalal (1979) uses this setup to estimate distribution functions that are symmetric
with respect to a known value µ, using F0 such that F0(t) = 1−F0(2µ− t) for all t ≤ µ and
the group G = {g1, g2} where g1(x) = x and g2(x) = 2µ− x.

An alternative model to (1) or (3) is obtained by replacing the prior DP with a convenient
approximation. Natural candidates follow from truncating Sethurman’s (1994) construction
(2). In this setup, the prior

∑∞
h=1whδµh

(·) is replaced by
∑N

h=1whδµh
(·) for some appropri-

ately chosen value of N . An example of this procedure is the ε-DP proposed by Muliere and
Tardella (1998), where N is chosen such that the total variation distance between the DP
and the truncation is bounded by a given ε. Another variation is the Dirichlet-multinomial
process introduced by Muliere and Secchi (1995). Here the RPM is, for some finite N ,

F (·) =
N∑

h=1

whδµh
(·),

(w1, . . . , wN) ∼ D(M ·N−1, . . . ,M ·N−1) and µh
iid∼ F0.
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More generally, Pitman (1996) described a class of models

F (·) =
∞∑

h=1

whδµh
(·) +

(
1−

∞∑
h=1

wh

)
F0(·), (5)

where, for a continuous distribution F0, we have µh
iid∼ F0, assumed independent of the

non-negative random variables wh. The weights wh are constrained by
∑∞

h=1wh ≤ 1. The
model is known as Species Sampling Model (SSM), with the interpretation of wh as the
relative frequency of the h-th species in a list of species present in a certain population, and
µh as the tag assigned to that species. If

∑∞
h=1wh = 1 the SSM is called proper and the

corresponding prior RPM is discrete. The stick-breaking priors studied by Ishwaran and
James (2001) are a special case of (5), adopting the form

∑N
h=1whδµh

(·), where 1 ≤ N ≤ ∞.

The weights are defined as wh =
∏h−1

j=1 (1 − Uj)Uh with Uh ∼ Beta(ah, bh), independently,
for a given sequences (a1, a2, . . .) and (b1, b2, . . .). Stick-breaking priors are quite general,
including not only the Dirichlet-multinomial process and the DP as special cases, but also
a two-parameter DP extension, known as the Pitman-Yor process (Pitman and Yor 1987),
and the beta two-parameter process (Ishwaran and Zarepour 2000). Additional examples
and MCMC implementation details for stick-breaking RPMs can be found in Ishwaran and
James (2001). Further discussion on SSMs appears in Pitman (1996) and Ishwaran and
James (2003).

An interesting property of MDP models is that any exchangeable sequence of random
variables can be well approximated in the sense of the Prokhorov metric by a certain sequence
of mixtures of DPs (Regazzini 1999). In practice, however, this result has limited use. We
review next some methods for defining RPMs supported on the set of continuous distributions
that have been used in density estimation problems.

2.3 Polya Trees

Polya trees (PT) are proposed in Lavine (1992, 1994) as a generalization of the DP. Like
the DP, the PT model satisfies conditions (I) and (II). The PT includes DP models as a
special case. But in contrast to the DP, an appropriate choice of the PT parameters allows
to generate continuous distributions with probability 1. The definition requires a nested
sequence Π = {πm, m = 1, 2, . . .} of partitions of the sample space Ω. Without loss of
generality, we assume the partitions are binary. We start with a partition π1 = {B0, B1} of
the sample space, Ω = B0∪B1, and continue with nested partitions defined by B0 = B00∪B01,
B1 = B10 ∪ B11, etc. Thus the partition at level m is πm = {Bε, ε = ε1 . . . εm}, where ε are
all binary sequences of length m. We say that F has a PT (prior) distribution, denoted by
F ∼ PT(Π,A) if there is a sequence of nonnegative constants A = {αε} and independent
random variables Y = {Yε} such that Yε ∼ Beta(αε0, αε1) and for every ε = (ε1, . . . , εm) and
m ≥ 1

F (Bε1,...,εm) =

 m∏
j=1; εj=0

Yε1···εj−1

 m∏
j=1; εj=1

(1− Yε1···εj−1
)

 .
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The type of models used for density estimation now replace the DP in (1) and (3) by the
PT(Π,A) prior. For a description of samples from a PT prior, see Walker et al. (1999). Poste-
rior consistency issues for density estimation using PT priors have been discussed in Barron,
Schervish and Wasserman (1999).

Polya trees have some practical limitations. First, the resulting RPM is dependent on the
specific partition adopted. Second, the fixed partitioning scheme results in discontinuities
in the predictive distributions. Third, implementations for higher dimensional distributions
require extensive housekeeping and are impractical. To mitigate problems related to the
discontinuities Paddock et al. (2003) and Hanson and Johnson (2002) introduced randomized
Polya trees. The idea is based on dyadic rational partitions, but instead of taking the nominal
half-point Paddock et al. (2003) randomly choose a “close” cutoff. This construction is
shown to reduce the effect of the binary tree partition on the first two points noted above.
On the other hand, Hanson and Johnson (2002) consider instead a mixture with respect to a
hyperparameter that defines the partitioning tree. The problem concerning high dimension
persists though.

2.4 Bernstein Polynomials

For a distribution function F on the unit interval, the corresponding Bernstein polynomial
is defined as

B(x, k, F ) =
k∑

j=0

F (j/k) ·
(
k

j

)
xj(1− x)k−j.

