
NetOwl(TM) Extractor Technical Overview
March 1997

1 Overview

NetOwl Extractor is an automatic indexing system that finds and classifies key phrases in
text, such as personal names, corporate names, place names, dates, and monetary
expressions. NetOwl Extractor finds all mentions of a name and links names that refer to
the same entity together. NetOwl Extractor combines dynamic recognition with static
look-up to achieve high accuracy and coverage at very high speed.

NetOwl Extractor is adaptable to information technology applications. Text retrieval
engines can accept proper names as special index terms to achieve higher accuracy.
Textual databases can store the proper names in special fields to improve access to
on-line documents. Hypertext browsers can link documents using names found across
multiple documents, allowing web browsers to connect web sites to on-line text.

2 Background

Proper names play a crucial role in information management, both in specific applications
and in the underlying technologies that drive the applications [1]. For example, the
Seymour on-line photo retrieval system from Picture Network International [2], and its
cousin, Publisher's Depot, recognize proper names in photo captions and in user queries
and automatically search for variations of each name, because so many users require
photographs of specific individuals or locations. Nearly every business newspaper and
magazine provides a special company name index, and many print names in boldface,
because this allows readers to spot articles of interest and identify who's in the news.
Information extraction systems [3,4,5,6,7] use name and phrase recognition as the first
step toward more detailed analysis of text, and custom news ("clipping") systems often
provide special features for users to track particular people and companies.

IsoQuest, Inc. 3900 Jermantown Road Suite 400 Fairfax, VA 22030 703.293.2350 Fax 703.293.2353 www.isoquest.com

1

In spite of the recognized importance of names in applications, most text processing
applications, including search systems, spelling checkers, and document management
systems, do not treat proper names correctly. This is because proper name identification
and interpretation is actually a very complex task: there are an infinite variety of possible
names, which can be highly variable in structure; names can overlap with other names
and with other words, and even simple clues like capitalization can be misleading. Table 1
provides many examples of the problems encountered.

Description Examples
Names overlapping other names Murphy Oil vs. Murphy Department Stores

Names overlapping words Prime Computer vs. prime beef
Organization / place ambiguity State College, PA vs. Imperial College, London
Corporations containing person

names
J. C. Penney Co.
Cray Computer

Corporations containing place
names

Sante Fe Southern Pacific Corp.
Bethlehem Steel Corp.

Names containing AND Atlantis Mill and Lumber Co. vs. Honda and Toyota Motor Corp.
Ambiguous first names Chip Roth vs. chip price

Rich Bond vs. rich investment
Misleading capitalization J. F. Kennedy vs. P. O. Box

Generically-named organizations Bank of Japan
First Bank

World Bank

Table 1: Name Recognition Problems

A basic approach to name recognition is to perform a simple table look-up. This
approach requires all names must be known and unambiguous. Both of these
assumptions prove problematic for most general information technology applications,
where there are always new and ambiguous names. Carnegie's NameFinder product [8]
incorporated this approach and had some success in limited applications. Oracle's
ConText product [9] creates an index of proper names along with many other words and
phrases. NetOwl Extractor differs from NameFinder because it identifies names that aren't
on any known list, and it differs from ConText because it can correctly classify names
(e.g., person, place, company) and resolve references to avoid ambiguity in the index.

NetOwl Extractor's approach is to recognize names using two major knowledge sources:
(1) a representation of the structure of names, (e.g. people names have first names and last
names, company names often include "Inc." or "Corp.") and (2) detailed linguistic
knowledge that identifies the context in which names can appear (e.g. corporate
executives are often described along with a title, other descriptive information, and the
name of their company).

2

3 System Description

NetOwl Extractor consists of a software engine that applies name recognition rules to
text, supported by lexical resources and limited lists of proper names, as illustrated in
Figure 1. Users implement an application driver that invokes the engine and configures
the processing. NetOwl Extractor can either generate a document that has the names
annotated with SGML (Standard Generalized Markup Language) [10] or provide a table
of the names with indices to the text.

