
ar
X

iv
:c

s.
C

L/
04

12
01

5
v2

11

 M
ar

 2
00

5

A Tutorial on the Expectation-Maximization Algorithm

Including Maximum-Likelihood Estimation and EM Training of

Probabilistic Context-Free Grammars

Detlef Prescher
Institute for Logic, Language and Computation

University of Amsterdam

prescher@science.uva.nl

1 Introduction

The paper gives a brief review of the expectation-maximization algorithm (Dempster, Laird, and Rubin 1977)
in the comprehensible framework of discrete mathematics. In Section 2, two prominent es-
timation methods, the relative-frequency estimation and the maximum-likelihood estimation
are presented. Section 3 is dedicated to the expectation-maximization algorithm and a sim-
pler variant, the generalized expectation-maximization algorithm. In Section 4, two loaded
dice are rolled. A more interesting example is presented in Section 5: The estimation of
probabilistic context-free grammars. Enjoy!

2 Estimation Methods

A statistics problem is a problem in which a corpus1 that has been generated in accordance
with some unknown probability distribution must be analyzed and some type of inference
about the unknown distribution must be made. In other words, in a statistics problem there is
a choice between two or more probability distributions which might have generated the corpus.
In practice, there are often an infinite number of different possible distributions – statisticians
bundle these into one single probability model – which might have generated the corpus. By
analyzing the corpus, an attempt is made to learn about the unknown distribution. So, on the
basis of the corpus, an estimation method selects one instance of the probability model,
thereby aiming at finding the original distribution. In this section, two common estimation
methods, the relative-frequency and the maximum-likelihood estimation, are presented.

Corpora

Definition 1 Let X be a countable set. A real-valued function f : X → R is called a corpus,
if f ’s values are non-negative numbers

f(x) ≥ 0 for all x ∈ X

1Statisticians use the term sample but computational linguists prefer the term corpus

1

Each x ∈ X is called a type, and each value of f is called a type frequency. The corpus
size2 is defined as

|f | =
∑

x∈X

f(x)

Finally, a corpus is called non-empty and finite if

0 < |f | < ∞

In this definition, type frequencies are defined as non-negative real numbers. The reason for
not taking natural numbers is that some statistical estimation methods define type frequencies
as weighted occurrence frequencies (which are not natural but non-negative real numbers).
Later on, in the context of the EM algorithm, this point will become clear. Note also that
a finite corpus might consist of an infinite number of types with positive frequencies. The
following definition shows that Definition 1 covers the standard notion of the term corpus
(used in Computational Linguistics) and of the term sample (used in Statistics).

Definition 2 Let x1, . . . , xn be a finite sequence of type instances from X . Each xi of this
sequence is called a token. The occurrence frequency of a type x in the sequence is defined
as the following count

f(x) = | { i | xi = x} |

Obviously, f is a corpus in the sense of Definition 1, and it has the following properties: The
type x does not occur in the sequence if f(x) = 0; In any other case there are f(x) tokens
in the sequence which are identical to x. Moreover, the corpus size |f | is identical to n, the
number of tokens in the sequence.

Relative-Frequency Estimation

Let us first present the notion of probability that we use throughout this paper.

Definition 3 Let X be a countable set of types. A real-valued function p : X → R is called a
probability distribution on X , if p has two properties: First, p’s values are non-negative
numbers

p(x) ≥ 0 for all x ∈ X

and second, p’s values sum to 1
∑

x∈X

p(x) = 1

Readers familiar to probability theory will certainly note that we use the term probability
distribution in a sloppy way (Duda et al. (2001), page 611, introduce the term probability
mass function instead). Standardly, probability distributions allocate a probability value
p(A) to subsets A ⊆ X , so-called events of an event space X , such that three specific
axioms are satisfied (see e.g. DeGroot (1989)):

Axiom 1 p(A) ≥ 0 for any event A.

2Note that the corpus size |f | is well-defined: The order of summation is not relevant for the value of the
(possible infinite) series

∑

x∈X
f(x), since the types are countable and the type frequencies are non-negative

numbers

2

probability
model

data
corpus of

data
corpus of

comprising
the probability distribution

of the corpus types
the relative frequencies

Relative−Frequency Estimation

Maximum−Likelihood Estimation

of the probability model
maximizing

the corpus probability

an instance

(output)(input)

(output)(input)

Figure 1: Maximum-likelihood estimation and relative-frequency estimation

Axiom 2 p(X) = 1.

Axiom 3 p(
⋃∞

i=1 Ai) =
∑∞

i=1 p(Ai) for any infinite sequence of disjoint events A1, A2, A3, ...

Now, however, note that the probability distributions introduced in Definition 3 induce rather
naturally the following probabilities for events A ⊆ X

p(A) :=
∑

x∈A

p(x)

Using the properties of p(x), we can easily show that the probabilities p(A) satisfy the three
axioms of probability theory. So, Definition 3 is justified and thus, for the rest of the paper,
we are allowed to put axiomatic probability theory out of our minds.

Definition 4 Let f be a non-empty and finite corpus. The probability distribution

p̃ : X → [0, 1] where p̃(x) =
f(x)

|f |

is called the relative-frequency estimate on f .

The relative-frequency estimation is the most comprehensible estimation method and has
some nice properties which will be discussed in the context of the more general maximum-
likelihood estimation. For now, however, note that p̃ is well defined, since both |f | > 0
and |f | < ∞. Moreover, it is easy to check that p̃’s values sum to one:

∑

x∈X p̃(x) =
∑

x∈X |f |−1 · f(x) = |f |−1 ·
∑

x∈X f(x) = |f |−1 · |f | = 1.

Maximum-Likelihood Estimation

Maximum-likelihood estimation was introduced by R. A. Fisher in 1912, and will typically
yield an excellent estimate if the given corpus is large. Most notably, maximum-likelihood esti-
mators fulfill the so-called invariance principle and, under certain conditions which are typ-
ically satisfied in practical problems, they are even consistent estimators (DeGroot 1989).

3

For these reasons, maximum-likelihood estimation is probably the most widely used estima-
tion method.

Now, unlike relative-frequency estimation, maximum-likelihood estimation is a fully-fledged
estimation method that aims at selecting an instance of a given probability model which
might have originally generated the given corpus. By contrast, the relative-frequency estimate
is defined on the basis of a corpus only (see Definition 4). Figure 1 reveals the conceptual
difference of both estimation methods. In what follows, we will pay some attention to de-
scribe the single setting, in which we are exceptionally allowed to mix up both methods (see
Theorem 1). Let us start, however, by presenting the notion of a probability model.

Definition 5 A non-empty set M of probability distributions on a set X of types is called a
probability model on X . The elements of M are called instances of the model M. The
unrestricted probability model is the set M(X) of all probability distributions on the set
of types

M(X) =

{

p : X → [0, 1]

∣

∣

∣

∣

∣

∑

x∈X

p(x) = 1

}

A probability model M is called restricted in all other cases

M ⊆ M(X) and M 6= M(X)

In practice, most probability models are restricted since their instances are often defined on a
set X comprising multi-dimensional types such that certain parts of the types are statistically
independent (see examples 4 and 5). Here is another side note: We already checked that
the relative-frequency estimate is a probability distribution, meaning in terms of Definition 5
that the relative-frequency estimate is an instance of the unrestricted probability model. So,
from an extreme point of view, the relative-frequency estimation might be also regarded as
a fully-fledged estimation method exploiting a corpus and a probability model (namely, the
unrestricted model).

In the following, we define maximum-likelihood estimation as a method that aims at
finding an instance of a given model which maximizes the probability of a given corpus.
Later on, we will see that maximum-likelihood estimates have an additional property: They
are the instances of the given probability model that have a “minimal distance” to the relative
frequencies of the types in the corpus (see Theorem 2). So, indeed, maximum-likelihood
estimates can be intuitively thought of in the intended way: They are the instances of the
probability model that might have originally generated the corpus.

Definition 6 Let f be a non-empty and finite corpus on a countable set X of types. Let M
be a probability model on X . The probability of the corpus allocated by an instance p of
the model M is defined as

L(f ; p) =
∏

x∈X

p(x)f(x)

An instance p̂ of the model M is called a maximum-likelihood estimate of M on f , if
and only if the corpus f is allocated a maximum probability by p̂

L(f ; p̂) = max
p∈M

L(f ; p)

(Based on continuity arguments, we use the convention that p0 = 1 and 00 = 1.)

4

p~

???

M(X)

M

M(X)
~p = p

M

p̂

^

Figure 2: Maximum-likelihood estimation and relative-frequency estimation yield for some “excep-

tional” probability models the same estimate. These models are lightly restricted or even unrestricted

models that contain an instance comprising the relative frequencies of all corpus types (left-hand side).

In practice, however, most probability models will not behave like that. So, maximum-likelihood es-

timation and relative-frequency estimation yield in most cases different estimates. As a further and

more serious consequence, the maximum-likelihood estimates have then to be searched for by genuine

optimization procedures (right-hand side).

By looking at this definition, we recognize that maximum-likelihood estimates are the solu-
tions of a quite complex optimization problem. So, some nasty questions about maximum-
likelihood estimation arise:

Existence Is there for any probability model and any corpus a maximum-likelihood
estimate of the model on the corpus?

Uniqueness Is there for any probability model and any corpus a unique maximum-
likelihood estimate of the model on the corpus?

Computability For which probability models and corpora can maximum-likelihood
estimates be efficiently computed?

For some probability models M, the following theorem gives a positive answer.

Theorem 1 Let f be a non-empty and finite corpus on a countable set X of types. Then:

(i) The relative-frequency estimate p̃ is a unique maximum-likelihood estimate of the unre-
stricted probability model M(X) on f .

(ii) The relative-frequency estimate p̃ is a maximum-likelihood estimate of a (restricted or
unrestricted) probability model M on f , if and only if p̃ is an instance of the model M.
In this case, p̃ is a unique maximum-likelihood estimate of M on f .

Proof Ad (i): Combine theorems 2 and 3. Ad (ii): “⇒” is trivial. “⇐” by (i) q.e.d.

On a first glance, proposition (ii) seems to be more general than proposition (i), since propo-
sition (i) is about one single probability model, the unrestricted model, whereas proposi-
tion (ii) gives some insight about the relation of the relative-frequency estimate to a maximum-
likelihood estimate of arbitrary restricted probability models (see also Figure 2). Both propo-
sitions, however, are equivalent. As we will show later on, proposition (i) is equivalent to
the famous information inequality of information theory, for which various proofs have been
given in the literature.

5

Example 1 On the basis of the following corpus

f(a) = 2, f(b) = 3, f(c) = 5

we shall calculate the maximum-likelihood estimate of the unrestricted probability model
M({a, b, c}), as well as the maximum-likelihood estimate of the restricted probability model

M =
{

p ∈ M({a, b, c})
∣

∣

∣ p(a) = 0.5
}

The solution is instructive, but is left to the reader.

The Information Inequality of Information Theory

Definition 7 The relative entropy D(p || q) of the probability distribution p with respect
to the probability distribution q is defined by

D(p || q) =
∑

x∈X

p(x) log
p(x)

q(x)

(Based on continuity arguments, we use the convention that 0 log 0
q = 0 and p log p

0 = ∞ and

0 log 0
0 = 0. The logarithm is calculated with respect to the base 2.)

Connecting maximum-likelihood estimation with the concept of relative entropy, the follow-
ing theorem gives the important insight that the relative-entropy of the relative-frequency
estimate is minimal with respect to a maximum-likelihood estimate.

Theorem 2 Let p̃ be the relative-frequency estimate on a non-empty and finite corpus f , and
let M be a probability model on the set X of types. Then: An instance p̂ of the model M is
a maximum-likelihood estimate of M on f , if and only if the relative-entropy of p̃ is minimal
with respect to p̂

D(p̃ || p̂) = min
p∈M

D(p̃ || p)

Proof First, the relative entropy D(p̃ || p) is simply the difference of two further entropy
values, the so-called cross-entropy H(p̃; p) = −

∑

x∈X p̃(x) log p(x) and the entropy H(p̃) =
−
∑

x∈X p̃(x) log p̃(x) of the relative-frequency estimate

D(p̃ || p) = H(p̃; p) − H(p̃)

(Based on continuity arguments and in full agreement with the convention used in Definition 7,
we use here that p̃ log 0 = −∞ and 0 log 0 = 0.) It follows that minimizing the relative
entropy is equivalent to minimizing the cross-entropy (as a function of the instances p of
the given probability model M). The cross-entropy, however, is proportional to the negative
log-probability of the corpus f

H(p̃; p) = −
1

|f |
log L(f ; p)

6

So, finally, minimizing the relative entropy D(p̃ || p) is equivalent to maximizing the corpus
probability L(f ; p). 3

Together with Theorem 2, the following theorem, the so-called information inequality of
information theory, proves Theorem 1. The information inequality states simply that the
relative entropy is a non-negative number – which is zero, if and only if the two probability
distributions are equal.

Theorem 3 (Information Inequality) Let p and q be two probability distributions. Then

D(p || q) ≥ 0

with equality if and only if p(x) = q(x) for all x ∈ X .

Proof See, e.g., Cover and Thomas (1991), page 26.