A remarkable property of B(x, k, F ) is that it converges uniformly to F as k → ∞. The
definition for B(x, k, F ) takes the form of a mixture of Beta densities. Petrone(1999a, 1999b)
exploits this property to propose a class of prior distributions on the set of densities defined
on (0, 1]. Petrone and Wasserman (2002) consider the following model. Assume x1, . . . , xn

are conditionally i.i.d. given k and wk with common density

f(x|k, wk) =
k∑

j=1

wjk

{
k!

(j − 1)!(k − j)!

}
xj−1(1− x)k−j,

where k is the number of components in the mixture of Beta densities and the weights
wk = (w1k, . . . , wkk) satisfy wjk ≥ 0 and

∑k
j=1wjk = 1. We call f a Bernstein polynomial

density (BPD). The model is completed by assuming a prior distribution p(k) for k and a
distribution Hk(·) given k on the (k−1)-dimensional simplex. Petrone (1999a) showed that if
p(k) > 0 for all k ≥ 1 then every distribution on (0, 1] is the (weak) limit of some sequence of
BPD, and every continuous density on (0, 1] can be well approximated in the Kolmogorov-
Smirnov distance by BPD. Petrone and Wasserman (2002) discuss MCMC strategies for
fitting the above model and prove consistency of posterior density estimation under mild
conditions. Rates of such convergence are given in Ghosal (2001).
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2.5 Other Random Distributions

Lenk (1988) introduces the logistic normal process. The construction of a logistic normal
process starts with a Gaussian process Z(x) with mean function µ(x) and covariance func-
tion σ(x, y). The transformed process W = exp(Z) is a lognormal process. Stopping the
construction here, and defining a random density f(x) ∝ W would be impractical. The
lognormal process is not closed under prior to posterior updating, i.e., the posterior on f
conditional on observing yi ∼ f , i = 1, . . . , n is not proportional to a lognormal process.
Instead Lenk (1988) proceeds by defining the generalized lognormal process LNX(µ, σ, ζ),
defined essentially by weighting realizations under the lognormal process with the random
integral (

∫
Wdλ)ζ . Let f(x) ∝ V (x) for V ∼ LNX(µ, σ, ζ). The density f is said to be

logistic normal process LNSX(µ, σ, ζ). The posterior on f , conditional on a random sample
y ∼ f , is again a logistic normal process LNSX(µ∗, σ, ζ∗). The updated parameters are
µ∗(s) = µ(s) + σ(s, y) and ζ∗ = ζ − 1.

3 Regression

The generic regression problem seeks to estimate an unknown mean function g(x) based on
data with i.i.d. measurement errors: yi = g(xi) + εi, i = 1, . . . , n. Bayesian inference on g
starts with a prior probability model for the unknown function g. If restrictive parametric
assumptions for g are inappropriate we are led to consider nonparametric Bayesian models.
Many approaches proceed by considering some basis B = {f1, f2, f3, . . .} for an appropriate
function space, like the space of square integrable functions. Typical examples are the
Fourier basis, wavelet bases, and spline bases. Given a chosen basis B, any function g can
be represented as g(·) =

∑
h bh fh(·). A random function g is parametrized by the sequence

θ = (b1, b2, . . .) of basis coefficients. Assuming a prior probability model for θ we implicitly
put a prior probability model on the random function.

3.1 Spline Models

A commonly used class of basis functions are splines, for example cubic regression splines
B = {1, x, x2, x3, (x − ξ1)

3
+, . . . , (x − ξT )3

+}, where (x)+ = max(x, 0) and ξ = (ξ1, . . . , ξT )
is a set of knots. Together with a normal measurement error εi ∼ N(0, σ) this defines a
nonparametric regression model

yi =
∑

bhfh(xi) + εi. (6)

The model is completed with a prior p(ξ, c, σ) on the set of knots and corresponding co-
efficients. Smith and Kohn (1996), Denison, Mallick and Smith (1998b), and DiMatteo,
Genovese and Kass (2001) are typical examples of such models. Approaches differ mainly
in the choice of priors and the implementation. Typically the prior is assumed to factor
p(ξ, b, σ) = p(ξ)p(σ)p(b|σ). Smith and Kohn (1996) use the Zellner g-prior (Zellner 1986)
for p(b). The prior covariance matrix V ar(b|σ) is assumed to be proportional to (B′B)−1,
where B is the design matrix for the given data set. Assuming a conjugate normal prior
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b ∼ N(0, cσ(B′B)−1) the conditional posterior mean E(b|ξ, σ) is a simple linear shrinkage
of the least squares estimate b̂. DiMatteo, Genovese and Kass (2001) use a unit-information
prior which is defined as a Zellner g-prior with the scalar c chosen such that the prior variance
is equivalent to one observation. Denison et al. (1998b) prefer a ridge prior p(b) = N(0, V )
with V = diag(∞, v, . . . , v).

Posterior simulation in (6) is straightforward except for the computational challenge of
updating ξ, the number and location of knots. This typically involves reversible jump MCMC
(Green 1995). Denison et al. (1998a) propose “birth,” “death” and “move” proposals to add,
delete and change knots from the currently imputed set ξ of knots. In the implementation
of these moves it is important to marginalize with respect to the coefficients bh. In the
conditionally conjugate setup with a normal prior p(b|σ) the marginal posterior p(ξ|σ, y)
can be evaluated analytically. DiMatteo et al. (2001) propose an approximate evaluation of
the relevant Bayes factors based on BIC (Bayesian information criterion). An interesting
alternative, called focused sampling, is discussed in Smith and Kohn (1998).