Figure 1: NetOwl Extractor System Components

A name recognition rule consists of a pattern and an action. The pattern is similar to a
regular expression and consists of special operator and operands that match portions of
text. Typically, patterns recognize structural or contextual indicators of names and thus
perform dynamic recognition, as illustrated in Table 2. The action performs operations on
the text, such as tagging a name with a classification. The rules are partitioned to form
processing phases that primarily recognize one class of name. For example, NetOwl
Extractor has separate phases for recognizing personal names and organizational names.
This feature allows the recognition of certain classes of names to impact the recognition
of other names. The lexical resources contain information about words, such as their
part-of-speech (e.g. noun) and their meaning (e.g. personal title).

Information

Master
Index

NetOwl Extractor
on Unix or NT server

Name
Resolver

NetOwl
Extractor

Knowledge
Base

NetOwl
Extractor
Engine

Issue Query

Indices and Names Returned

Get Results
from Repository

Text In

Repository

Custom
Name

Database

Custom UI and Query Control

3

Type of Rule Pattern Action Example
structural capitalized personal first name

+
capitalized word

Tag match as
PERSON

George Bush

contextual personal title
+

capitalized word sequence

Tag match as
PERSON,

excluding title

Mr. George Bush

structural caitalized word sequence
+

corporate indicator

Tag match as
ENTITY,

company subtype

Digital Equipment Corp.

contextual job position
+

OF
+

capitalized word sequence

Tag match as
ENTITY,

excluding job
positon and OF

president of
Digital Equipment

structural capitalized word sequence
+

caapitalized location noun

Tag match as
PLACE,

assign subtype
using location noun

Orange County

contextual capitalized word sequence
+
,

U.S. state name
,

Tag match as
PLACE,

city subtype,
excluding state,

Bethlehem, PA.,

Table 2: Name Recognition Rules

The name lists contain those names that can be tagged without recognition rules and thus
constitute a static look-up of names. These lists primarily contain common or
problematic names, such as nations, U.S. states, and household acronyms (e.g. "IBM",
"3M"), and can be customized by the user. The dynamic recognition rules over-ride the
static look-up, thus allowing local or global context to confirm or invalidate the name
lists.

For each document, NetOwl Extractor segments the text into tokens such as words,
punctuation marks, and numbers. NetOwl Extractor attaches lexical information to the
token using the lexical resources. Tokens are then grouped into sections, such as
paragraphs, to form a document structure. If the document is annotated with SGML, the
document structure is hierarchical, as illustrated in Figure 2.

4

Figure 2: NetOwl Extractor Document Structure

NetOwl Extractor processes each section according to a user-assigned processing class. A
processing class defines what pattern matching phases NetOwl Extractor should use to
analyze the text. This feature allows NetOwl Extractor to process sections of a document
using only those rules that are appropriate for the type of text contained in the section.
For example, headlines require special treatment because all words are often capitalized
and they often contain abbreviated forms of names fully mentioned in the text body.

As names are recognized, NetOwl Extractor records them in order to support the
recognition of other forms of the same entity, such as abbreviations, acronyms, and
personal last names. NetOwl Extractor links names as they are recognized, and uses a
special processing phase to find other forms that were missed. For example, NetOwl
Extractor will recognize and record "George Bush" as a person, then recognize "Mr. Bush"
as a person and link it to "George Bush", and then look for other mentions of "Bush"
missed by the contextual recognition rules.

4 Tag Definitions

NetOwl Extractor classifies names according to a general-purpose definition. The
definition consists of a top-level category and a secondary classification. The top-level
category represents the basic class of phrase, as listed below:

headline date source

paragraph paragraph paragraph

body

DOC

...Today in Washington representatives met with Bill Clinton to discuss...

5

PERSON named person or family
PLACE political or geographical place name
ENTITY named organizational entity, including facilities
TIME dates, days of week, time of day, and other temporal expressions
NUMERIC percentages, monetary values, measures
OTHER other named things

The secondary classifications are self-explanatory and are as follows:

PERSON none
PLACE CONTINENT, COUNTRY, PROVINCE, COUNTY, CITY, REGION,

DISTRICT, WATER, LANDFORM, ROADWAY
ENTITY ORGANIZATION, COMPANY, GOVERNMENT, UNION,

MILITARY EDUCATION, FACILITY, PUBLICATION
TIME DATE, TIMEOFDAY, AGE, TEMPORAL
NUMERIC PERCENT, MONEY, PHONENUM, MEASURE
OTHER PRODUCT, EQUIPMENT, OTHER

The OTHER categories are open-ended and reflect the fact that there are large numbers of
named things that are not persons, places, or entities.