*Maximum-Entropy Estimation

Readers only interested in the expectation-maximization algorithm are encouraged to omit
this section. For completeness, however, note that the relative entropy is asymmetric. That
means, in general

D(p||q) 6= D(q||p)

It is easy to check that the triangle inequality is not valid too. So, the relative entropy D(.||.)
is not a “true” distance function. On the other hand, D(.||.) has some of the properties of a
distance function. In particular, it is always non-negative and it is zero if and only if p = q

(see Theorem 3). So far, however, we aimed at minimizing the relative entropy with respect
to its second argument, filling the first argument slot of D(.||.) with the relative-frequency
estimate p̃. Obviously, these observations raise the question, whether it is also possible to
derive other “good” estimates by minimizing the relative entropy with respect to its first
argument. So, in terms of Theorem 2, it might be interesting to ask for model instances
p∗ ∈ M with

D(p∗||p̃) = min
p∈M

D(p||p̃)

For at least two reasons, however, this initial approach of relative-entropy estimation is too
simplistic. First, it is tailored to probability models that lack any generalization power.
Second, it does not provide deeper insight when estimating constrained probability models.
Here are the details:

3For completeness, note that the perplexity of a corpus f allocated by a model instance p is defined as

perp(f ; p) = 2H(p̃;p). This yields perp(f ; p) = |f|

√

1
L(f ;p)

and L(f ; p) =
(

1
perp(f ;p)

)|f |

as well as the common

interpretation that the perplexity value measures the complexity of the given corpus from the

model instance’s view: the perplexity is equal to the size of an imaginary word list from which the corpus
can be generated by the model instance – assuming that all words on this list are equally probable. Moreover,
the equations state that minimizing the corpus perplexity perp(f ; p) is equivalent to maximizing the corpus
probability L(f ; p).

7

• A closer look at Definition 7 reveals that the relative entropy D(p||p̃) is finite for those
model instances p ∈ M only that fulfill

p̃(x) = 0 ⇒ p(x) = 0

So, the initial approach would lead to model instances that are completely unable to
generalize, since they are not allowed to allocate positive probabilities to at least some
of the types not seen in the training corpus.

• Theorem 2 guarantees that the relative-frequency estimate p̃ is a solution to the initial
approach of relative-entropy estimation, whenever p̃ ∈ M. Now, Definition 8 introduces
the constrained probability models Mconstr, and indeed, it is easy to check that p̃ is
always an instance of these models. In other words, estimating constrained probability
models by the approach above does not result in interesting model instances.

Clearly, all the mentioned drawbacks are due to the fact that the relative-entropy minimization
is performed with respect to the relative-frequency estimate. As a resource, we switch simply
to a more convenient reference distribution, thereby generalizing formally the initial problem
setting. So, as the final request, we ask for model instances p∗ ∈ M with

D(p∗||p0) = min
p∈M

D(p||p0)

In this setting, the reference distribution p0 ∈ M(X) is a given instance of the unrestricted
probability model, and from what we have seen so far, p0 should allocate all types of interest
a positive probability, and moreover, p0 should not be itself an instance of the probability
model M. Indeed, this request will lead us to the interesting maximum-entropy estimates.
Note first, that

D(p||p0) = H(p; p0) − H(p)

So, minimizing D(p||p0) as a function of the model instances p is equivalent to minimizing
the cross entropy H(p; p0) and simultaneously maximizing the model entropy H(p). Now,
simultaneous optimization is a hard task in general, and this gives reason to focus firstly
on maximizing the entropy H(p) in isolation. The following definition presents maximum-
entropy estimation in terms of the well-known maximum-entropy principle (Jaynes 1957).
Sloppily formulated, the maximum-entropy principle recommends to maximize the entropy
H(p) as a function of the instances p of certain “constrained” probability models.

Definition 8 Let f1, . . . , fd be a finite number of real-valued functions on a set X of types,
the so-called feature functions4. Let p̃ be the relative-frequency estimate on a non-empty

4Each of these feature functions can be thought of as being constructed by inspecting the set of types,
thereby measuring a specific property of the types x ∈ X . For example, if working in a formal-grammar
framework, then it might be worthy to look (at least) at some feature functions fr directly associated to the
rules r of the given formal grammar. The “measure” fr(x) of a specific rule r for the analyzes x ∈ X of the
grammar might be calculated, for example, in terms of the occurrence frequency of r in the sequence of those
rules which are necessary to produce x. For instance, Chi (1999) studied this approach for the context-free
grammar formalism. Note, however, that there is in general no recipe for constructing “good” feature functions:
Often, it is really an intellectual challenge to find those feature functions that describe the given data as best
as possible (or at least in a satisfying manner).

8

and finite corpus f on X . Then, the probability model constrained by the expected
values of f1 . . . fd on f is defined as

Mconstr =

{

p ∈ M(X)

∣

∣

∣

∣

∣

Epfi = Ep̃fi for i = 1, . . . , d

}

Here, each Epfi is the model instance’s expectation of fi

Epfi =
∑

x∈X

p(x)fi(x)

constrained to match Ep̃fi, the observed expectation of fi

Ep̃fi =
∑

x∈X

p̃(x)fi(x)

Furthermore, a model instance p∗ ∈ Mconstr is called a maximum-entropy estimate of
Mconstr if and only if

H(p∗) = max
p∈Mconstr

H(p)

It is well-known that the maximum-entropy estimates have some nice properties. For example,
as Definition 9 and Theorem 4 show, they can be identified to be the unique maximum-
likelihood estimates of the so-called exponential models (which are also known as log-linear
models).

Definition 9 Let f1, . . . , fd be a finite number of feature functions on a set X of types. The
exponential model of f1, . . . , fd is defined by

Mexp =

{

p ∈ M(X)

∣

∣

∣

∣

∣

p(x) =
1

Zλ
eλ1f1(x)+...+λdfd(x) with λ1, . . . , λd, Zλ ∈ R

}

Here, the normalizing constant Zλ (with λ as a short form for the sequence λ1, . . . , λd)
guarantees that p ∈ M(X), and it is given by

Zλ =
∑

x∈X

eλ1f1(x)+...+λdfd(x)

Theorem 4 Let f be a non-empty and finite corpus, and f1, . . . , fd be a finite number of
feature functions on a set X of types. Then

(i) The maximum-entropy estimates of Mconstr are instances of Mexp, and the maximum-
likelihood estimates of Mexp on f are instances of Mconstr.

(ii) If p∗ ∈ Mconstr ∩Mexp, then p∗ is both a unique maximum-entropy estimate of Mconstr

and a unique maximum-likelihood estimate of Mexp on f .

Part (i) of the theorem simply suggests the form of the maximum-entropy or maximum-
likelihood estimates we are looking for. By combining both findings of (i), however, the
search space is drastically reduced for both estimation methods: We simply have to look at
the intersection of the involved probability models. In turn, exactly this fact makes the second
part of the theorem so valuable. If there is a maximum-entropy or a maximum-likelihood

9

maximum-likelihood

estimation
of

arbitrary probability models

exponential models

exponential models
with reference distributions

⇐⇒

minimum relative-entropy estimation

minimize D(p̃||.)
(p̃=relative-frequency estimate)

maximum-entropy estimation

of constrained models

minimum relative-entropy estimation

of constrained models

minimize D(.||p0)
(p0=reference distribution)

Figure 3: Maximum-likelihood estimation generalizes maximum-entropy estimation, as well as both

variants of minimum relative-entropy estimation (where either the first or the second argument slot of

D(.||.) is filled by a given probability distribution).

estimate, then it is in the intersection of both models, and thus according to Part (ii), it is a
unique estimate, and even more, it is both a maximum-entropy and a maximum-likelihood
estimate.

Proof See e.g. Cover and Thomas (1991), pages 266-278. For an interesting alternate proof
of (ii), see Ratnaparkhi (1997). Note, however, that the proof of Ratnaparkhi’s Theorem 1
is incorrect, whenever the set X of types is infinite. Although Ratnaparkhi’s proof is very
elegant, it relies on the existence of a uniform distribution on X that simply does not exist
in this special case. By contrast, Cover and Thomas prove Theorem 11.1.1 without using a
uniform distribution on X , and so, they achieve indeed the more general result.

Finally, we are coming back to our request of minimizing the relative entropy with respect to
a given reference distribution p0 ∈ M(X). For constrained probability models, the relevant
results differ not much from the results described in Theorem 4. So, let

Mexp·ref =

{

p ∈ M(X)

∣

∣

∣

∣

∣

p(x) =
1

Zλ
eλ1f1(x)+...+λdfd(x) · p0(x) with λ1, . . . , λd, Zλ ∈ R

}

Then, along the lines of the proof of Theorem 4 it can be also proven that the following
propositions are valid.

(i) The minimum relative-entropy estimates of Mconstr are instances of Mexp·ref , and the
maximum-likelihood estimates of Mexp·ref on f are instances of Mconstr.

(ii) If p∗ ∈ Mconstr ∩Mexp·ref , then p∗ is both a unique minimum relative-entropy estimate
of Mconstr and a unique maximum-likelihood estimate of Mexp·ref on f .

All results are displayed in Figure 3.

3 The Expectation-Maximization Algorithm

The expectation-maximization algorithm was introduced by Dempster et al. (1977), who also
presented its main properties. In short, the EM algorithm aims at finding maximum-likelihood

10

of the complete−data model
sequence of instances

aiming at maximizing the probability
of the incomplete−data corpus

(input)
Expectation−Maximization Algorithm

(output)

symbolic analyzer

complete data

corpus
starting

complete−data
model

instance

incomplete−data

incomplete data

Figure 4: Input and output of the EM algorithm.

estimates for settings where this appears to be difficult if not impossible. The trick of the
EM algorithm is to map the given data to complete data on which it is well-known how
to perform maximum-likelihood estimation. Typically, the EM algorithm is applied in the
following setting:

• Direct maximum-likelihood estimation of the given probability model on the given cor-
pus is not feasible. For example, if the likelihood function is too complex (e.g. it is a
product of sums).

• There is an obvious (but one-to-many) mapping to complete data, on which maximum-
likelihood estimation can be easily done. The prototypical example is indeed that
maximum-likelihood estimation on the complete data is already a solved problem.

Both relative-frequency and maximum-likelihood estimation are common estimation methods
with a two-fold input, a corpus and a probability model5 such that the instances of the
model might have generated the corpus. The output of both estimation methods is simply
an instance of the probability model, ideally, the unknown distribution that generated the
corpus. In contrast to this setting, in which we are almost completely informed (the only
thing that is not known to us is the unknown distribution that generated the corpus), the
expectation-maximization algorithm is designed to estimate an instance of the probability
model for settings, in which we are incompletely informed.

To be more specific, instead of a complete-data corpus, the input of the expectation-
maximization algorithm is an incomplete-data corpus together with a so-called symbolic
analyzer. A symbolic analyzer is a device assigning to each incomplete-data type a set
of analyzes, each analysis being a complete-data type. As a result, the missing complete-
data corpus can be partly compensated by the expectation-maximization algorithm: The
application of the the symbolic analyzer to the incomplete-data corpus leads to an ambiguous
complete-data corpus. The ambiguity arises as a consequence of the inherent analytical
ambiguity of the symbolic analyzer: the analyzer can replace each token of the incomplete-
data corpus by a set of complete-data types – the set of its analyzes – but clearly, the symbolic
analyzer is not able to resolve the analytical ambiguity.

The expectation-maximization algorithm performs a sequence of runs over the resulting
ambiguous complete-data corpus. Each of these runs consists of an expectation step fol-
lowed by a maximization step. In the E step, the expectation-maximization algorithm

5We associate the relative-frequency estimate with the unrestricted probability model

11

combines the symbolic analyzer with an instance of the probability model. The results of
this combination is a statistical analyzer which is able to resolve the analytical ambi-
guity introduced by the symbolic analyzer. In the M step, the expectation-maximization
algorithm calculates an ordinary maximum-likelihood estimate on the resolved complete-data
corpus.

In general, however, a sequence of such runs is necessary. The reason is that we never
know which instance of the given probability model leads to a good statistical analyzer, and
thus, which instance of the probability model shall be used in the E-step. The expectation-
maximization algorithm provides a simple but somehow surprising solution to this serious
problem. At the beginning, a randomly generated starting instance of the given probability
model is used for the first E-step. In further iterations, the estimate of the M-step is used
for the next E-step. Figure 4 displays the input and the output of the EM algorithm. The
procedure of the EM algorithm is displayed in Figure 5.

Symbolic and Statistical Analyzers

Definition 10 Let X and Y be non-empty and countable sets. A function

A : Y → 2X

is called a symbolic analyzer if the (possibly empty) sets of analyzes A(y) ⊆ X are
pair-wise disjoint, and the union of all sets of analyzes A(y) is complete

X =
∑

y∈Y

A(y)

In this case, Y is called the set of incomplete-data types, whereas X is called the set of
complete-data types. So, in other words, the analyzes A(y) of the incomplete-data types y

form a partition of the complete-data X . Therefore, for each x ∈ X exists a unique y ∈ Y,
the so-called yield of x, such that x is an analysis of y

y = yield(x) if and only if x ∈ A(y)

For example, if working in a formal-grammar framework, the grammatical sentences can be
interpreted as the incomplete-data types, whereas the grammatical analyzes of the sentences
are the complete-data types. So, in terms of Definition 10, a so-called parser – a device
assigning a set of grammatical analyzes to a given sentence – is clearly a symbolic analyzer:
The most important thing to check is that the parser does not assign a given grammatical
analysis to two different sentences – which is pretty obvious, if the sentence words are part
of the grammatical analyzes.