3.2 Multivariate Regression

Extensions of spline regression to multiple covariates are complicated by the curse of dimen-
sionality. Smith and Kohn (1997) define a spline based bivariate regression model. General,
higher dimensional regression models require some simplifying assumptions about the na-
ture of interactions to allow a practical implementation. One approach is to assume additive
effects

yi =
∑

j

gj(xij) + εi,

and proceed with each gj as before. Shively, Kohn and Wood (1999) and Denison, Mallick and
Smith (1998b) propose such implementations. Denison, Mallick and Smith (1998c) explore
an alternative extension of univariate splines, following the idea of MARS (multivariate
adaptive regression splines, Friedman 1991). MARS uses basis functions that are constructed
as products of univariate functions. Let xi = (xi1, . . . , xip) denote the multivariate covariate
vector. MARS assumes

g(xi) = b0 +
k∑

h=1

bhfh(xi) with fh(x) =

Jh∏
j=1

shj(xwhj
− thj)+.

Here we used linear spline terms (x − thj)+ to construct the basis functions fh. Each basis
function defines an interaction of Jh covariates. The indices whj specify the covariates and
thj gives the corresponding knots.

Another intuitively appealing multivariate extension are CART (classification and re-
gression tree) models. Chipman, George and McCulloch (1998) and Denison, Mallick and
Smith (1998a) discuss Bayesian inference in CART models. A regression tree is parametrized
by a pair (T, θ) describing a binary tree T with b terminal nodes, and a parameter vector
θ = (θ1, . . . , θb) with θi defining the sampling distribution for observations that are assigned
to terminal node i. Let yik, k = 1, . . . , ni denote the observations assigned to the i-th node.
In the simplest case the sampling distribution for the i-th node might be i.i.d. sampling,
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yik ∼ N(θi, σ), k = 1, . . . , ni, with a node-specific mean. The tree T describes a set of
rules that decide how observations are assigned to terminal nodes. Each internal node of
the tree has an associated splitting rule that decides whether an observation is assigned to
the right or to the left branch. Let xj, j = 1, . . . , p denote the covariates of the regression.
The splitting rule is of the form (xj > s) for some threshold s. Thus each splitting node is
defined by a covariate index and threshold. The leaves of the tree are the terminal nodes.
Chipman, George and McCulloch (1998) and Denison, Mallick and Smith (1998a) propose
Bayesian inference in regression trees by defining a prior probability model for (θ, T ) and
implementing posterior MCMC. The MCMC scheme includes the following types of moves:
(a) splitting a current terminal node (“grow”); (b) removing a pair of terminal nodes and
making the parent into a terminal node (“prune”); (c) changing a splitting variable or thresh-
old (“change”). Chipman, George and McCulloch (1998) use an additional swap move to
propose a swap of splitting rules among internal nodes. The complex nature of the param-
eter space makes it difficult to achieve a well mixing Markov chain simulation. Chipman,
George and McCulloch (1998) caution against using one long run, and instead advise to use
frequent restarts. MCMC posterior simulation in CART models should be seen as stochastic
search for high posterior probability trees. Achieving practical convergence in the MCMC
simulation is not typically possible.

An interesting special case of multivariate regression arises in spatial inference problems.
The spatial coordinates (xi1, xi2) are the covariates for a response surface g(xi). Wolpert
and Ickstadt (1998a) propose a nonparametric model for a spatial point process. At the
top level of a hierarchical model they assume a Poisson process as sampling model for the
observed data. Let xi denote the coordinates of an observed event. For example, xi could
be the recorded occurrence of a species in a species sampling problem. The model assumes
a Poisson process xi ∼ Po(Λ(x)) with intensity function Λ(x). The intensity function in
turn is modelled as a convolution of a normal kernel k(x, s) and a Gamma process, Λ(x) =∫
k(x, s)Γ(ds) and Γ(ds) ∼ Gamma(α(ds), β(ds)). With constant β(s) = β and rescaling

the Gamma process to total mass one, the model for Λ(x) reduces to a Dirichlet process
mixture of normals.

Arjas and Heikkinen (1997) propose an alternative approach to inference for a spatial
Poisson process. The prior probability model is based on Voronoi tessellations with a random
number and location of knots.

3.3 Wavelet based modelling

Wavelets provide an orthonormal basis in L2 representing g ∈ L2 as g(x) =
∑

j

∑
k djkψjk(x),

with basis functions ψjk(x) = 2j/2ψ(2jx − k) that can be expressed as shifted and scaled
versions of one underlying function ψ. The practical attraction of wavelet bases is the
availability of superfast algorithms to compute the coefficients djk given a function, and vice
versa. Assuming a prior probability model for the coefficients djk implicitly puts a prior
probability model on the random function g. Typical prior probability models for wavelet
coefficients include positive probability mass at zero. Usually this prior probability mass
depends on the “level of detail” j, Pr(djk = 0) = πj. Given a non-zero coefficient, an
independent prior with level dependent variances is assumed, for example, p(djk|djk 6= 0) =
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N(0, τ 2
j ). Appropriate choice of πj and τj achieves posterior rules for the wavelet coefficients

djk, which closely mimic the usual wavelet thresholding and shrinkage rules (Chipman et al.
1997, Vidakovic 1998). Clyde and George (2000) discuss the use of empirical Bayes estimates
for the hyperparameters in such models.