5 Performance

NetOwl Extractor recognizes names and key phrases with high accuracy and coverage.
Its performance can be quantified by comparing its results with manually tagged text and
computing measures of performance to represent its score. Continual training on many
different samples of text with manual tags has helped NetOwl Extractor to achieve
near-human performance, and also ensures that the engine can be improved and further
refined in specific domains or applications. Table 3 defines the three primary measures of
performance. Typically, F-Measure is used with an equal weighting of recall and
precision, and the resulting, simplified definition is also shown in Table 3.

6

Measure Description Definition
Recall the percent of total names correctly

found by the system
(also know as coverage)

correct names

total possible names

Precision the percent of the system's names
that are correct

(also known as accuracy)

correct names

total system names

F-Measure the weighted combination of recall
and precision

(1 + ß2) x precision x recall

(ß2 x precision) + recall
F-Measure recall and precision weighted equally

(ß = 1.0)
2 x precision x recall

precision + recall

Table 3: Measures of Performance

NetOwl Extractor attempts to maximize both recall and precision. However, high recall
requires more processing time, which may be more important to some users. Therefore,
NetOwl Extractor provides three configurations that trade performance for speed, as
shown in Table 4. NetOwl Extractor achieves the trade-off by reducing the number of
recognition rules, which is also listed in the table.

Configuration Rules Approximate Speed
(Meg/hour)

Performance

BASE 226 80 high recall and precision
FAST 86 90 slightly lower recall,

with slightly higher speed
FASTEST 59 110 lower recall,

with significantly higher speed

Table 4: NetOwl Extractor Performance Configurations

The approximate speed measurements assume the processing of news stories on a Sun
SPARCstation 20/71 running SunOS 4.1.4.

NetOwl Extractor's overall performance depends greatly on the quality, type, and format
of the text. NetOwl Extractor achieves very high performance on well-edited, formatted
news stories, such as the Wall Street Journal or Associated Press newswire. NetOwl
Extractor will perform worse on poorly edited, unformatted text, such as E-mail or
transcripts of interviews. Some publications are well-edited and formatted, but they make
vast assumptions about the reader's knowledge and can be problematic to NetOwl
Extractor. For example, computer technical reviews may assume that "Bill" is understood
to mean "Bill Gates of Microsoft", and that "Apple" is understood to mean "Apple
Computer Co." Such assumptions can cause problems for NetOwl Extractor's dynamic
recognition rules, since the surrounding context may not be enough to effectively classify
the name.

7

6 Government-Sponsored Benchmarks

The Sixth Message Understanding Conference (MUC-6) [11], sponsored by the
Advanced Research Projects Agency, conducted an evaluation of name recognition as one
of its benchmarks, called the Named Entity task. This task required systems to find and
classify names and other key phrases according to a government-defined specification.
The specification represented a subset of the NetOwl Extractor tag definition, and the task
did not require the linking of co-referential names. However, this task represented a valid
test of NetOwl Extractor's performance [12].

Fourteen other sites participated in the Named Entity task. Participants obtained the task
specification and training data, received a blind test set, and submitted their results. The
government used a scoring program to calculate the measures of performance, using
F-measure (an equally weighted combination of recall and precision, shown in Table 3) as
the primary result. The test consisted of 30 Wall Street Journal articles related to changes
in management posts. The small size of the test, its source, and its topic focus all can
influence the results. NetOwl Extractor out-performed all other sites, as illustrated in
Table 5.