Definition 11 A pair <A, p> consisting of a symbolic analyzer A and a probability distri-
bution p on the complete-data types X is called a statistical analyzer. We use a statistical
analyzer to induce probabilities for the incomplete-data types y ∈ Y

p(y) :=
∑

x∈A(y)

p(x)

12

symbolic analyzer

f q

complete−data
corpus

model
complete−data

M step: maximum−likelihood estimation
on complete data (corpus and model)

E step: generate the complete−data−corpus
expected by qcorpus

incomplete−data

instance of the

q

complete−data model

(input/output)

Figure 5: Procedure of the EM algorithm. An incomplete-data corpus, a symbolic analyzer (a device

assigning to each incomplete-data type a set of complete-data types), and a complete-data model are

given. In the E step, the EM algorithm combines the symbolic analyzer with an instance q of the

probability model. The results of this combination is a statistical analyzer that is able to resolve the

ambiguity of the given incomplete data. In fact, the statistical analyzer is used to generate an expected

complete-data corpus fq. In the M step, the EM algorithm calculates an ordinary maximum-likelihood

estimate of the complete-data model on the complete-data corpus generated in the E step. In further

iterations, the estimates of the M-steps are used in the subsequent E-steps. The output of the EM

algorithm are the estimates that are produced in the M steps.

Even more important, we use a statistical analyzer to resolve the analytical ambiguity of
an incomplete-data type y ∈ Y by looking at the conditional probabilities of the analyzes
x ∈ A(y)

p(x|y) :=
p(x)

p(y)
where y = yield(x)

It is easy to check that the statistical analyzer induces a proper probability distribution on
the set Y of incomplete-data types

∑

y∈Y

p(y) =
∑

y∈Y

∑

x∈A(y)

p(x) =
∑

x∈X

p(x) = 1

Moreover, the statistical analyzer induces also proper conditional probability distributions on
the sets of analyzes A(y)

∑

x∈A(y)

p(x|y) =
∑

x∈A(y)

p(x)

p(y)
=

∑

x∈A(y) p(x)

p(y)
=

p(y)

p(y)
= 1

Of course, by defining p(x|y) = 0 for y 6= yield(x), p(.|y) is even a probability distribution on
the full set X of analyzes.

Input, Procedure, and Output of the EM Algorithm

Definition 12 The input of the expectation-maximization (EM) algorithm is

13

(i) a symbolic analyzer, i.e., a function A which assigns a set of analyzes A(y) ⊆ X
to each incomplete-data type y ∈ Y, such that all sets of analyzes form a partition
of the set X of complete-data types

X =
∑

y∈Y

A(y)

(ii) a non-empty and finite incomplete-data corpus, i.e., a frequency distribution f on
the set of incomplete-data types

f : Y → R such that f(y) ≥ 0 for all y ∈ Y and 0 < |f | < ∞

(iii) a complete-data model M ⊆ M(X), i.e., each instance p ∈ M is a probability
distribution on the set of complete-data types

p : X → [0, 1] and
∑

x∈X

p(x) = 1

(*) implicit input: an incomplete-data model M ⊆ M(Y) induced by the symbolic
analyzer and the complete-data model. To see this, recall Definition 11. Together with a
given instance of the complete-data model, the symbolic analyzer constitutes a statistical
analyzer which, in turn, induces the following instance of the incomplete-data model

p : Y → [0, 1] and p(y) =
∑

x∈A(y)

p(x)

(Note: For both complete and incomplete data, the same notation symbols M and p are
used. The sloppy notation, however, is justified, because the incomplete-data model is a
marginal of the complete-data model.)

(iv) a (randomly generated) starting instance p0 of the complete-data model M.
(Note: If permitted by M, then p0 should not assign to any x ∈ X a probability of zero.)

Definition 13 The procedure of the EM algorithm is

(1) for each i = 1, 2, 3, ... do
(2) q := pi−1

(3) E-step: compute the complete-data corpus fq : X → R expected by q

fq(x) := f(y) · q(x|y) where y = yield(x)

(4) M-step: compute a maximum-likelihood estimate p̂ of M on fq

L(fq; p̂) = max
p∈M

L(fq, p)

(Implicit pre-condition of the EM algorithm: it exists!)
(5) pi := p̂

(6) end // for each i

(7) print p0, p1, p2, p3, ...

14

3analyzes of y
total frequency = f(y3)

2analyzes of y
total frequency = f(y2)

1analyzes of y
total frequency = f(y1)

fincomplete−data corpus

. . .

. . .
f qcomplete−data corpus

x x xx 22 2321

. . .
x... x xx 32 3331

. . .
x...

2

x x12 1311

. . .
x...

y1 y y3

. . .
distribute f(y) to the analyzes x of y according q(x|y)

Figure 6: The E step of the EM algorithm. A complete-data corpus fq(x) is generated on the basis

of the incomplete-data corpus f(y) and the conditional probabilities q(x|y) of the analyzes of y. The

frequency f(y) is distributed among the complete-data types x ∈ A(y) according to the conditional

probabilities q(x|y). A simple reversed procedure guarantees that the original incomplete-data corpus

f(y) can be recovered from the generated corpus fq(x): Sum up all frequencies fq(x) with x ∈ A(y).

So the size of both corpora is the same |fq| = |f |. Memory hook : fq is the qomplete data corpus.

In line (3) of the EM procedure, a complete-data corpus fq(x) has to be generated on the basis
of the incomplete-data corpus f(y) and the conditional probabilities q(x|y) of the analyzes of y

(conditional probabilities are introduced in Definition 11). In fact, this generation procedure
is conceptually very easy: according to the conditional probabilities q(x|y), the frequency
f(y) has to be distributed among the complete-data types x ∈ A(y). Figure 6 displays the
procedure. Moreover, there exists a simple reversed procedure (summation of all frequencies
fq(x) with x ∈ A(y)) which guarantees that the original corpus f(y) can be recovered from
the generated corpus fq(x). Finally, the size of both corpora is the same

|fq| = |f |

In line (4) of the EM procedure, it is stated that a maximum-likelihood estimate p̂ of the
complete-data model has to be computed on the complete-data corpus fq expected by q.
Recall for this purpose that the probability of fq allocated by an instance p ∈ M is defined
as

L(fq; p) =
∏

x∈X

p(x)fq(x)

In contrast, the probability of the incomplete-data corpus f allocated by an instance p of the
incomplete-data model is much more complex. Using Definition 12.*, we get an expression
involving a product of sums

L(f ; p) =
∏

y∈Y

∑

x∈A(y)

p(x)

f(y)

15

Nevertheless, the following theorem reveals that the EM algorithm aims at finding an instance
of the incomplete-data model which possibly maximizes the probability of the incomplete-data
corpus.

Theorem 5 The output of the EM algorithm is: A sequence of instances of the complete-data
model M, the so-called EM re-estimates,

p0, p1, p2, p3, ...

such that the sequence of probabilities allocated to the incomplete-data corpus is monotonic
increasing

L(f ; p0) ≤ L(f ; p1) ≤ L(f ; p2) ≤ L(f ; p3) ≤ . . .

It is common wisdom that the sequence of EM re-estimates will converge to a (local) maximum-
likelihood estimate of the incomplete-data model on the incomplete-data corpus. As proven by
Wu (1983), however, the EM algorithm will do this only in specific circumstances. Of course,
it is guaranteed that the sequence of corpus probabilities (allocated by the EM re-estimates)
must converge. However, we are more interested in the behavior of the EM re-estimates itself.
Now, intuitively, the EM algorithm might get stuck in a saddle point or even a local mini-
mum of the corpus-probability function, whereas the associated model instances are hopping
uncontrolled around (for example, on a circle-like path in the “space” of all model instances).

Proof See theorems 6 and 7.

The Generalized Expectation-Maximization Algorithm

The EM algorithm performs a sequence of maximum-likelihood estimations on complete data,
resulting in good re-estimates on incomplete-data (“good” in the sense of Theorem 5). The
following theorem, however, reveals that the EM algorithm might overdo it somehow, since
there exist alternative M-steps which can be easier performed, and which result in re-estimates
having the same property as the EM re-estimates.

Definition 14 A generalized expectation-maximization (GEM) algorithm has exactly the same
input as the EM-algorithm, but an easier M-step is performed in its procedure:

(4) M-step (GEM): compute an instance p̂ of the complete-data model M such that

L(fq; p̂) ≥ L(fq; q)

Theorem 6 The output of a GEM algorithm is: A sequence of instances of the complete-data
model M, the so-called GEM re-estimates, such that the sequence of probabilities allocated
to the incomplete-data corpus is monotonic increasing.

Proof Various proofs have been given in the literature. The first one was presented by
Dempster et al. (1977). For other variants of the EM algorithm, the book of McLachlan and Krishnan (1997)
is a good source. Here, we present something along the lines of the original proof. Clearly,
a proof of the theorem requires somehow that we are able to express the probability of the
given incomplete-data corpus f in terms of the the probabilities of complete-data corpora fq

16

which are involved in the M-steps of the GEM algorithm (where both types of corpora are
allocated a probability by the same instance p of the model M). A certain entity, which we
would like to call the expected cross-entropy on the analyzes, plays a major role for
solving this task. To be specific, the expected cross-entropy on the analyzes is defined as the
expectation of certain cross-entropy values HA(y)(q, p) which are calculated on the different
sets A(y) of analyzes. Then, of course, the “expectation” is calculated on the basis of the
relative-frequency estimate p̃ of the given incomplete-data corpus

HA(q; p) =
∑

y∈Y

p̃(y) · HA(y)(q; p)

Now, for two instances q and p of the complete-data model, their conditional probabilities
q(x|y) and p(x|y) form proper probability distributions on the set A(y) of analyzes of y (see
Definition 11). So, the cross-entropy HA(y)(q; p) on the set A(y) is simply given by

HA(y)(q; p) = −
∑

x∈A(y)

q(x|y) log p(x|y)

Recalling the central task of this proof, a bunch of relatively straight-forward calculations
leads to the following interesting equation6

L(f ; p) =
(

2HA(q;p)
)|f |

· L(fq; p)

Using this equation, we can state that

L(f ; p)

L(f ; q)
=
(

2HA(q;p)−HA(q,q)
)|f |

·
L(fq; p)

L(fq; q)

In what follows, we will show that, after each M-step of a GEM algorithm (i.e. for p being a
GEM re-estimate p̂), both of the factors on the right-hand side of this equation are not less
than one. First, an iterated application of the information inequality of information theory
(see Theorem 3) yields

HA(q; p) − HA(q, q) =
∑

y∈Y

p̃(y) ·
(

HA(y)(q; p) − HA(y)(q; q)
)

=
∑

y∈Y

p̃(y) · DA(y)(q||p)

≥ 0

6It is easier to show that
H(p̃; p) = H(p̃q; p) − HA(q; p).

Here, p̃ is the relative-frequency estimate on the incomplete-data corpus f , whereas p̃q is the relative-frequency
estimate on the complete-data corpus fq . However, by defining an “average perplexity of the analyzes”,
perpA(q; p) := 2HA(q;p) (see also Footnote 3), the true spirit of the equation can be revealed:

L(fq ; p) = L(f ; p) ·

(

1

perpA(q; p)

)|f |

This equation states that the probability of a complete-data corpus (generated by a statistical analyzer) is the
product of the probability of the given incomplete-data corpus and |f |-times the average probability of the
different corpora of analyzes (as generated for each of the |f | tokens of the incomplete-data corpus).

17

So, the first factor is never (i.e. for no model instance p) less than one

(

2HA(q;p)−HA(q,q)
)|f |

≥ 1

Second, by definition of the M-step of a GEM algorithm, the second factor is also not less
than one

L(fq; p̂)

L(fq; q)
≥ 1

So, it follows
L(f ; p̂)

L(f ; q)
≥ 1

yielding that the probability of the incomplete-data corpus allocated by the GEM re-estimate
p̂ is not less than the probability of the incomplete-data corpus allocated by the model instance
q (which is either the starting instance p0 of the GEM algorithm or the previously calculated
GEM re-estimate)

L(f ; p̂) ≥ L(f ; q)

Theorem 7 An EM algorithm is a GEM algorithm.

Proof In the M-step of an EM algorithm, a model instance p̂ is selected such that

L(fq; p̂) = max
p∈M

L(fq, p)

So, especially
L(fq; p̂) ≥ L(fq, q)

and the requirements of the M-step of a GEM algorithm are met.

4 Rolling Two Dice

Example 2 We shall now consider an experiment in which two loaded dice are rolled, and
we shall compute the relative-frequency estimate on a corpus of outcomes.

If we assume that the two dice are distinguishable, each outcome can be represented as a
pair of numbers (x1, x2), where x1 is the number that appears on the first die and x2 is the
number that appears on the second die. So, for this experiment, an appropriate set X of
types comprises the following 36 outcomes:

(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
x1 = 2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
x1 = 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
x1 = 4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
x1 = 5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
x1 = 6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

18

If we throw the two dice a 100 000 times, then the following occurrence frequencies might
arise

f(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 3790 3773 1520 1498 2233 2298
x1 = 2 3735 3794 1497 1462 2269 2184
x1 = 3 4903 4956 1969 2035 2883 3010
x1 = 4 2495 2519 1026 1049 1487 1451
x1 = 5 3820 3735 1517 1498 2276 2191
x1 = 6 6369 6290 2600 2510 3685 3673

The size of this corpus is |f | = 100 000. So, the relative-frequency estimate p̃ on f can be
easily computed (see Definition 4)

p̃(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 0.03790 0.03773 0.01520 0.01498 0.02233 0.02298
x1 = 2 0.03735 0.03794 0.01497 0.01462 0.02269 0.02184
x1 = 3 0.04903 0.04956 0.01969 0.02035 0.02883 0.03010
x1 = 4 0.02495 0.02519 0.01026 0.01049 0.01487 0.01451
x1 = 5 0.03820 0.03735 0.01517 0.01498 0.02276 0.02191
x1 = 6 0.06369 0.06290 0.02600 0.02510 0.03685 0.03673

Example 3 We shall consider again Experiment 2 in which two loaded dice are rolled, but
we shall now compute the relative-frequency estimate on the corpus of outcomes of the first
die, as well as on the corpus of outcomes of the second die.