Posterior inference is greatly simplified by the orthonormality of the wavelet basis. Con-
sider a regression model yi = g(xi) + εi, i = 1, . . . , n, with equally spaced data xi, for
example, xi = i/n. Substitute a wavelet basis representation g(·) =

∑
j

∑
k djkψjk(x), let

y, d and ε denote the data vector, the vector of all wavelet coefficients and the residual vector,
respectively. Also, let B = [ψjk(xi)] denote the design matrix of the wavelet basis functions
evaluated at the xi. Then we can write the regression in matrix notation as y = Bd + ε.
The discrete wavelet transform of the data finds, in a computationally highly efficient algo-
rithm, d̂ = B−1y. Assuming independent normal errors, εi ∼ N(0, σ2), orthogonality of the
design matrix B implies d̂jk ∼ N(djk, σ

2), independently across (j, k). Assuming a priori
independent djk leads to a posteriori independence of the wavelet coefficients djk. In other
words, we can consider one univariate inference problem p(djk|y) at a time. Even if the
prior probability model p(d) is not marginally independent across djk, it typically assumes
independence conditional on hyperparameters, still leaving a considerable simplification of
posterior simulation.

The above detailed explanation serves to highlight two critical assumptions. Posterior
independence, conditional on hyperparameters or marginally, only holds for equally spaced
data and under a priori independence over djk. In most applications prior independence is a
technically convenient assumption, but does not reflect genuine prior knowledge. However,
incorporating assumptions about prior dependence is not excessively difficult either. Starting
with an assumption about dependence of g(xi), i = 1, . . . , n, Vannucci and Corradi (1999)
show that a straightforward two dimensional wavelet transform can be used to derive the
corresponding covariance matrix for the wavelet coefficients djk.

In the absence of equally spaced data the convenient mapping of the raw data yi to the
empirical wavelet coefficients d̂jk is lost. The same is true for inference problems other than
regression where wavelet decomposition is used to model random functions. Typical exam-
ples are the unknown density in a density estimation (Müller and Vidakovic 1998), or the
spectrum in a spectral density estimation (Müller and Vidakovic 1999). In either case evalu-
ation of the likelihood p(y|d) requires reconstruction of the random function g(·). Although
a technical inconvenience, this does not hinder the practical use of a wavelet basis. The
superfast wavelet decomposition and reconstruction algorithms still allow computationally
efficient likelihood evaluation even with the original raw data.

3.4 Neural Networks

Neural networks are another popular approach following the general theme of defining ran-
dom functions by probability models for coefficients with respect to an appropriate basis.
Now the basis are rescaled versions of logistic functions. Let Ψ(η) = exp(η)/(1 + exp(η)),
then g(x) =

∑M
j=1 βjΨ(x′γj) can be used to represent a random function g. The random

function is parametrized by θ = (β1, γ1, . . . , βM , γM). Bayesian inference proceeds by assum-
ing an appropriate prior probability model and considering posterior updating conditional
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on the observed data. Recent reviews of statistical inference for neural networks in regression
models appear in Cheng and Titterington (1994) and Stern (1996). Neal (1996) and Müller
and Ŕıos-Insua (1998) discuss specifically Bayesian inference in such models. Ŕıos-Insua and
Müller (1998) argue to include the number of components M in the parameter vector and
consider inference over “variable architecture” neural network models. Lee (2001) compares
alternative Bayesian model selection criteria for neural networks.

3.5 Other Nonparametric Regression Methods

Alternatively to modelling the random function g, the nonparametric regression problem
can be reduced to a density estimation problem by proceeding as if the pairs (xi, yi) were
an i.i.d. sample, (xi, yi) ∼ F (x, y), from some unknown distribution F . Inference on F
implies inference on the conditional means process gF (x) ≡ EF (y|x). Müller, Erkanli and
West (1996) propose this approach using a DP mixture model for inference on the unknown
joint distribution F . Regression curves g estimated under this approach take the form of
locally weighted linear regression lines, similar to traditional kernel regression in classical
nonparametric inference. Considering (xi, yi) as an i.i.d. sample – wrongly – introduces an
additional factor

∏
F (xi) in the likelihood

∏
F (xi, yi) =

∏
F (xi) F (yi|xi) and thus provides

only approximate inference.
An interesting approach to isotonic regression is pursued in Lavine and Mockus (1995)

who use a rescaled cumulative density function F to model a regression mean curve g(x) =
a+ b F (x). Assuming a DP prior for F they implement nonparametric Bayesian inference.

Newton, Czado and Chappell (1996) propose a modified DP, constraining the random
probability measure to median 0 and fixed length central interval (like the interquartile
range, for example). The modified DP is used to define a link F in a nonparametric binary
regression model with P (yi = 1) = F (x′iβ).

