
Journal of Machine Learning Research ? (2003) ?-? Submitted /; published ?/?

Enhancing Learning using Feature and Example selection

Baranidharan Raman barani@cs.tamu.edu

Thomas R.Ioerger ioerger@cs.tamu.edu

Department of Computer Science
Texas A&M University
College Station, Texas -77840, USA.

Abstract

While most of the stable learning algorithms perform well on domains with relevant
information, they degrade in the presence of irrelevant or redundant information. Selective
or focused learning presents a solution to this problem. Two components of selective learn-
ing are selective attention (feature selection) and selective utilization (example selection).
We present novel algorithms for feature and example selection and present the benefits of
these two approaches independently and as a combined scheme. We propose a sequen-
tial search filter approach called Subset selection using Case-based Relevance APproach
(SCRAP) for identifying and eliminating irrelevant features. The SCRAP filter addresses
the problem of finding a feature subset that provides a balance between defining consistent
hypotheses and improving prediction accuracy. SCRAP filter was compared with the RE-
LIEF filter and was found to perform better on three families of learning algorithms. We
also propose the learning algorithm using SEarch Ring (LASER) framework to perform
example selection for learning algorithms. The naive bayes learner was used as the target
learner for our experiments. LASER provides significant improvement in prediction accu-
racy of the naive bayes learner without example selection. Application of both feature and
example selection schemes to the naive bayes learner resulted in better prediction accuracy.

Keywords: Feature Selection, Example Selection, Naive Bayes learner, Nearest Neighbors,
Class Imbalance.

1. Introduction

Learning is an important aspect of research in Artificial Intelligence. Many statistical,
symbolic, connectionist and case-based algorithms have been proposed with good success
[Quinlan, 1993, Rosenblatt, 1962, Aha et al, 1991, Michalski, 1983]. Many of the existing
learning approaches consider the learning algorithm as a passive entity that makes use of
the information presented to them. Such schemes are called ‘Passive Learners’ by Cohn et
al (1995). Markovitch (1989) identifies irrelevant, noisy and redundant information as the
harmful elements of knowledge. The passive learning schemes will degrade performance on
domains with these harmful elements.

In this paper, we focus on the issue of selecting relevant information. This involves
solving two problems namely, the problem of selecting relevant features and the problem
of selecting relevant examples. Markovitch (1989) defines these components of selective
learning as ‘Selective Attention’ and ‘Selective Utilization’ respectively.

We present the benefits of selective attention and selective utilization independently and
as a combined strategy.
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Figure 1: Selective Learning

1.1 Overview of Relevance

The term ‘relevance’ has a number of definitions in the Machine Learning literature. The
objective or goal of features selection or examples selection defines the term ‘relevance’
[Blum and Langely, 1997]. For example if the objective of our selection scheme is to improve
the prediction accuracy then the selected features are relevant to target concept.

The problem of ‘relevance’ is applicable to domains with irrelevant or redundant infor-
mation, especially to domains that represent larger and more complex tasks.

1.1.1 Feature Relevance

Finding the smallest possible feature set is NP-Complete [Davies and Russell, 1994]. The
presence of irrelevant features makes the task of learning difficult. The predictive accuracy
of the learning algorithms decreases on domains with irrelevant features [Langely, 1996,
Rendell and Seshu, 1990]. Irrelevant and redundant features masks or obscures the distri-
bution of truly relevant features for the task in hand [Koller and Sahami, 1996]. John(1997)
has shown that a single irrelevant feature to credit-approval or diabetes data sets reduced
the prediction accuracy of C4.5 by 5%. Langely and Sage (1994) have shown that the
naive bayes learner performs sub-optimally on domains with redundant features like the
voting data set. These reasons advocates the need for doing some feature filtering before
the learning algorithm is used.

Feature preprocessing schemes like Feature Extraction, Feature Construction and Fea-
ture Selection have been used to deal with this problem [Liu and Motoda, 1998]. Feature
extraction schemes perform linear/non-linear transformation of data and project it to a
lower dimensional space in such a way that most of the information is retained. Exam-
ples of such schemes are linear discriminant analysis and principal component analysis
[Duda, Hart and Stork, 2000]. Feature construction tries to simplify hypothesis search by
adding newer features with more information [Matheus and Rendell, 1989]. These two ap-
proaches try solving the problem of irrelevant information in the feature space by changing
the representation.