If we look at the same corpus as in Example 2, then the corpus f1 of outcomes of the first
die can be calculated as f1(x1) =

∑

x2
f(x1, x2). An analog summation yields the corpus of

outcomes of the second die, f2(x2) =
∑

x1
f(x1, x2). Obviously, the sizes of all corpora are

identical |f1| = |f2| = |f | = 100 000. So, the relative-frequency estimates p̃1 on f1 and p̃2 on
f2 are calculated as follows

f1(x1) x1

15112 1
14941 2
19756 3
10027 4
15037 5
25127 6

p̃1(x1) x1

0.15112 1
0.14941 2
0.19756 3
0.10027 4
0.15037 5
0.25127 6

f2(x2) x2

25112 1
25067 2
10129 3
10052 4
14833 5
14807 6

p̃2(x2) x2

0.25112 1
0.25067 2
0.10129 3
0.10052 4
0.14833 5
0.14807 6

Example 4 We shall consider again Experiment 2 in which two loaded dice are rolled, but
we shall now compute a maximum-likelihood estimate of the probability model which assumes
that the numbers appearing on the first and second die are statistically independent.

First, recall the definition of statistical independence (see e.g. Duda et al. (2001), page 613).

Definition 15 The variables x1 and x2 are said to be statistically independent given a
joint probability distribution p on X if and only if

p(x1, x2) = p1(x1) · p2(x2)

19

where p1 and p2 are the marginal distributions for x1 and x2

p1(x1) =
∑

x2

p(x1, x2)

p2(x2) =
∑

x1

p(x1, x2)

So, let M1/2 be the probability model which assumes that the numbers appearing on the first
and second die are statistically independent

M1/2 = {p ∈ M(X) | x1 and x2 are statistically independent given p}

In Example 2, we have calculated the relative-frequency estimator p̃. Theorem 1 states that p̃

is the unique maximum-likelihood estimate of the unrestricted model M(X). Thus, p̃ is also a
candidate for a maximum-likelihood estimate of M1/2. Unfortunately, however, x1 and x2 are
not statistically independent given p̃ (see e.g. p̃(1, 1) = 0.03790 and p̃1(1)·p̃2(1) = 0.0379493).
This has two consequences for the experiment in which two (loaded) dice are rolled:

• the probability model, which assumes that the numbers appearing on the first and
second die are statistically independent, is a restricted model (see Definition 5), and

• the relative-frequency estimate is in general not a maximum-likelihood esti-
mate of the standard probability model assuming that the numbers appearing on
the first and second die are statistically independent.

Therefore, we are now following Definition 6 to compute the maximum-likelihood estimate
of M1/2. Using the independence property, the probability of the corpus f allocated by an
instance p of the model M1/2 can be calculated as

L(f ; p) =

∏

x1=1,...,6

p1(x1)
f1(x1)

 ·

∏

x2=1,...,6

p2(x2)
f2(x2)

 = L(f1; p1) · L(f2; p2)

Definition 6 states that the maximum-likelihood estimate p̂ of M1/2 on f must maximize
L(f ; p). A product, however, is maximized, if and only if its factors are simultaneously
maximized. Theorem 1 states that the corpus probabilities L(fi; pi) are maximized by the
relative-frequency estimators p̃i. Therefore, the product of the relative-frequency estimators
p̃1 and p̃2 (on f1 and f2 respectively) might be a candidate for the maximum-likelihood
estimate p̂ we are looking for

p̂(x1, x2) = p̃1(x1) · p̃2(x2)

Now, note that the marginal distributions of p̂ are identical with the relative-frequency esti-
mators on f1 and f2. For example, p̂’s marginal distribution for x1 is calculated as

p̂1(x1) =
∑

x2

p̂(x1, x2) =
∑

x2

p̃1(x1) · p̃2(x2) = p̃1(x1) ·
∑

x2

p̃2(x2) = p̃1(x1) · 1 = p̃1(x1)

A similar calculation yields p̂2(x2) = p̃2(x2). Both equations state that x1 and x2 are indeed
statistically independent given p̂

p̂(x1, x2) = p̂1(x1) · p̂2(x2)

20

So, finally, it is guaranteed that p̂ is an instance of the probability model M1/2 as required
for a maximum-likelihood estimate of M1/2. Note: p̂ is even an unique maximum-likelihood
estimate since the relative-frequency estimates p̃i are unique maximum-likelihood estimates
(see Theorem 1). The relative-frequency estimates p̃1 and p̃2 have already been calculated in
Example 3. So, p̂ is calculated as follows

p̂(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 0.0379493 0.0378813 0.0153069 0.0151906 0.0224156 0.0223763
x1 = 2 0.0375198 0.0374526 0.0151337 0.0150187 0.022162 0.0221231
x1 = 3 0.0496113 0.0495224 0.0200109 0.0198587 0.0293041 0.0292527
x1 = 4 0.0251798 0.0251347 0.0101563 0.0100791 0.014873 0.014847
x1 = 5 0.0377609 0.0376932 0.015231 0.0151152 0.0223044 0.0222653
x1 = 6 0.0630989 0.0629859 0.0254511 0.0252577 0.0372709 0.0372055

Example 5 We shall consider again Experiment 2 in which two loaded dice are rolled. Now,
however, we shall assume that we are incompletely informed: the corpus of outcomes (which
is given to us) consists only of the sums of the numbers which appear on the first and second
die. Nevertheless, we shall compute an estimate for a probability model on the complete-data
(x1, x2) ∈ X .

If we assume that the corpus which is given to us was calculated on the basis of the corpus
given in Example 2, then the occurrence frequency of a sum y can be calculated as f(y) =
∑

x1+x2=y f(x1, x2). These numbers are displayed in the following table

f(y) y

3790 2
7508 3

10217 4
10446 5
12003 6
17732 7
13923 8
8595 9
6237 10
5876 11
3673 12

For example,

f(4) = f(1, 3) + f(2, 2) + f(3, 1) = 1520 + 3794 + 4903 = 10217

The problem is now, whether this corpus of sums can be used to calculate a good esti-
mate on the outcomes (x1, x2) itself. Hint: Examples 2 and 4 have shown that a unique
relative-frequency estimate p̃(x1, x2) and a unique maximum-likelihood estimate p̂(x1, x2) can
be calculated on the basis of the corpus f(x1, x2). However, right now, this corpus is not
available! Putting the example in the framework of the EM algorithm (see Definition 12),
the set of incomplete-data types is

Y = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

21

whereas the set of complete-data types is X . We also know the set of analyzes for each
incomplete-data type y ∈ Y

A(y) = {(x1, x2) ∈ X | x1 + x2 = y}

As in Example 4, we are especially interested in an estimate of the (slightly restricted)
complete-data model M1/2 which assumes that the numbers appearing on the first and
second die are statistically independent. So, for this case, a randomly generated starting in-
stance p0(x1, x2) of the complete-data model is simply the product of a randomly generated
probability distribution p01(x1) for the numbers appearing on the first dice, and a randomly
generated probability distribution p02(x2) for the numbers appearing on the second dice

p0(x1, x2) = p01(x1) · p02(x2)

The following tables display some randomly generated numbers for p01 and p02

p01(x1) x1

0.18 1
0.19 2
0.16 3
0.13 4
0.17 5
0.17 6

p02(x2) x2

0.22 1
0.23 2
0.13 3
0.16 4
0.14 5
0.12 6

Using the random numbers for p01(x1) and p02(x2), a starting instance p0 of the complete-data
model M1/2 is calculated as follows

p0(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 0.0396 0.0414 0.0234 0.0288 0.0252 0.0216
x1 = 2 0.0418 0.0437 0.0247 0.0304 0.0266 0.0228
x1 = 3 0.0352 0.0368 0.0208 0.0256 0.0224 0.0192
x1 = 4 0.0286 0.0299 0.0169 0.0208 0.0182 0.0156
x1 = 5 0.0374 0.0391 0.0221 0.0272 0.0238 0.0204
x1 = 6 0.0374 0.0391 0.0221 0.0272 0.0238 0.0204

For example,

p0(1, 3) = p01(1) · p02(3) = 0.18 · 0.13 = 0.0234

p0(2, 2) = p01(2) · p02(2) = 0.19 · 0.23 = 0.0437

p0(3, 1) = p01(3) · p02(1) = 0.16 · 0.22 = 0.0352

So, we are ready to start the procedure of the EM algorithm.

First EM iteration. In the E-step, we shall compute the complete-data corpus fq

expected by q := p0. For this purpose, the probability of each incomplete-data type given the
starting instance p0 of the complete-data model has to be computed (see Definition 12.*)

p0(y) =
∑

x1+x2=y

p0(x1, x2)

22

The above displayed numbers for p0(x1, x2) yield the following instance of the incomplete-data
model

p0(y) y

0.0396 2
0.0832 3
0.1023 4
0.1189 5
0.1437 6
0.1672 7
0.1272 8
0.0867 9
0.0666 10
0.0442 11
0.0204 12

For example,

p0(4) = p0(1, 3) + p0(2, 2) + p0(3, 1) = 0.0234 + 0.0437 + 0.0352 = 0.1023

So, the complete-data corpus expected by q := p0 is calculated as follows (see line (3) of the
EM procedure given in Definition 13)

fq(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 3790 3735.95 2337.03 2530.23 2104.91 2290.74
x1 = 2 3772.05 4364.45 2170.03 2539.26 2821 2495.63
x1 = 3 3515.53 3233.08 1737.39 2714.95 2451.85 1903.39
x1 = 4 2512.66 2497.49 1792.29 2276.72 1804.26 1460.92
x1 = 5 3123.95 4146.66 2419.01 2696.47 2228.84 2712
x1 = 6 3966.37 4279.79 2190.88 2547.24 3164 3673

For example,

fq(1, 3) = f(4) ·
p0(1, 3)

p0(4)
= 10217 ·

0.0234

0.1023
= 2337.03

fq(2, 2) = f(4) ·
p0(2, 2)

p0(4)
= 10217 ·

0.0437

0.1023
= 4364.45

fq(3, 1) = f(4) ·
p0(3, 1)

p0(4)
= 10217 ·

0.0352

0.1023
= 3515.53

(The frequency f(4) of the dice sum 4 is distributed to its analyzes (1,3), (2,2), and (3,1),
simply by correlating the current probabilities q = p0 of the analyses...)

In the M-step, we shall compute a maximum-likelihood estimate p1 := p̂ of the complete-data
model M1/2 on the complete-data corpus fq. This can be done along the lines of Examples 3
and 4. Note: This is more or less the trick of the EM-algorithm! If it appears to be difficult
to compute a maximum-likelihood estimate of an incomplete-data model then the EM algo-
rithm might solve your problem. It performs a sequence of maximum-likelihood estimations on
complete-data corpora. These corpora contain in general more complex data, but nevertheless,
it might be well-known, how one has to deal with this data! In detail: On the basis of the

23

complete-data corpus fq (where currently q = p0), the corpus fq1 of outcomes of the first die
is calculated as fq1(x1) =

∑

x2
fq(x1, x2), whereas the corpus of outcomes of the second die is

calculated as fq2(x2) =
∑

x1
fq(x1, x2). The following tables display them:

fq1(x1) x1

16788.86 1
18162.42 2
15556.19 3
12344.34 4
17326.93 5
19821.28 6

fq2(x2) x2

20680.56 1
22257.42 2
12646.63 3
15304.87 4
14574.86 5
14535.68 6

For example,

fq1(1) = fq(1, 1) + fq(1, 2) + fq(1, 3) + fq(1, 4) + fq(1, 5) + fq(1, 6)

= 3790 + 3735.95 + 2337.03 + 2530.23 + 2104.91 + 2290.74 = 16788.86

fq2(1) = fq(1, 1) + fq(2, 1) + fq(3, 1) + fq(4, 1) + fq(5, 1) + fq(6, 1)

= 3790 + 3772.05 + 3515.53 + 2512.66 + 3123.95 + 3966.37 = 20680.56

The sizes of both corpora are still |fq1| = |fq2| = |f | = 100 000, resulting in the following
relative-frequency estimates (p11 on fq1 respectively p12 on fq2)

p11(x1) x1

0.167889 1
0.181624 2
0.155562 3
0.123443 4
0.173269 5
0.198213 6

p12(x2) x2

0.206806 1
0.222574 2
0.126466 3
0.153049 4
0.145749 5
0.145357 6

So, the following instance is the maximum-likelihood estimate of the model M1/2 on fq

p1(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 0.0347204 0.0373677 0.0212322 0.0256952 0.0244696 0.0244038
x1 = 2 0.0375609 0.0404247 0.0229692 0.0277973 0.0264715 0.0264003
x1 = 3 0.0321711 0.034624 0.0196733 0.0238086 0.022673 0.022612
x1 = 4 0.0255287 0.0274752 0.0156113 0.0188928 0.0179917 0.0179433
x1 = 5 0.035833 0.0385651 0.0219126 0.0265186 0.0252538 0.0251858
x1 = 6 0.0409916 0.044117 0.0250672 0.0303363 0.0288893 0.0288116

For example,

p1(1, 1) = p11(1) · p12(1) = 0.167889 · 0.206806 = 0.0347204

p1(1, 2) = p11(1) · p12(2) = 0.167889 · 0.222574 = 0.0373677

p1(2, 1) = p11(2) · p12(1) = 0.181624 · 0.206806 = 0.0375609

p1(2, 2) = p11(2) · p12(2) = 0.181624 · 0.222574 = 0.0404247

So, we are ready for the second EM iteration, where an estimate p2 is calculated. If we con-
tinue in this manner, we will arrive finally at the

24

1584th EM iteration. The estimate which is calculated here is

p1584,1(x1) x1

0.158396 1
0.141282 2
0.204291 3
0.0785532 4
0.172207 5
0.24527 6

p1584,2(x2) x2

0.239281 1
0.260559 2
0.104026 3
0.111957 4
0.134419 5
0.149758 6

yielding

p1584(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 1 0.0379012 0.0412715 0.0164773 0.0177336 0.0212914 0.0237211
x1 = 2 0.0338061 0.0368123 0.014697 0.0158175 0.018991 0.0211581
x1 = 3 0.048883 0.0532299 0.0212516 0.0228718 0.0274606 0.0305942
x1 = 4 0.0187963 0.0204678 0.00817158 0.00879459 0.0105591 0.011764
x1 = 5 0.0412059 0.0448701 0.017914 0.0192798 0.0231479 0.0257894
x1 = 6 0.0586885 0.0639074 0.0255145 0.0274597 0.032969 0.0367312

In this example, more EM iterations will result in exactly the same re-estimates. So, this is
a strong reason to quit the EM procedure. Comparing p1584,1 and p1584,2 with the results of
Example 3 (Hint: where we have assumed that a complete-data corpus is given to us!), we see
that the EM algorithm yields pretty similar estimates.