4 Survival Analysis

Survival analysis involves modelling the time until a certain event occurs (survival times),
often including a regression on covariates. In most applications, the data is subject to
right-censoring. Let x1, . . . , xn denote the survival times, xi ∼ F (·). Let C1, . . . , Cn denote
the (possibly random) censoring times. The actually observed data is a collection of pairs
(T1, I1), . . . , (Tn, In) with censored observations Ti = min{xi, Ci} and censoring indicators
Ii = I{xi ≤ Ci}. Interval and other types of censoring could be also considered in a similar
fashion. Two quantities are of primary interest in survival analysis: the survival function
S(t) = 1 − F (t) and the hazard rate function λ(t) = F ′(t)/S(t). It turns out that the
integrated or cumulative hazard function Λ(t) =

∫ t

0
λ(s) ds is simpler to estimate, and there

is a one-to-one correspondence between S(t) and Λ(t), given by S(t) = exp(−Λ(t)).
Assuming C1, . . . , Cn to be constant, Susarla and Van Ryzin (1976) discuss inference with

a DP prior on F . The posterior mean converges to Kaplan and Meier’s (1958) product limit
estimate as the total mass parameter M → 0+. More recently, Florens and Rolin (2001)
provided a closed form description of the posterior process under a DP prior and random
censoring times. The characterization is quite useful for posterior simulation of functionals of
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the posterior distribution of F . For a review of related approaches applying the DP to similar
problems see Ferguson, Phadia and Tiwari (1992). Doss (1994) studied an MDP model for
survival data subject to more general censoring schemes. Evaluation of the posterior mean of
F is done through an interesting MCMC scheme that involves DP draws using a composition
method. Convergence of the algorithm is also discussed.

4.1 Neutral to the Right Processes

Many stochastic process priors that have been proposed as nonparametric prior distribu-
tions for survival data analysis belong to the class of neutral to the right (NTTR) pro-
cesses. An RPM F (t) is an NTTR process on the real line, if it can be expressed as F (t) =
1 − exp(−Y (t)), where Y (t) is a stochastic process with independent increments, almost
surely right-continuous and non-decreasing with P{Y (0) = 0} = 1 and P{limt→∞ Y (t) =
∞} = 1 (Doksum 1974). Walker et al. (1999) call Y (t) an NTTR Lévy process. Doksum
(1974) showed that the posterior for a NTTR prior and i.i.d. sampling is again a NTTR
process. Ferguson and Phadia (1979) showed that for right censored data the class of NTTR
process priors remains closed, i.e., the posterior is still a NTTR process.

NTTR processes are used in many approaches that construct probability models for λ(t)
or Λ(t), rather than directly for F . Dykstra and Laud (1981) define the extended Gamma
process, generalizing the Gamma process studied in Ferguson (1973). The idea is to consider
first an NTTR process {Y (t)} such that for Y (t)−Y (s) ∼ Γ(α(t)−α(s), 1) for all t > s ≥ 0,
where α(t) is a nondecreasing left-continuous function on [0,∞). The new process is defined
as
∫ t

0
β(s) dY (s) for a positive right-continuous function β(t). Dykstra and Laud (1981)

consider such processes on the hazard function λ(t), studying their properties and obtaining
estimates of the posterior hazard function without censoring and with right-censoring. In
particular, the resulting function λ(t) is monotone.

An alternative model was proposed by Hjort (1990), by placing a Beta process prior on
Λ(t). To understand this construction, let us look at a discrete version of the process first.
Following Nieto-Barajas and Walker (2002b), consider a partition of the time axis 0 = τ0 <
τ1 < τ2 · · · , and failures occurring at times chosen from the set {τ1, τ2, . . .}. Let λj denote
the hazard at time τj, λj = P (x = τj|x ≥ τj). Hjort (1990) assumes independent, beta-
distributed priors for {λj}. This generates a discrete process with independent increments
for the cumulative hazard function Λ(τj) =

∑j
i=0 λi. The class is closed under prior to

posterior updating as the posterior process is again of the same type. The continuous
version of this discrete Beta process is derived by a limit argument as the interval lengths
τj − τj−1 approach zero (for details, see Hjort 1990). Full Bayesian inference for a model
with a Beta process prior for the cumulative hazard function using Gibbs sampling can be
found in Damien, Laud and Smith (1996). A variation of this idea was used by Walker and
Mallick (1997). Specifically, they assumed λ(t) to be constant at λ1, λ2, . . . over the intervals
[0, τ1], (τ1, τ2], . . . with independently distributed gamma priors on {λj}. As pointed out
in Nieto-Barajas and Walker (2002b), there is no limit version of this process.

Since a NTTR process Y (t) has at most a countable number of discontinuity points,
it turns out that every NTTR process can be decomposed as the sum of a continuous
component and a purely jump component. This observation is very useful for simulation
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purposes (Walker and Damien 1998, Walker et al. 1999). To simulate from the jump compo-
nent, Walker and Damien (1998) suggest using methods discussed in Walker (1995) or the
latent variables method of Damien, Wakefield and Walker (1999), depending on the specific
form adopted by the density to sample from. To simulate from the continuous part Walker
and Damien (1998) note that a random variable arising from this component is infinitely
divisible and build on a method originally proposed by Bondesson (1982), but discarded by
the same author due to the practical implementation difficulties arising at that time. Wolpert
and Ickstadt (1998a) proposed an alternative method for approximately sampling from the
continuous part, called the Inverse Lévy Measure (ILM) algorithm. It is based on the result
that any nonnegative infinitely divisible distribution can be represented as the distribution
at time t = 1 of an increasing stochastic process Xt (called subordinator) with stationary
and independent increments. The Lévy-Khintchine Theorem (e.g. page 163 of Durrett 1996)
states that the characteristic function of such distribution satisfies

log(ϕ(t)) = ict− σ2t2

2
+

∫
R

(
eitx − 1− itx

1 + x2

)
ν(dx),

where ν is called the Lévy measure and is such that ν({0}) = 0 and
∫

R
x2

1+x2 ν(dx) < ∞.
Therefore, to simulate the process Xt over an interval [0, T ] we can proceed as follows:
generate independent jump times σm from the uniform distribution on [0, T ], jumps τm
from a unit-rate Poisson process, define νm = inf{u ≥ 0 : ν([u,∞)) ≤ τm/T}, and set
Xt =