Measure NetOwl Extractor Next Best System Human
F-measure 96.42 94.00 96.68

Recall 96 94
(with 93 precision)

95

Precision 97 96
(with 92 recall)

98

Total Errors 115 219 146

Table 5: MUC-6 Named Entity Test Results

The government conducted an inter-annotator comparison to estimate human performance
on the test set, which also appears in Table 5. The comparison was not scientifically
controlled, and the two human annotations occurred at different times, with slightly
different task specifications. Although the actual quantitative results are approximate, the
experiment did prove that human performance is not perfect. NetOwl Extractor achieved
the estimated human performance, and actually committed fewer errors. The government
also conducted statistical significance testing to determine which scores are essentially
equal (i.e., their difference could have been obtained by chance). This testing determined
that NetOwl Extractor's F-measure was significantly different from all other sites, and
thus clearly superior.

For MUC-6, optional test runs were submitted to illustrate performance trade-offs of
NetOwl Extractor, as listed in Table 6. The BASE configuration is the official MUC-6
test result for NetOwl Extractor. The FAST and FASTEST configurations reduce the
name recognition analysis to increase the processing speed. The NO-NAMES

8

configuration is a variant of BASE in which approximately 500 household personal
and organizational names were removed from NetOwl Extractor's name lists.

Configuration CPU Time (seconds) Speed (Meg/hour) F-Measure
BASE 3.72 78.68 96.42
FAST 3.33 87.73 95.66

FASTEST 2.62 111.76 92.61
NO-NAMES 3.67 79.75 94.92

Table 6: MUC-6 Optional Test Results

7 Implementation

NetOwl Extractor is implemented in C++, and provides an ANSI C-linkable library that
can be incorporated into applications. NetOwl Extractor provides versions for UNIX
Workstations (SunOS, Solaris, and others) and PCs (e.g. Windows NT, 95, 3.1). NetOwl
Extractor provides an easy-to-use API that allows the developer to set parameters, load
documents, output SGML-annotated documents, and access the name table.

Creating an application program with the NetOwl Extractor API is very simple and
straight-forward. The program first makes function calls to initialize the system, set up
text processing parameters, and determine the tags to extract. The program can then load
documents from file or memory, process the document, and iterate over the tags,
extracting information such as character offset, the character string, and tag classification.

8 Summary

NetOwl Extractor is an automatic indexing system that finds and classifies names and
other key phrases in text. NetOwl Extractor finds all mentions of a name and links names
that refer to the same entity together. NetOwl Extractor combines dynamic recognition
with static look-up to achieve high accuracy and coverage at very high speed. NetOwl
Extractor's adaptable design provides a solution to a critical problem for information
technology applications.

9

References

[1] Church, K. and Rau, L. Commercial Applications of Natural Language Processing,
Communications of the ACM, November 1995.

[2] Flank, S., et al., Photofile: A Digital Library for Image Retrieval, Proceedings of
the IEEE International Conference on Multimedia Computing and Systems, May
15-18, 1995, Washington, DC.

[3] Aone, C. et al., SRA: Description of the SRA System as Used for MUC-5,
Proceedings of the Fifth Message Understanding Conference (MUC-5), August
1993.

[4] Aone, C. et al., The Muraski Project: Multilingual Natural Language Understanding,
Proceedings of the ARPA Human Language Technology Workshop, 1993.

[5] Appelt, D. et al., FASTUS: A Finite-State Processor for Information Extraction from
Real World Text, Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCA1-93), August 1993.

[6] Jacobs, P., Krupka, G., Rau, L., Lexico-semantic pattern matching as a companion
to parsing in text understanding, Fourth DARPA Speech and Natural Language
Workshop, February 1991.

[7] Jacobs, P., et al., GE-CMU: Description of the SHOGUN System Used for MUC-5,
Proceedings of the Fifth Message Understanding Conference (MUC-5), August
1993.

[8] Hayes, P., NameFinder: Software that finds Names in Text, Carnegie Group, Inc.,
May 1994.

[9] ConText: Introduction to Oracle ConText, Oracle Corporation, September 1993.

[10] Goldfarb, C., The SGML Handbook, Oxford, 1990.

[11] Proceedings of the Sixth Message Understanding Conference (MUC-6), November

 1995.

[12] Krupka, G., SRA: Description of the SRA System as Used for MUC-6, Proceedings
of the Sixth Message Understanding Conference (MUC-6), November 1995.

Copyright 1997 IsoQuest, Inc. All rights reserved

10