5 Probabilistic Context-Free Grammars

This Section provides a more substantial example based on the context-free grammar or
CFG formalism, and it is organized as follows: First, we will give some background informa-
tion about CFGs, thereby motivating that treating CFGs as generators leads quite naturally
to the notion of a probabilistic context-free grammar (PCFG). Second, we provide some ad-
ditional background information about ambiguity resolution by probabilistic CFGs, thereby
focusing on the fact that probabilistic CFGs can resolve ambiguities, if the underlying CFG
has a sufficiently high expressive power. For other cases, we are pin-pointing to some use-
ful grammar-transformation techniques. Third, we will investigate the standard probability
model of CFGs, thereby proving that this model is restricted in almost all cases of inter-
est. Furthermore, we will give a new formal proof that maximum-likelihood estimation of a
CFG’s probability model on a corpus of trees is equal to the well-known and especially simple
treebank-training method. Finally, we will present the EM algorithm for training a (manually
written) CFG on a corpus of sentences, thereby pin-pointing to the fact that EM training
simply consists of an iterative sequence of treebank-training steps. Small toy examples will
accompany all proofs that are given in this Section.

Background: Probabilistic Modeling of CFGs

Being a bit sloppy (see e.g. Hopcroft and Ullman (1979) for a formal definition), a CFG
simply consists of a finite set of rules, where in turn, each rule consists of two parts being

25

separated by a special symbol “ −→ ”, the so-called rewriting symbol. The two parts
of a rule are made up of so-called terminal and non-terminal symbols: a rule’s left-hand
side simply consists of a single non-terminal symbol, whereas the right-hand side is a finite
sequence of terminal and non-terminal symbols7. Finally, the set of non-terminal symbols
contains at least one so-called starting symbol. CFGs are also called phrase-structure
grammars, and the formalism is equivalent to Backus-Naur forms or BNF introduced
by Backus (1959). In computational linguistics, a CFG is usually used in two ways

• as a generator: a device for generating sentences, or

• as a parser: a device for assigning structure to a given sentence

In the following, we will briefly discuss these two issues. First of all, note that in natural
language, words do not occur in any order. Instead, languages have constraints on word
order8. The central idea underlying phrase-structure grammars is that words are organized
into phrases, i.e., grouping of words that form a unit. Phrases can be detected, for example,
by their ability (i) to stand alone (e.g. as an answer of a wh-question), (ii) to occur in
various sentence positions, or by their ability (iii) to show uniform syntactic possibilities for
expansion or substitution. As an example, here is the very first context-free grammar parse
tree presented by Chomsky (1956):

Sentence

NP

the man

VP

Verb

took

NP

the book

As being displayed, Chomsky identified for the sentence “the man took the book” (encoded
in the leaf nodes of the parse tree) the following phrases: two noun phrases, “the man”
and “the book” (the figure displays them as NP subtrees), and one verb phrase, “took the
book” (displayed as VP subtree). The following list of sentences, where these three phrases
have been substituted or expanded, bears some evidence for Chomsky’s analysis:

he
the man

the tall man
the very tall man

the tall man with sad eyes

took

it
the book

the interesting book
the very interesting book

the very interesting book with 934 pages

Chomsky’s parse tree is based on the following CFG:

Sentence −→ NP VP
NP −→ the man
NP −→ the book
VP −→ Verb NP
Verb −→ took

7As a consequence, the terminal and non-terminal symbols of a given CFG form two finite and disjoint sets.
8Note, however, that so-called free-word-order languages (like Czech, German, or Russian) permit many

different ways of ordering the words in a sentence (without a change in meaning). Instead of word order, these
languages use case markings to indicate who did what to whom.

26

The CFG’s terminal symbols are {the, man, took, book}, its non-terminal symbols are
{Sentence, NP, VP, Verb}, and its starting symbol is “Sentence”. Now, we are coming back
to the beginning of the section, where we mentioned that a CFG is usually thought of in
two ways: as a generator or as a parser. As a generator, the example CFG might produce
the following series of intermediate parse trees (only the last one will be submitted to the
generator’s output):

Sentence Sentence

NP VP

Sentence

NP

the man

VP

Sentence

NP

the man

VP

Verb NP

Sentence

NP

the man

VP

Verb

took

NP

Sentence

NP

the man

VP

Verb

took

NP

the book

Starting with the starting symbol, each of these intermediate parse trees is generated by
applying one rule of the CFG to a suitable non-terminal leaf node of the previous parse
tree, thereby adding the CFG rule as a local tree. The generator stops, if all leaf nodes of
the current parse tree are terminal nodes. The whole generation process, of course, is non-
deterministic, and this fact will lead us later on directly to probabilistic CFGs. As a parser,
instead, the example CFG has to deal with an input sentence like

“the man took the book”

Usually, the parser starts processing the input sentence by assigning the words some local
trees:

NP

the man

Verb

took

NP

the book

Then, the parser tries to add more local trees, by processing all the non-terminal nodes found
in previous steps:

NP

the man

VP

Verb

took

NP

the book

Doing this recursively, the parser provides us with a parse tree of the input sentence:

Sentence

NP

the man

VP

Verb

took

NP

the book

The example CFG is unambiguous for the given input sentence. Note, however, that this is
far away from being the common situation. Usually, the parser stops, if all parse trees of the
input sentence have been generated (and submitted to the output).

27

Now, we demonstrate that the fact that we can understand CFGs as generators leads
directly to the probabilistic context-free grammar or PCFG formalism. As we already
demonstrated for the generation process, the rules of the CFG serve as local trees that are
incrementally used to build up a full parse tree (i.e. a parse tree without any non-terminal
leaf nodes). This process, however, is non-deterministic: At most of its steps, some sort of
random choice is involved that selects one of the different CFG rules which can potentially
be appended to one of the non-terminal leaf nodes of the current parse tree9. Here is an
example in the context of the generation process displayed above. For the CFG underlying
Chomsky’s very first parse tree, the non-terminal symbol NP is the left-hand side of two rules:

NP −→ the man
NP −→ the book

Clearly, when using the underlying CFG as a generator, we have to select either the first
or the second rule, whenever a local NP tree shall be appended to the partial-parse tree given
in the actual generation step. The choice might be either fair (both rules are chosen with
probability 0.5) or unfair (the first rule is chosen, for example, with probability 0.9 and the
second one with probability 0.1). In either case, a random choice between competing rules
can be described by probability values which are directly allocated to the rules:

0 ≤ p(NP −→ the man) ≤ 1 and 0 ≤ p(NP −→ the book) ≤ 1

such that
p(NP −→ the man) + p(NP −→ the book) = 1

Now, having these probabilities at hand, it turns out that it is even possible to predict how
often the generator will produce the one or the other of the following alternate partial-parse
trees:

Sentence

NP

the man

VP

Verb

took

NP

Sentence

NP

the book

VP

Verb

took

NP

p(NP −→ the man) · 100% p(NP −→ the book) · 100%

In turn, having this result at hand, we can also predict how often the generator will produce
full-parse trees, for example, Chomsky’s very first parse tree, or the parse tree of the sentence
“the book took the book”:

9Clearly, the final output of the generator is directly affected by the specific rule that has been selected
by this random choice. Note also that there is another type of uncertainty in the generation process, playing,
however, only a minor role: the specific place at which a CFG rule is to be appended does obviously not
affect the generator’s final output. So, these places can be deterministically chosen. For the generation process
displayed above, for example, we decided to append the local trees always to the left-most non-terminal node
of the actual partial-parse tree.

28

Sentence

NP

the man

VP

Verb

took

NP

the book

Sentence

NP

the book

VP

Verb

took

NP

the book

p(NP −→ the man) · p(NP −→ the book) · 100% p(NP −→ the book) · p(NP −→ the book) · 100%

So, if p(NP −→ the man) = 0.9 and p(NP −→ the book) = 0.1, then it is nine times more likely
that the generator produces Chomsky’s very first parse tree. In the following, we are trying
to generalize this result even a bit more. As we saw, there are three rules in the CFG, which
cause no problems in terms of uncertainty. These are:

Sentence −→ NP VP
VP −→ Verb NP
Verb −→ took

To be more specific, we saw that these three rules have been always deterministically added to
the partial-parse trees of the generation process. In terms of probability theory, determinism
is expressed by the fact that certain events occur with a probability of one. In other words,
a generator selects each of these rules with a probability of 100%, either when starting the
generation process, or when expanding a VP or a Verb non-terminal node. So, we let

p(Sentence −→ NP VP) = 1
p(VP −→ Verb NP) = 1
p(Verb −→ took) = 1

The question is now: Have we won something by treating also the deterministic choices as
probabilistic events? The answer is yes: A closer look at our example reveals that we can
now predict easily how often the generator will produce a specific parse tree: The likelihood
of a CFG’s parse tree can be simply calculated as the product of the probabilities of all rules
occurring in the tree. For example:

Sentence

NP

the man

VP

Verb

took

NP

the book

p(S −→ NP VP) · p(NP −→ the man) · p(VP −→ Verb NP) · p(Verb −→ took) · p(NP −→ the book)

To wrap up, we investigated the small CFG underlying Chomsky’s very first parse tree.
Motivated by the fact that a CFG can be used as a generator, we assigned each of its rules
a weight (a non-negative real number) such that the weights of all rules with the same left-
hand side sum up to one. In other words, all CFG fragments (comprising the CFG rules with
the same left-hand side) have been assigned a probability distribution, as displayed in the
following table:

29

CFG rule Rule probability

Sentence −→ NP VP p(Sentence −→ NP VP) = 1

NP −→ the man
NP −→ the book

p(NP −→ the man)
p(NP −→ the book)

}

summing to 1

VP −→ Verb NP p(VP −→ Verb NP) = 1
Verb −→ took p(Verb −→ took) = 1

As a result, the likelihood of each of the grammar’s parse trees (when using the CFG as
a generator) can be calculated by multiplying the probabilities of all rules occurring in the
tree. This observation leads directly to the standard definition of a probabilistic context-free
grammar, as well as to the definition of probabilities for parse-trees.

Definition 16 A pair < G, p > consisting of a context-free grammar G and a probability dis-
tribution p : X → [0, 1] on the set X of all finite full-parse trees of G is called a probabilistic
context-free grammar or PCFG, if for all parse trees x ∈ X

p(x) =
∏

r∈G

p(r)fr(x)

Here, fr(x) is the number of occurrences of the rule r in the tree x, and p(r) is a probability
allocated to the rule r, such that for all non-terminal symbols A

∑

r∈GA

p(r) = 1

where GA = { r ∈ G | lhs(r) = A} is the grammar fragment comprising all rules with the
left-hand side A. In other words, a probabilistic context-free grammar is defined by a context-
free grammar G and some probability distributions on the grammar fragments GA, thereby
inducing a probability distribution on the set of all full-parse trees.

So far, we have not checked for our example that the probabilities of all full-parse trees are
summing up to one. According to Definition 16, however, this is the fundamental property
of PCFGs (and it should be really checked for every PCFG which is accidentally given to us).
Obviously, the example grammar has four full-parse trees, and the sum of their probabilities
can be calculated as follows (by omitting all rules with a probability of one):

p(X) = p(NP −→ the man) · p(NP −→ the book) +

p(NP −→ the book) · p(NP −→ the book) +

p(NP −→ the man) · p(NP −→ the man) +

p(NP −→ the book) · p(NP −→ the man)

=
(

p(NP −→ the man) + p(NP −→ the book)
)

· p(NP −→ the book) +
(

p(NP −→ the man) + p(NP −→ the book)
)

· p(NP −→ the man)

= 1

For the last equation, we are using three times that p is a probability distribution on the
grammar fragment GNP , i.e., we are exploiting that p(NP −→ the man)+p(NP −→ the book) = 1.