∑
{νm : σm ≤ t}. This summation defining Xt will have a finite number of terms if

and only if ν([0,∞)) <∞. Thus, in general the method leads to an approximate simulation.
The name ILM comes from the fact that νm = L−1(τm/T ) where L(u) = ν([u,∞]). See
additional details in Wolpert and Ickstadt (1998b).

4.2 Dependent Increments Models

We have already discussed independent increments models for the cumulative hazard func-
tion Λ(t). In the discrete version this implies independence for the hazards {λj}. A different
modelling perspective is obtained by assuming dependence. A convenient way to introduce
dependence is a Markovian process prior on {λk}. Gamerman (1991) proposes the following
model: log(λj) = log(λj−1) + εj for j ≥ 2, where {εj} are independent with E(εj) = 0 and
V ar(εj) = σ2 <∞. In the linear Bayesian method of Gamerman (1991) only a partial spec-
ification of the {εj} is required. The resulting model extends Leonard’s (1978) smoothness
prior for density estimation, stated also in terms of a discrete survival formulation, but under

the assumption that εj
iid∼ N(0, σ2).

Later, Gray (1994) used a similar prior process but directly on the hazards {λj}, without
the log transformation. A further generalization involving a martingale process was proposed
in Arjas and Gasbarra (1994). More recently, Nieto-Barajas and Walker (2002b) proposed
a model based on a latent process {uk} such that {λj} is included as

λ1 → u1 → λ2 → u2 → · · ·

and the pairs (u, λ) are generated from conditional densities f(u|λ) and f(λ|u) implied
by a specified joint density f(u, λ). The main idea is to ensure linearity in the conditional
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expectation: E(λk+1|λk) = ak +bkλk. Nieto-Barajas and Walker (2002b) show that both, the
gamma process of Walker and Mallick (1997) and the discrete Beta process of Hjort (1990)
are obtained as special cases of their construction, under appropriate choices of f(u, λ).

In the continuous case, Nieto-Barajas and Walker (2002b) proposed a Markovian model
where the hazard rate function is modelled as

λ(t) =

∫ t

0

exp {−a(t− u)} dL(u), (7)

for a > 0, and where L(t) is a pure jump process, i.e., an independent increments process on
[0,∞) without Gaussian components (Ferguson and Klass 1972, Walker and Damien 2000).
This model, called Lévy driven Markov process, extends Dykstra and Laud’s (1981) proposal
by allowing non-monotone sample paths for λ(t). In addition, the sample paths are piece-
wise continuous functions. Nieto-Barajas and Walker (2002b) obtain posterior distributions
under (7) for different types of censoring and discuss applications in several special cases,
including the Markov-Gamma process.

4.3 Competing Risks Model

An interesting extension of survival models considers a system with r components arranged
in series. Here x1, . . . , xr are the failure times of the components and we observe (T, I), where
T = min{x1, . . . , xr} and I = j if T = xj. This setup is known as the competing risks model
with r sources of failure. The survival function for the jth component is Sj(t) = P (xj > t)
and the subsurvival function is S∗j (t) = P (T > t, I = j). The system survival function is
S(t) = P (T > t) =

∑r
j=1 S

∗
j (t). Let xi = (xi1, . . . , xir), i = 1, . . . , n be a sample from the

latent x1, . . . , xr failure times. The actual observed data are (T1, I1), . . . , (Tn, In). Salinas-
Torres, Pereira and Tiwari (1997) introduced the multivariate DP as a nonparametric model
for the joint distribution of the failure times x1, . . . ,xn. Let F01, . . . , F0r be distribution
functions on the appropriate space and M1, . . . ,Mr be positive mass parameters, and let
v = (v1, . . . , vr) ∼ D(M1, . . . ,Mr). Then P = (v1P1, . . . , vrPr) is called a multivariate DP
or dimension r if Pj ∼ D(Mj, F0j).

Consider now a given risk subset ∆ ⊂ {1, . . . , r} and let ∆c be its complement. The
corresponding subsurvival and survival functions are given by S∗∆(t) = P (T > t, I ∈ ∆)
and S∆(t) = P (minj∈∆ xj > t). The data structure obtained for the case r = 2, ∆ = {1}
and ∆c = {2} reduces to the usual right-censored problem with random censoring times.
Peterson (1977) gives an expression for the survival function S∆(t) in terms of the subsurvival
functions S∗∆(t) and S∗∆c :

S∆(t) = ϕ(S∗∆(t), S∗∆c ; t), for t ≤ t∗ = min{tS∆
, tS∆c}, (8)

where

ϕ(H,G; t) = exp

(∮ t

0

dH(s)

H(s) +G(s)

)∏
t

{
H(s+) +G(s+)

H(s−) +G(s−)

}
,

and tS∆
= sup{t : S∆(t) > 0}. Here,

∮ t

0
represents integration over the union of intervals

of continuity points of H that are less than or equal to t, and
∏

t represents a product over
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the discontinuity points of H that are less than or equal to t (we assume that S∗∆(t) and
S∗∆c(t) have no common discontinuities). In this setting, Salinas-Torres, Pereira and Tiwari
(2002) derived Bayes estimates of S∆(t) under quadratic loss function. The estimate has the
property that it can be obtained by substituting the Bayes estimates for S∗∆ and S∗∆c into
(8).