The following examples show that we really have to do this kind of “probabilistic grammar
checking”. We are presenting two non-standard PCFGs: The first one consists of the rules

30

S −→ NP sleeps (1.0)
S −→ John sleeps (0.7)
NP −→ John (0.3)

The second one is a well-known highly-recursive grammar (Chi and Geman 1998), and it is
given by

S −→ S S (q)
S −→ a (1-q)

with 0.5 < q ≤ 1

What is wrong with these grammars? Well, the first grammar provides us with a probability
distribution on its full-parse trees, as can be seen here

S

NP

John

sleeps
S

John sleeps

1.0 · 0.3 = 0.3 0.7

On each of its grammar fragments, however, the rule probabilities do not form a probability
distribution (neither on G S nor on GNP). The second grammar is even worse: We do have
a probability distribution on G S , but even so, we do not have a probability distribution on

the set of full-parse trees (because their probabilities are summing to less than one10).
10This can be proven as follows: Let T be the set of all finite full-parse trees that can be generated by the

given context-free grammar. Then, it is easy to verify that π := p(T) is a solution of the following equation

π = 1 − q + q · π · π

Here, 1 − q is the probability of the tree
S

a

, whereas q · π · π corresponds to the forest
S

T T

.

It is easy to check that the derived quadratic equation has two solutions: π1 = 1 and π2 = 1−q

q
. Note that it is

quite natural that two solutions arise: The set of all “infinite full-parse trees” matches also our under-specified
approach of calculating π. Now, in the case of 0.5 < q ≤ 1, it turns out that the set of infinite trees is allocated
a proper probability π1 = 1. (For the special case q = 1, this can be intuitively verified: The generator will
never touch the rule S −→ a , and therefore, this special PCFG produces infinite parse trees only.) As a
consequence, all finite full-parse trees is allocated the total probability π2. In other words, p(T) = 1−q

q
< 1.

In a certain sense, however, we are able to repair both grammars. For example,

S −→ NP sleeps (0.3)
S −→ John sleeps (0.7)
NP −→ John (1.0)

is the standard-PCFG counterpart of the first grammar, where

S −→ S S (1-q)
S −→ a (q)

with 0.5 < q ≤ 1

is a standard-PCFG counterpart of the second grammar: The first grammar and its counterpart provide us with
exactly the same parse-tree probabilities, while the second grammar and its counterpart produce parse-tree
probabilities, which are proportional to each other. Especially for the second example, this interesting result
is a special case of an important general theorem recently proven by Nederhof and Satta (2003). Sloppily
formulated, their Theorem 7 states that: For each weighted CFG (defined on the basis of rule weights
instead of rule probabilities) is a standard PCFG with the same symbolic backbone, such that (i) the parse-tree
probabilities (produced by the PCFG) are summing to one, and (ii) the parse-tree weights (produced by the
weighted CFG) are proportional to the parse-tree probabilities (produced by the PCFG).
As a consequence, we are getting what we really want: Applied to ambiguity resolution, the original grammars
and their counterparts provide us with exactly the same maximum-probability-parse trees.

31

Background: Resolving Ambiguities with PCFGs

A property of most formalizations of natural language in terms of CFGs is ambiguity: the
fact that sentences have more than one possible phrase structure (and therefore more than
one meaning). Here are two prominent types of ambiguity:

Ambiguity caused by prepositional-phrase attachment:

S

NP

Peter

VP

V

saw

NP

Mary

PP

with a telescope

S

NP

Peter

VP

V

saw

NP

NP

Mary

PP

with a telescope

Ambiguity caused by conjunctions:

S

NP

NP

the mother

PP

P

of

NP

NP

the boy

CONJ

and

NP

the girl

VP

left

S

NP

NP

NP

the mother

PP

P

of

NP

the boy

CONJ

and

NP

the girl

VP

left

As usual in computational linguistics, some phrase structures have been displayed in ab-

breviated form: For example, the term
NP

the mother
is used as a short form for the parse

tree

NP

DET

the

N

mother

, and the term
PP

of the boy
is a place holder for the even more

complex parse tree

PP

P

of

NP

DET

the

N

boy

.

In both examples, the ambiguity is caused by the fact that the underlying CFG contains
recursive rules, i.e., rules that can be applied an arbitrary number of times. Clearly,
the rules NP −→ NP CONJ NP and NP −→ NP PP belong to this type, since they can
be used to generate nominal phrases of an arbitrary length. The rules VP −→ V NP and

32

PP −→ P NP, however, might be also called (indirectly) recursive, since they can generate
verbal and prepositional phrases of an arbitrary length (in combination with NP −→ NP PP).
Besides ambiguity, recursivity makes it also possible that two words that are generated by
the same CFG rule (i.e. which are syntactically linked) can occur far apart in a sentence:

The bird with the nice brown eyes and the beautiful tail feathers catches a worm.

These types of phenomena are called non-local dependencies, and it is important to note
that non-local phenomena (which can be handled by CFGs) are beyond the scope of many
popular models that focus on modeling local dependencies (such as n-gram, Markov, and
hidden Markov models11). So, a part-of-speech tagger (based on a HMM model) might have
difficulties with sentences like the one we mentioned, because it will not expect that a singular
verb occurs after a plural noun.

Having this at hand, of course, the central question is now: Can PCFGs handle ambiguity?
The somewhat surprising answer is: Yes, but the symbolic backbone of the PCFG plays a
major role in solving this difficult task. To be a bit more specific, the CFG underlying the
given PCFG has to have some good properties, or the other way round, probabilistic modeling
of some “weak” CFGs may result in PCFGs which can not resolve the CFG’s ambiguities.
From a probabilistic modeler’s point of view, there is really some non-trivial relation between
such tasks as “writing a formal grammar” and “modeling a probabilistic grammar”. So, we
are convinced that formal-grammar writers should help probabilistic-grammar modelers, and
the other way round.

To exemplify this, we will have a closer look at the examples above, where we presented
two common types of ambiguity. In general, a PCFG resolves ambiguity (i) by calculating
all the full parse-trees of a given sentence (using the symbolic backbone of the CFG), and
(ii) by allocating probabilities to all these trees (using the rule probabilities of the PCFG),
and finally (iii) by choosing the most probable parse as the analysis of the given sentence.
According to this procedure, we are calculating, for example

S

NP

Peter

VP

V

saw

NP

Mary

PP

with a telescope

S

NP

Peter

VP

V

saw

NP

NP

Mary

PP

with a telescope

p(S −→ NP VP) · p

(

NP

Peter

)

·

p(VP −→ V NP PP)·

p(V −→ saw) · p

(

NP

Mary

)

· p

(

PP

with a telescope

)

p(S −→ NP VP) · p

(

NP

Peter

)

·

p(VP −→ V NP) · p(NP −→ NP PP)

p(V −→ saw) · p

(

NP

Mary

)

· p

(

PP

with a telescope

)

11It is well-known, however, that a CFG without center-embeddings can be transformed to a regular
grammar (the symbolic backbone of a hidden Markov model).

33

Comparing the probabilities for these two analyzes, we are choosing the analysis at the left-
hand side of this figure, if

p(VP −→ V NP PP) > p(VP −→ V NP) · p(NP −→ NP PP)

So, in principle, the PP-attachment ambiguity encoded in this CFG can be solved by a
probabilistic model built on top of this CFG. Moreover, it is especially nice that such a
PCFG resolves the ambiguity by looking only at those rules of the CFG, which directly cause
the PP-attachment ambiguity.

So far, so good: We are able to use PCFGs in order to select between competing analyzes of
a sentence. Looking at the second example (ambiguity caused by conjunctions), however, we
are faced with a serious problem: Both trees have a different structure, but exactly the same
context-free rules are used for generating these different structures. As a consequence, both
trees are allocated the same probability (independently from the specific rule probabilities
which might have been offered to you by the very best estimation methods). So, any PCFG
based on the given CFG is unable to resolve the ambiguity manifested in the two trees.

Here is another problem. Using the grammar underlying our first example, the sentence
“the girl saw a bird on a tree” has the following two analyzes

S

NP

the girl

VP

V

saw

NP

NP

a bird

PP

on a tree

S

NP

the girl

VP

V

saw

NP

a bird

PP

on a tree

Comparing the probabilities for these two analyzes, we are choosing the analysis at the left-
hand side of this figure, if

p(VP −→ V NP) · p(NP −→ NP PP) > p(VP −→ V NP PP)

Relating this result to the disambiguation result of the sentence “John saw Mary with a
telescope”, the prepositional phrases are attached in both cases either to the verbal phrase
or to the nominal phrase. Instead, it seems to be more plausible that the PP “with the
telescope” is attached to the verbal phrase, whereas the PP “on a tree” is attached to the
noun phrase.

Obviously, there is only one possible solution to this problem: We have to re-write the
given CFG in such a way that a probabilistic model will be able to assign different probabilities
to different analyzes. For our last example, it is sufficient to enrich the underlying CFG with
some simple PP markup, enabling in principle that

p(VP −→ V NP PP-ON) < p(VP −→ V NP) · p(NP −→ NP PP-ON)

p(VP −→ V NP PP-WITH) > p(VP −→ V NP) · p(NP −→ NP PP-WITH)

Of course, other linguistically more sophisticated modifications of the original CFG (that
handle e.g. agreement information, sub-cat frames, selectional preferences, etc) are also wel-
come. Our only request is that the modified CFGs lead to PCFGs which are able to resolve

34

the different types of ambiguities encoded in the original CFG. Now, writing and re-writing
a formal grammar is a job that grammar writers can do probably much better than modelers
of probabilistic grammars. In the past, however, writers of formal grammars seemed to be
uninterested in this specific task, or they are still unaware of its existence. So, modelers of
PCFGs regard it nowadays also as an important part of their job to transform a given CFG
in such a way that probabilistic versions of the modified CFG are able to resolve ambiguities
of the original CFG. During the last years, a bunch of automatic grammar-transformation
techniques have been developed, which offer some interesting solutions to this quite complex
problem. Where the work of Klein and Manning (2003) describes one of the latest approaches
to semi-automatic grammar-transformation, the parent-encoding technique introduced by
Johnson (1998) is the earliest and purely automatic grammar-transformation technique: For
each local tree, the parent’s category is appended to all daughter categories. Using the ex-
ample above, where we showed that conjunctions cause ambiguities, the parent-encoded trees
are looking as follows:

S

NP.S

NP.NP

the mother

PP.NP

P.PP

of

NP.PP

NP.NP

the boy

CONJ.NP

and

NP.NP

the girl

VP.S

left

S

NP.S

NP.NP

NP.NP

the mother

PP.NP

P.PP

of

NP.PP

the boy

CONJ.NP

and

NP.NP

the girl

VP.S

left

Clearly, parent-encoding of the original trees may result in different probabilities of the trans-
formed trees: In this example, we will choose the analysis at the left-hand side, if

p(NP.S −→ NP.NP PP.NP) · p(NP.PP −→ NP.NP CONJ.NP NP.NP) · p

(

NP.NP

the boy

)

is more likely than

p(NP.NP −→ NP.NP PP.NP) · p(NP.S −→ NP.NP CONJ.NP NP..NP) · p

(

NP.PP

the boy

)

As in the example before, it is again nice to see that these probabilities are pin-pointing
exactly at those rules of the underlying grammar which have introduced the ambiguity.

In the rest of the section, we will present the notion of treebank grammars, which can be
informally described as PCFGs that are constructed on the basis of a corpus of full-parse trees
(Charniak 1996). We will demonstrate that treebank grammars can resolve the ambiguous
sentences of the treebank (as well as ambiguous similar sentences), if the treebank mark-up
is rich enough to distinguish between the different types of ambiguities that are encoded in
the treebank.

Definition 17 For a given treebank, i.e., for a non-empty and finite corpus of full-parse
trees, the treebank grammar < G, p > is a PCFG defined by

35

(i) G is the context-free grammar read off from the treebank, and

(ii) p is the probability distribution on the set of full-parse trees of G, induced by the following
specific probability distributions on the grammar fragments GA:

p(r) =
f(r)

∑

r∈GA
f(r)

for all r ∈ GA

Here, f(r) is the number of times a rule r ∈ G occurs in the treebank.

Note: Later on (see Theorem 10), we will show that each treebank grammar is the unique
maximum-likelihood estimate of G’s probability model on the given treebank. So, it is espe-
cially guaranteed that p is a probability distribution on the set of full-parse trees of G, and
that < G,P > is a standard PCFG (see Definition 16).

Example 6 We shall now consider a treebank given by the following 210 full-parse trees:

100 × t1:
S

NP

Peter

VP

V

saw

NP

Mary

PP-WITH

with a telescope

5 × t2:
S

NP

Peter

VP

V

saw

NP

NP

Mary

PP-WITH

with a telescope

100 × t3:
S

NP

Mary

VP

V

saw

NP

NP

a bird

PP-ON

on a tree

5 × t4:
S

NP

Mary

VP

V

saw

NP

a bird

PP-ON

on a tree

We shall (i) generate the treebank grammar and (ii) using this treebank grammar, we shall
resolve the ambiguities of the sentences occurring in the treebank.

Ad (i): The following table displays the rules r of the CFG encoded in the given treebank
(thereby assuming for the sake of simplicity that the NP and PP non-terminals expand directly
to terminal symbols), the rule frequencies f(r) i.e. the number of times a rule occurs in the
treebank, as well as the rule probabilities p(r) as defined in Definition 17.

36

CFG rule Rule frequency Rule probability

S −→ NP VP 100 + 5 + 100 + 5 210
210

= 1.000

VP −→ V NP PP-WITH 100 100
210

≈ 0.476

VP −→ V NP PP-ON 5 5
210

≈ 0.024

VP −→ V NP 5 + 100 105
210

= 0.500

NP −→ Peter 100 + 5 105
525

= 0.200

NP −→ Mary 100 + 5 + 100 + 5 210
525

= 0.400

NP −→ a bird 100 + 5 105
525

= 0.200

NP −→ NP PP-WITH 5 5
525

≈ 0.010

NP −→ NP PP-ON 100 100
525

≈ 0.190

PP-WITH −→ with a telescope 100 + 5 105
105

= 1.000

PP-ON −→ on a tree 100 + 5 105
105

= 1.000

V −→ saw 100 + 5 + 100 + 5 210
210

= 1.000

Ad (ii): As we have already seen, the treebank grammar selects the full-parse tree t1 of the
sentence “Peter saw Mary with a telescope”, if

p(VP −→ V NP PP-WITH) > p(VP −→ V NP) · p(NP −→ NP PP-WITH)

Using the approximate probabilities for these rules, this is indeed true: 0.476 > 0.500 · 0.010.
(Note that exactly the same argument can be applied to similar but more complex sentences
like “Peter saw a bird on a tree with a telescope”.) For the second sentence occurring in the
treebank, “Mary saw a bird on a tree”, the treebank grammar selects the full-parse tree t3, if

p(VP −→ V NP PP-ON) < p(VP −→ V NP) · p(NP −→ NP PP-ON)

Indeed, this is the case: 0.024 < 0.500 · 0.190.

Maximum-Likelihood Estimation of PCFGs

So far, we have seen that probabilistic context-free grammars can be used to resolve the
ambiguities that are caused by their underlying context-free backbone, and we noted already
that certain grammar-transformation are sometimes necessary to achieve this goal. All these
application features are displayed in a “horizontal view” in Figure 7. In what follows next,
we will concentrate on the “vertical view” of this figure. To be more specific, we will focus
on the following two questions.

(i) how to characterize the probability model of a given context-free grammar, and

(ii) second, how to estimate an appropriate instance of the context-free grammar’s proba-
bility model, if a corpus of input data is additionally given.

The latter question is a tough one: It is true that the treebank-training method, which we
defined in the previous section more or less heuristically, leads to PCFGs that are able to

37

most probable
analysis

probability
model

corpus of
data

...or EM if we can’t do MLE...

− analyzes (supervised learning)
− sentences (unsupervised learning)
either on:

input sentence

(transformed analyzes)
multiple output

(analyzes)
multiple output

grammar
formal

transformation
instance of a
probability model

grammar

Probabilistic Grammar

Maximum
Likelihood
Estimation

A p p l i c a t i o n

of probabilistic

context−free gram
m

ars

T
 r a i n i n g

Figure 7: Application and training of probabilistic context-free grammars

resolve ambiguities. From what we have done so far in this section, however, we have no clear
idea how the treebank-training method is related to maximum-likelihood estimation or the
EM training method. So, let us start with the first question.

Definition 18 Let G be a context-free grammar, and let X be the set of full-parse trees of
G. Then, the probability model of G is defined by

MG =

p ∈ M(X)

∣

∣

∣

∣

∣

∣

p(x) =
∏

r∈G

p(r)fr(x) with
∑

r∈GA

p(r) = 1 for all grammar fragments GA

In other words, each instance p of the probability model MG is associated to a probabilistic
context-free grammar < G, p > having the context-free backbone G. (See Definition 16 for the
meaning of the terms p(r), fr(x) and GA.)

As we have already seen, there are some non-standard PCFGs (like S −→ S S (0.9), S −→ a (0.1))
which do not induce a probability distribution on the set of full-parse trees. This gives us
a rough idea that it might be quite difficult to characterize those PCFGs < G, p > which
are associated to an instance p of the unrestricted probability model M(X). In other words,
it might be quite difficult to characterize G’s probability model MG. For calculating a
maximum-likelihood estimate of MG on a corpus fT of full-parse trees, however, we have
to solve this task. For example, if we are targeting to exploit the powerful Theorem 1, we
have to prove either that MG equals the unrestricted probability model M(X), or that the
relative-frequency estimate p̃ on fT is an instance of MG. For most context-free grammars

38

G, however, the following theorems show that this is a too simplistic approach of finding a
maximum-likelihood estimate of MG.

Theorem 8 Let G be a context-free grammar, and let p̃ be the relative-frequency estimate on
a non-empty and finite corpus fT : X → R of full-parse trees of G. Then p̃ 6∈ MG if

(i) G can be read off from fT , and

(ii) G has a full-parse tree x∞ ∈ X that is not in fT .

Proof Assume that p̃ ∈ MG. In what follows, we will show that this assumption leads to a
contradiction. First, by definition of MG, it follows that there are some weights 0 ≤ π(r) ≤ 1
such that

p̃(x) =
∏

r∈G

π(r)fr(x) for all x ∈ X

We will show next that π(r) > 0 for all r ∈ G.

Assume that there is a rule r0 ∈ G with π(r0) = 0. By (i), G can be read off from
fT . So, fT contains a full-parse tree x0 such that the rule r0 occurs in x0, i.e.,

fT (x0) > 0 and fr0(x0) > 0

It follows both p̃(x0) = fT (x0)
|fT | > 0 and p̃(x0) =

∏

r∈G π(r)fr(x0) = · · · π(r0)
fr0 (x0) · · · =

0, which is a contradiction.

Therefore
p̃(x) =

∏

r∈G

π(r)fr(x) > 0 for all x ∈ X

On the other hand by (ii), there is the full-parse tree x∞ ∈ X which is not in fT . So,

p̃(x∞) = fT (x∞)
|fT | = 0, which is a contradiction to the last inequality q.e.d.

Example 7 The treebank grammar described in Example 6 is a context-free grammar of the
type described in Theorem 8.

The relative-frequency estimate p̃ on the treebank is given by:

p̃(t1) = p̃(t3) =
100

210
and p̃(t2) = p̃(t4) =

5

210

All other full-parse trees of the treebank grammar get allocated a probability of zero by the
relative-frequency estimate. So, for example, p̃(x∞) = 0 for

x∞:
S

NP

Mary

VP

V

saw

NP

Peter

PP-WITH

with a telescope

39

As a consequence, p̃ can not be an instance of the probability model of the treebank grammar:
Otherwise, p̃ would allocate both full-parse trees t1 and x∞ exactly the same probabilities
(because t1 and x∞ contain exactly the same rules).

Theorem 9 For each context-free grammar G with an infinite set X of full-parse trees, the
probability model of G is restricted

MG 6= M(X)

Proof First, each context-free grammar consists of a finite number of rules. Thus it is possible
to construct a treebank, such that G is encoded by the treebank. (Without loss of generality,
we are assuming here that all non-terminal symbols of G are reachable and productive.) So,
let fT be a non-empty and finite corpus of full-parse trees of G such that G can be read off
from fT , and let p̃ be the relative-frequency estimate on fT . Second, using |X | = ∞ and
|fT | < ∞, it follows that there is at least one full-parse tree x∞ ∈ X which is not in fT . So,
the conditions of Theorem 8 are met, and we are concluding that p̃ 6∈ MG. On the other
hand, p̃ ∈ M(X). So, clearly, MG 6= M(X). In other words, MG is a restricted probability
model q.e.d.

After all, we might recognize that the previous results are not bad. Yes, the probability
model of a given CFG is restricted in most of the cases. The missing distributions, how-
ever, are the relative-frequency estimates on each treebank encoding the given CFG. These
relative-frequency estimates lack the ability of any generalization power: They allocate each
full-parse tree not being in the treebank a zero-probability. Obviously, however, we surely
want a probability model that can be learned by maximum-likelihood estimation on a corpus
of full-parse trees, but that is at the same time able to deal with full-parse trees not seen in
the treebank. The following theorem shows that we have already found one.

Theorem 10 Let fT : X → R be a non-empty and finite corpus of full-parse trees, and let
< G, pT > be the treebank grammar read off from fT . Then, pT is a maximum-likelihood
estimate of MG on fT , i.e.,

L(fT ; pT) = max
p∈MG

L(fT ; p)

Moreover, maximum-likelihood estimation of MG on fT yields a unique estimate.

This theorem is well-known. The following proof, however, is especially simple and (to the
best of my knowledge) was given first by Prescher (2002).

Proof First step: We will show that for all model instances p ∈ MG

L(fT ; p) = L(f ; p)

At the right-hand side of this equation, f refers to the corpus of rules that are read off from the
treebank fT , i.e., f(r) is the number of times a rule r ∈ G occurs in the treebank; Similarly,
p refers to the probabilities p(r) of the rules r ∈ G. In contrast, at the left-hand side of the
equation, p refers to the probabilities p(x) of the full-parse trees x ∈ X . The proof of the
equation is relatively straight-forward:

40

L(fT ; p) =
∏

x∈X

p(x)fT (x)

=
∏

x∈X

(

∏

r∈G

p(r)fr(x)

)fT (x)

=
∏

x∈X

∏

r∈G

p(r)fT (x)·fr(x)

=
∏

r∈G

∏

x∈X

p(r)fT (x)·fr(x)

=
∏

r∈G

p(r)
∑

x∈X
fT (x)·fr(x)

=
∏

r∈G

p(r)f(r)

= L(f ; p)

In the 6th equation, we simply used that f(r) (the number of times a specific rule occurs in
the treebank) can be calculated by summing up all the fr(x) (the number of times this rule
occurs in a specific full-parse tree x ∈ X):

f(r) =
∑

x∈X

fT (x) · fr(x)

So, maximizing L(fT ; p) is equivalent to maximizing L(f ; p). Unfortunately, Theorem 1 can
not be applied to maximize the term L(f ; p), because the rule probabilities p(r) do not form
a probability distribution on the set of all grammar rules. They do form, however, proba-
bility distributions on the grammar fragments GA. So, we have to refine our result a bit more.

Second step: We are showing here that

L(f ; p) =
∏

A

L(fA; p)

Here, each fA is a corpus of rules, read off from the given treebank, thereby filtering out all
rules not having the left-hand side A. To be specific, we define

fA(r) =

{

f(r) if r ∈ GA

0 else

Again, the proof is easy:

L(f ; p) =
∏

r∈G

p(r)f(r)

=
∏

A

∏

r∈GA

p(r)f(r)

=
∏

A

∏

r∈GA

p(r)fA(r)

=
∏

A

L(fA; p)

41

Third step: Combining the first and second step, we conclude that

L(fT ; p) =
∏

A

L(fA; p)

So, maximizing L(fT ; p) is equivalent to maximizing
∏

A L(fA; p). Now, a product is maxi-
mized, if all its factors are maximized. So, in what follows, we are focusing on how to maximize
the terms L(fA; p). First of all, the corpus fA comprises only rules with the left-hand side A.
So, the value of L(fA; p) depends only on the values p(r) of the rules r ∈ GA. These values,
however, form a probability distribution on GA, and all these probability distributions on
GA have to be considered for maximizing L(fA; p). It follows that we have to calculate an
instance p̂A of the unrestricted probability model M(GA) such that

L(fA; p̂A) = max
p∈M(GA)

L(fA; p)

In other words, we have to calculate a maximum-likelihood estimate of the unrestricted prob-
ability model M(GA) on the corpus fA. Fortunately, this task can be easily solved. According
to Theorem 1, the relative-frequency estimate on the corpus fA is our unique solution. This
yields for the rules r ∈ GA

p̂A(r) =
fA(r)

|fA|
=

f(r)
∑

r∈GA
f(r)

Comparing these formulas to the formulas given in Definition 17, we conclude that for all
non-terminal symbols A

p̂A(r) = pT (r) for all r ∈ GA

So, clearly, the treebank grammar pT is a serious candidate for a maximum-likelihood estimate
of the probability model MG on fT . Now, as Chi and Geman (1998) verified, the treebank
grammar pT is indeed an instance of the probability model MG. So, combining all the results,
it follows that

L(fT ; pT) = max
p∈MG

L(fT ; p)

Finally, since all p̂A ∈ M(GA) are unique maximum-likelihood estimates, pT ∈ MG is also a
unique maximum-likelihood estimate q.e.d.

EM Training of PCFGs

Let us present first an overview of some theoretical work on using the EM algorithm for
training of probabilistic context-free grammars.

• From 1966 to 1972, a group around Leonard E. Baum invents the forward-backward
algorithm for probabilistic regular grammars (or hidden Markov models) and formally
proves that this algorithm has some good convergence properties. See, for example, the
overview presented in Baum (1972).

• Booth and Thompson (1973) discover a (still nameless) constraint for PCFGs. For
PCFGs fulfilling the constraint, the probabilities of all full-parse trees sum to one.

◦ Dempster et al. (1977) invent the EM algorithm.

42

• Baker (1979) invents the inside-outside algorithm (as a generalization of the forward-
backward algorithm). The training corpus of this algorithm, however, is not allowed to
contain more than one single sentence.

• Lari and Young (1990) generalize Baker’s inside-outside algorithm (or in other words,
they invent the modern form of the inside-outside algorithm): The training corpus of
their algorithm may contain arbitrary many sentences.

• Pereira and Schabes (1992) use the inside-outside algorithm for estimating a PCFG for
English on a partially bracketed corpus.

• Sanchez and Benedi (1997) and Chi and Geman (1998) formally prove that for treebank
grammars and grammars estimated by the EM algorithm, the probabilities of all full-
parse trees sum to one.

• Prescher (2001) formally proves that the inside-outside algorithm is a dynamic program-
ming instance of the EM algorithm for PCFGs. As a consequence, the inside-outside
algorithm inherits the convergence properties of the EM algorithm (no formal proofs of
these properties have been given by Baker and Lari and Young).

• Nederhof and Satta (2003) discover that the PCFG standard-constraints (“the proba-
bilities of the rules with the same left-hand side are summing to one”) are dispensable12.