4.4 Models Based on Proportional Hazards

So far we have discussed survival analysis models without covariates. To incorporate covari-
ates, the most popular choice is the proportional hazards model, introduced in Cox (1972).
Assuming T1, . . . , Tn are the failure times of n individuals, the hazard rate functions are
modelled as

λi(t) = λ0(t) exp
{
Zi(t)

T β
}
, i = 1, . . . , n (9)

where Zi(t) is the p-dimensional vector of covariates for the ith individual at time t > 0, β
is the vector of regression coefficients, and λ0(t) is the baseline hazard rate function.

Semi-parametric approaches to inference in (9) consider a nonparametric specification
of λ0(t). A model based on an independent increments gamma process was proposed
by Kalbfleisch (1978) who studied its properties and estimation. Extensions of this model to
neutral to the right processes was discussed in Wild and Kalbfleisch (1981). In the context
of multiple event time data, Sinha (1993) considered an extension of Kalbfleisch’s (1978)
model for λ0(t). The proposal assumes the events are generated by a counting process with
intensity given by a multiplicative expression similar to (9), but including an indicator of
the censoring process, and individual frailties to accommodate the multiple events occurring
per subject. Sinha (1993) discusses posterior inference for this model using Gibbs sampling,
under the assumption of gamma distributed frailties. Extensions of this model to the case of
positive stable frailty distributions and a correlated prior process with piecewise exponential
hazards can be found in Qiou, Ravishanker and Dey (1999). See additional comments, de-
tails on computational strategies and extensions to multivariate survival data in Sinha and
Dey (1998).

Other modelling approaches based on (9) have been studied in the literature. Laud,
Damien and Smith (1998) consider (9) using a Beta process prior for Λ(t), and proposing
an MCMC implementation for full posterior inference. Nieto-Barajas and Walker (2001)
propose their flexible Lévy drive Markov process (Nieto-Barajas and Walker 2002a) to model
λ0(t), and allowing for time dependent covariates. Full posterior inference is achieved via
substitution sampling.

Accelerated failure time models are an alternative framework to introduce regression
in survival analysis. Instead of introducing the regression in the log hazard, as in (9),
the generic accelerated failure time model assumes that failure times Ti arise as log Ti =
−Z ′

iβ + log(xi). Nonparametric approaches assume a probability model for the unknown
distribution of log(xi). Models based on DP priors appear in Johnson and Christensen (1989)
and Kuo and Mallick (1997). Walker and Mallick (1999) propose an alternative PT prior
model.
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5 Hierarchical models

An important application of nonparametric approaches arises in modelling random effects
distributions in hierarchical models. Often little is known about the specific form of the
random effects distribution. Assuming a specific parametric form is typically motivated
by technical convenience rather than by genuine prior beliefs. Although inference about
the random effects distribution itself is rarely of interest, it can have implications on the
inference of interest. Thus it is important to allow for population heterogeneity, outliers,
skewness etc.

In the context of a traditional randomized block ANOVA model with subject specific
random effects zi a Bayesian nonparametric model can be used to allow for more general
random effects distributions. Bush and MacEachern (1996) propose a DP prior for zi ∼ G,
G ∼ D(G0,M). Kleinman and Ibrahim (1998) propose the same approach in a more general
framework for a linear model with random effects. They discuss an application to longitudinal
random effects models. Müller and Rosner (1997) use DP mixture of normals to avoid
the awkward discreteness of the implied random effects distribution. Also, the additional
convolution with a normal kernel significantly simplifies posterior simulation for sampling
distributions beyond the normal linear model. Mukhopadhyay and Gelfand (1997) implement
the same approach in generalized linear models with linear predictor zi + x′iβ and a DP
mixture model for the random effect zi. In Wang and Taylor (2001) random effects Wi

are entire longitudinal paths for each subject in the study. They use integrated Ornstein-
Uhlenbeck stochastic process priors for WiS(t).

A further complication arises when the model hierarchy in a hierarchial model continues
beyond the nonparametric model, i.e., if the nonparametric model appears in a submodel
of the larger hierarchical model. For example, in a hierarchical analysis of related clinical
studies there might be a different random effects distribution in each of the related clinical
trials. Let Gi denote the random distribution or random function in submodel i. Assuming
a nonparametric model p(Gi) for the i-th submodel, model completion requires an additional
assumption about the joint distribution of {Gi, i ∈ I}. Using DP priors, Gi ∼ D(Go

i ,M),
marginally for each Gi, a conceptually straightforward approach is to link the base measures
Go

i . For example, the base measure Go
i could include a regression on covariates specific

to the i-th submodel. This construction is introduced in Cifarelli and Regazzini (1978) as
mixture of products of Dirichlet process. The model is used, for example, in Muliere and
Petrone (1993) who define dependent nonparametric models Fx ∼ D(M,F o

x ) by assuming a
regression in the base measure F o

x = N(βx, σ2). Similar models are discussed in Mira and
Petrone (1996) and Giudici et al. (2003). Carota and Parmigiani (2002) and Dominici and
Parmigiani (2001) use the same approach to model random distributions Gi ∼ D(Go

i ,Mi)
centered around, among other choices, a Binomial base measure Go

i = Bin(θp
i , Ni), including

the total mass parameter Mi in the hierarchy. Both, the binomial success probability θo
i

and the total mass parameter Mi are modelled as a regression on covariates di, specific to
submodel i.