The overview presents two interesting streams. First, it suggests that the forward-backward
algorithm is a special instance of the inside-outside algorithm, which in turn is a special in-
stance of the EM algorithm. Second, it appears to be worthy to reflect on our notion of a stan-
dard probability model for context-free grammars (see the results of Booth and Thompson (1973)
and Nederhof and Satta (2003)). Surely, both topics are very interesting — Here, however,
we would like to limit our selfs and refer the interested reader to the papers mentioned above.
The rest of this paper is dedicated to the pure non-dynamic EM algorithm for PCFGs. We
would like to present its procedure and its properties, thereby motivating that the EM algo-
rithm can be successfully used to train a manually written grammar on a plain text corpus.

As a first step, the following theorem shows that the EM algorithm is not only related to
the inside-outside algorithm, but that the EM algorithm is also strongly connected with the
treebank-training method on which we we have focused so far.

Theorem 11 Let < G, p0 > be a probabilistic context-free grammar, where p0 is an arbitrary
starting instance of the probability model MG. Let f : Y → R be a non-empty and finite
corpus of sentences of G (terminal strings that have at least one full-parse tree x ∈ X).
Then, applied to the PCFG < G, p0 > and the sentence corpus f , the EM Algorithm performs

12In our terms, their result can be expressed as follows. Let G be a context-free grammar, and let M∗
G be

the probability model that disregards the PCFG standard-constraints

M∗
G =

{

p ∈ M(X)

∣

∣

∣

∣

∣

p(x) =
∏

r∈G

p(r)fr(x)

}

Obviously, it follows then that MG ⊆ M∗
G. Exploiting their Corollary 8, however, it follows somewhat

surprisingly that both models are even equal: M∗
G = MG. As a trivial consequence, a maximum-likelihood

estimate of the standard probability model MG (on a corpus of trees or on a corpus of sentences) is also a
maximum-likelihood estimate of the probability model M∗

G — as well as the other way round.

43

the following procedure

(1) for each i = 1, 2, 3, ... do
(2) q := pi−1

(3) E-step (PCFGs): generate the treebank fTq : X → R defined by

fTq(x) := f(y) · q(x|y) where y = yield(x)

(4) M-step (PCFGs): read off the treebank grammar < G, pTq >

(5) pi := pTq

(6) end // for each i

(7) print p0, p1, p2, p3, ...

Moreover, these EM re-estimates allocate the corpus f a sequence of corpus probabilities that
is monotonic increasing

L(f ; p0) ≤ L(f ; p1) ≤ L(f ; p2) ≤ L(f ; p3) ≤ . . .

Proof See Definition 13, and theorems 5 and 10.

Here is a toy example that exemplifies how the EM algorithm is applied to PCFGs. Re-
mind first that we showed in Example 6 that a treebank grammar is (in principle) able to
disambiguate correctly different forms of PP attachment. Remind also that we had to intro-
duce some simple PP mark-up to achieve this result. Although we are choosing here a simpler
example (so that the number of EM calculations is kept small), the example shall provide
us with an intuition about why the EM algorithm is (in principle) able to learn “good”
PCFGs. Again, the toy example presents a CFG having a PP-attachment ambiguity. This
time, however, the training corpus is not made up of full-parse trees but of sentences of the
grammar. Two types shall occur in the given corpus: Whereas the sentences of the first type
are ambiguous, the sentences of the second type are not. Our simple goal is to demonstrate
that the EM algorithm is able to learn from the unambiguous sentences how to disambiguate
the ambiguous ones. It is exactly this feature that enables the EM algorithm to learn highly
ambiguous grammars from real-world corpora: Although it is almost guaranteed in practice
that sentences have on average thousands of analyzes, no sentence will hardly be completely
unambiguous. Almost all sentences in a given corpus contain partly unambiguous informa-
tion — represented for example in small sub-trees that the analyzes of the sentence share.
By weighting the unambiguous information “high”, and at the same time, by weighting the
ambiguous information “low” (indifferently, uniformly or randomly), the EM algorithm might
output a PCFG that learned something, namely, a PCFG being able to select for almost all
sentences the single analysis that fits best the information which is hidden but nevertheless
encoded in the corpus.

Example 8 We shall consider an experiment in which a manually written CFG is estimated
by the EM algorithm. We shall assume that the following corpus of 15 sentences is given to
us

f(y) y

5 y1

10 y2

y1 = “Mary saw a bird on a tree”
y2 = “a bird on a tree saw a worm”

44

Using this text corpus, we shall compute the EM re-estimates of the following PCFG (that is
able to parse all the corpus sentences)

S −→ NP VP (1.00)
VP −→ V NP (0.50)
VP −→ V NP PP (0.50)
NP −→ NP PP (0.25)
NP −→ Mary (0.25)
NP −→ a bird (0.25)
NP −→ a worm (0.25)
PP −→ on a tree (1.00)
V −→ saw (1.00)

Note: As being displayed, the uniform distributions on the grammar fragments (GS , GV P ,
GNP ...) serve in this example as a starting instance p0 ∈ MG. On the one hand, this is not
bad, since this is (or was) the common practice for EM training of probabilistic grammars.
One the other hand, the EM algorithm gives us the freedom to experiment with a huge range of
starting instances. Now, why not using the freedom that the EM algorithm donates? Indeed,
the convergence proposition of Theorem 11 permits that some starting instances of the EM
algorithm may lead to better re-estimates than other starting instances. So, clearly, if we are
experimenting with more than one single starting instance, then we can seriously hope that
our efforts are re-compensated by getting a better probabilistic grammar!

First of all, note that the first sentence is ambiguous, whereas the second is not. The following
figure displays the full-parse trees of both.

x1:
S

NP

Mary

VP

V

saw

NP

NP

a bird

PP

on a tree

x2:
S

NP

Mary

VP

V

saw

NP

a bird

PP

on a tree

x3:
S

NP

NP

a bird

PP

on a tree

VP

V

saw

NP

a worm

First EM iteration. In the E-step of the EM algorithm for PCFGs, a treebank fTq has
to be generated on the basis of the starting instance q := p0. The generation process is very
easy. First, we have to calculate the probabilities of the full-parse trees x1, x2 and x3, which
in turn provide us with the probabilities of the sentences y1 and y2. Here are the results

p0(x) x

0.0078125 x1

0.0312500 x2

0.0078125 x3

p0(y) y

0.0390625 y1

0.0078125 y2

For example, p0(x1) and p0(y1) are calculated as follows (using definitions 16 and 12.*):

p0(x1) =
∏

r∈G

p(r)fr(x1)

45

= p(S −→ NP VP) · p

(

NP

Mary

)

· p(VP −→ V NP) · p(V −→ saw) · p

(

NP

a bird

)

· p

(

PP

on a tree

)

= 1.00 · 0.25 · 0.50 · 1.00 · 0.25 · 0.25 · 1.00

= 0.0078125

p0(y1) =
∑

yield(x)=y1

p(x)

= p(x1) + p(x2)

= 0.0078125 + 0.0312500

= 0.0390625

Now, using the probability distribution q := p0, we have to generate the treebank fTq by
distributing the frequencies of the sentences to the full-parse trees. The result is

fTq(x) x

1 x1

4 x2

10 x3

For example, fTq(x1) is calculated as follows (see line (3) of the EM procedure in Theorem 11):

fTq(x1) = f(yield(x1)) · q(x1|yield(x1))

= f(y1) · q(x1|y1)

= f(y1) ·
q(x1)

q(y1)

= 5 ·
0.0078125

0.0390625
= 1

In the E-step of the EM algorithm for PCFGs, we have to read off the treebank grammar
< G, pTq > from the treebank fTq . Here is the result

S −→ NP VP (1.000)
VP −→ V NP (0.733 ≈ 1+10

15
)

VP −→ V NP PP (0.267 ≈ 4
15

)
NP −→ NP PP (0.268 ≈ 1+10

41
)

NP −→ Mary (0.122 ≈ 1+4
41

)
NP −→ a bird (0.366 ≈ 1+4+10

41
)

NP −→ a worm (0.244 ≈ 10
41

)
PP −→ on a tree (1.000)
V −→ saw (1.000)

The probabilities of the rules of this grammar form our first EM re-estimate p1. So, we are
ready for the second EM iteration. The following table displays the rules of our manually
written CFG, as well as their probabilities allocated by the different EM re-estimates

46

CFG rule p0 p1 p2 p3 . . . p18

S −→ NP VP 1.000 1.000 1.000 1.000 1.000
VP −→ V NP 0.500 0.733 0.807 0.850 0.967
VP −→ V NP PP 0.500 0.267 0.193 0.150 0.033
NP −→ NP PP 0.250 0.268 0.287 0.298 0.326
NP −→ Mary 0.250 0.122 0.118 0.117 0.112
NP −→ a bird 0.250 0.366 0.357 0.351 0.337
NP −→ a worm 0.250 0.244 0.238 0.234 0.225
PP −→ on a tree 1.000 1.000 1.000 1.000 1.000
V −→ saw 1.000 1.000 1.000 1.000 1.000

In the 19th iteration, nothing new happens. So, we can quit the algorithm and discuss the
results. After all, of course, the most interesting thing for us is how these different PCFGs
perform, if they are applied to ambiguity resolution. So, we will have a look at the probabilities
these PCFGs allocate to the two analyzes of the first sentence. We have already noted several
times that p prefers x1 to x2, if

p(VP −→ V NP) · p(NP −→ NP PP) > p(VP −→ V NP PP)

The following table displays the values of these terms for our re-estimated PCFGs

p p(VP −→ V NP) · p(NP −→ NP PP) p(VP −→ V NP PP)

p0 0.500 · 0.250 = 0.125 0.500
p1 0.733 · 0.268 = 0.196 0.267
p2 0.807 · 0.287 = 0.232 0.193
p3 0.850 · 0.298 = 0.253 0.150
...

p18 0.967 · 0.326 = 0.315 0.033

So, the EM re-estimates prefer x1 to x2 starting with the second EM iteration, due to the fact
that the term p(VP −→ V NP) · p(NP −→ NP PP) is monotonic increasing (within a range from
0.125 to 0.315), while at the same time the term p(VP −→ V NP PP) is drastically monotonic
decreasing (from 0.500 to 0.033).

Acknowledgments

Parts of the paper cover parts of the teaching material of two courses at ESSLLI 2003 in
Vienna. One of them has been sponsored by the European Chapter of the Association for
Computational Linguistics (EACL), and both have been co-lectured by Khalil Sima’an and
me. Various improvements of the paper have been suggested by Wietse Balkema, Gabriel
Infante-Lopez, Karin Müller, Mark-Jan Nederhof, Breanndán Ó Nualláin, Khalil Sima’an,
and Andreas Zollmann.

References

Backus, J. W. (1959). The syntax and semantics of the proposed international algebraic
language of the Zürich ACM-GAMM Conference. In Proceedings of the International
Conference on Information Processing, Paris.

47

Baker, J. K. (1979). Trainable grammars for speech recognition. In D. Klatt and J. Wolf
(Eds.), Speech Communication Papers for ASA’97, pp. 547–550.

Baum, L. E. (1972). An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes. Inequalities III, 1–8.

Booth, T. L. and R. A. Thompson (1973). Applying probability measures to abstract
languages. IEEE Transactions on Computers C-22 (5), 442–450.

Charniak, E. (1996). Tree-bank grammars. Technical Report CS-96-02, Brown University.

Chi, Z. (1999). Statistical properties of probabilistic context-free grammars. Computational
Linguistics 25 (1).

Chi, Z. and S. Geman (1998). Squibs and discussions: Estimation of probabilistic context-
free grammars. Computational Linguistics 24 (2).

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on
Information Theory .

Cover, T. M. and J. A. Thomas (1991). Elements of Information Theory. New York: Wiley.

DeGroot, M. H. (1989). Probability and statistics (2 ed.). Addison-Wesley.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incom-
plete data via the EM algorithm. J. Royal Statist. Soc. 39 (B), 1–38.

Duda, R. O., P. E. Hart, and D. G. Stork (2001). Pattern Classification — 2nd ed. New
York: Wiley.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Languages,
and Computation. Reading, MA: Addison-Wesley.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review 106,
620–630.

Johnson, M. (1998). PCFG models of linguistic tree representations. Computational Lin-
guistics 24 (4).

Klein, D. and C. D. Manning (2003). Accurate unlexicalized parsing. In Proceedings of
ACL-03, Sapporo, Japan.

Lari, K. and S. J. Young (1990). The estimation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and Language 4, 35–56.

McLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions. New York:
Wiley.

Nederhof, M.-J. and G. Satta (2003). Probabilistic parsing as intersection. In Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT-03), Nancy, France.

Pereira, F. and Y. Schabes (1992). Inside-outside reestimation from partially bracketed
corpora. In Proceedings of ACL’92, Newark, Delaware.

Prescher, D. (2001). Inside-outside estimation meets dynamic EM. In Proceedings of IWPT-
2001, Beijing.

Prescher, D. (2002). EM-basierte maschinelle Lernverfahren für natürliche Sprachen. Ph.
D. thesis, IMS, University of Stuttgart.

48

Ratnaparkhi, A. (1997). A simple introduction to maximum-entropy models for natural
language processing. Technical report, University of Pennsylvania.

Sanchez, J. A. and J. M. Benedi (1997). Consistency of stochastic context-free grammars
from probabilistic estimation based on growth transformations. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of
Statistics 11 (1), 95–103.

49

	Introduction
	Estimation Methods
	The Expectation-Maximization Algorithm
	Rolling Two Dice
	Probabilistic Context-Free Grammars