Linking the related nonparametric models through a regression on the parameters of the
nonparametric models limits the nature of the dependence to the structure of this regression.
MacEachern (1999) proposes the dependent DP (DDP) as an alternative approach to define
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a dependent prior model for a set of random measures {Gx}, with Gx ∼ D marginally. Recall
the stick breaking representation (2) for the DP random measure, Gx =

∑
hwxhδ(µxh). The

key idea behind the DDP is to introduce dependence across the measures Gx by assuming
the distribution of the point masses µxh dependent across different levels of x, but still
independent across h. In the basic version of the DDP the weights are assumed the same
across x, i.e., wxh = wh. To introduce dependence of µxh across x MacEachern (1999) uses
a Gaussian process. DeIorio et al. (2002) construct the ANOVA DDP as a joint probability
model for dependent random measures. They consider a family of unknown probability
measures Fx indexed by categorical factors x. For example, in a clinical trial, Fx might be
the random effects distribution for patients with categorical covariates x. Covariates might
include treatment levels, etc. Dependence across {Fx} is induced by assuming ANOVA
models on µxh across x.

6 Model Validation

An interesting use of nonparametric Bayesian inference arises in model validation. One way
to validate a proposed parametric model is to consider a nonparametric extension and report
appropriate summaries of a comparison of the parametric and the nonparametric fit.

Carota and Parmigiani (1996) and Carota et al. (1996) discuss such approaches using
DP extensions and point out the limitations of formalizing the comparison with a Bayes
factor. Due to the discrete nature of the Dirichlet process RPM inference is driven by the
number of duplicates in the data set. They suggest, among other approaches, to consider
KL-divergence of prior to posterior on the random probability model. Conigliani, Castro
and O’Hagan (2000) discuss a similar approach, using fractional Bayes factors to summarize
the comparison.

Berger and Guglielmi (2001) take up the same theme, but replace the DP prior with a PT
model. To center the PT model at a parametric model f(x|θ) they construct PTs with mean
measure f(x|θ). They fix the nested partition sequence and set the parameters αε for the
random probabilities such that the desired mean is achieved. Computation of Bayes factors
for the model validation is greatly simplified by the availability of a closed form expression
for the marginal distribution under such PT models:

m(x1, . . . , xn|θ) =
∏

f(xi|θ)
n∏

j=2

m∗(xj)∏
m=1

α′εm(xj)
(αεm−10(xj) + αεm−11(xj))

αεm(xj)(α
′
εm−10(xj)

+ α′εm−11(xj)
)

The αε are the Beta distribution parameters in the definition of the PT, as defined in Section
2.3. The indices εm(xj) = ε1 . . . εm identifies the partitioning subset Bε1...εm of level m
that contains xj, i.e., xj ∈ Bε, and α′ε are the parameters of the posterior PT, given the
observations (x1, . . . , xj−1). The upper bound m∗(xj) in the product is the smallest level m
such that no xi, i < j belongs to the same partitioning subset Bεm(xj) as xj at level m. The α
sequences depend on the parameter θ. Evaluation of Bayes factors of the parametric model
versus nonparametric extension requires one more step of marginalization to marginalize
w.r.t. θ. Berger and Guglielmi (2001) describe suitable numerical methods.
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A related approach is pursued in Mazzuchi, Soofi and Soyer (2000). They consider
parametric models defined as maximum entropy models in a moment class. This includes
the exponential, gamma, Weibull, normal, etc. By considering the posterior expected KL
divergence between the parametric model and a nonparametric extension centered at that
parametric model they define a diagnostic of fit. For the nonparametric extension they use
a DP model centered at the maximum entropy parametric model.

7 Conclusion

We have reviewed some important aspects of nonparametric Bayesian inference. Rather than
attempting a complete catalog of existing methods we focused on typical modelling strategies
in important inference problems. Also, we emphasized recent developments over a historical
perspective. The chosen classification of Bayesian nonparametric approaches into the listed
application areas is an arbitrary subjective choice, leading us to miss some interesting non-
parametric Bayesian methods that did not fit cleanly into one of these arbitrary categories.
Typical examples are Quintana (1998) and Lee and Berger (1999), discussing nonparametric
approaches to modeling contingency tables and selection sampling, respectively.

An important aspect of nonparametric Bayesian inference that we excluded from the
discussion are computational issues. Many approaches are driven by what are essentially
computational concerns. Another important line of research that we excluded from the
discussion are the many methods that are nonparametric in flavor even if they are not
technically inference in infinite dimensional parameter spaces. Typical examples are finite
mixture model. Such models often provide flexible inference very much like corresponding
nonparametric extensions.

Finally, we did not discuss methods that are nonparametric Bayes in the literal sense,
rather than in the sense of the technical definition we gave in the introduction. A typical
example is Lavine (1995) who discusses inference based on a partial likelihood argument.
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