Feature selection approaches try finding features that retain the maximum useful in-
formation amongst all the given features. The problem of finding relevant features from
the given feature space is defined as ‘Feature Selection’. There are three kinds of feature
relevance being assumed in empirical models in the past.
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Figure 2: Feature Selection Algorithms Classification

• Relevance of feature to constructing consistent hypothesis.

• Relevance of feature to improving prediction accuracy.

• Relevance of feature to the concept.

Based on these three relevance metrics the feature selection algorithms can be grouped
as shown in Figure 2. The sub trees are not mutually exclusive. This means that a feature
selection algorithm can be a member of more than one sub tree.

The features relevant to the construction of consistent hypotheses are called MIN-
FEATURES [Almuallim and Dietterich, 1991]. A hypothesis is consistent if no two exam-
ples agree on all the features in the feature space and have different class labels. There are
three algorithms that find try finding MIN-FEATURES namely, ID3 [Quinlan, 1993], FO-
CUS [Almuallim and Dietterich, 1991], and FRINGE [Pagallo and Haussler, 1986]. Finding
MIN-FEATURES has been shown to reduce to the vertex cover Problem in polynomial time
making this a NP-Complete problem [Davies and Russell, 1994].
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The second type of feature relevance is involved in finding the feature set that optimizes
the prediction accuracy of the learning algorithm. There are two sub classes of feature se-
lection algorithms in this category namely, ‘Wrapper Approaches’ [Kohavi and John, 1998]
and ‘Filter Approaches’. A detailed description of these methods are provided in Section 2.

The Wrapper approaches are heuristic search procedures that evaluate the quality of
the feature subset by using the prediction accuracy of the target learning scheme on the
validation set. Search techniques like sequential forward and backward feature selection
[Devijver and Kitler, 1982] have been used as Wrappers. The other search schemes used as
Wrappers include the greedy variants of hill climbers [Caruana and Freitag, 1994], best-first
search [Kohavi and John, 1998] and beam search [Aha and Bankert, 1995]. All these wrap-
per approaches are computationally expensive but provide greater increase to prediction
accuracy. This is mainly due to the fact that they include the bias of the target learning
algorithm. Another noticeable observation from these works is that there is no algorithm
that performs optimally on all domains, as shown by variability in experimental results.
This is understandable as feature selection is a highly domain specific task.

The Filter approach to feature selection attempts to remove the irrelevant features
from the feature set before it is used by the learning algorithm [Liu and Motoda, 1998].
The examples of feature evaluating measures are intrinsic properties of the data, prob-
abilistic distance measures, probabilistic dependence measures, interclass distance mea-
sures, information theoretic measures like entropy measures etc [Doak, 1992]. FOCUS
[Almuallim and Dietterich, 1991], Koller and Sahami’s (1996) cross-entropy filter and RE-
LIEF and its variants [Kira and Rendell, 1992, Kononenko, 1994] are some of the well known
filter schemes. Filter approaches are computationally less expensive but return a large fea-
ture sub-set. As noted above there is not a single filter approach that performs well on all
the data sets.

The third type of feature relevance is based on context-sensitivity of the feature. Context-
sensitivity refers to the correlation between the feature and the target space [Pedrod, 1996].
Context-sensitivity can be global or local. Backward elimination [Devijver and Kitler, 1982]
is a global context-sensitive feature selection approach while RC (Relevance in Context)
[Pedrod, 1996] is an example of local context-sensitive approach. Feature selection schemes
like forward selection Search [Devijver and Kitler, 1982] are examples of context-free feature
selection.

Despite the variety of methods that perform feature selection, there has been little
work done to combine these relevance definitions and develop an empirical framework that
will strike a balance between the hypothesis consistency and improving prediction accu-
racy. There are two main problems in developing such a framework. Firstly, finding MIN-
FEATURES is NP-Complete. Secondly, the feature set that provides maximum increase in
classification accuracy need not define hypotheses consistently. This happens when incre-
mentally useful [Blum and Langely, 1997] features are selected by Wrapper schemes. For
example, there might be features that help define few hypotheses consistently, but their
inclusion results in a particular target learner to degrade performance. These features are
removed by Wrapper approaches to improve performance at the cost of losing hypothesis
consistency.
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Figure 3: Example Selection Algorithms Classification [Blum and Langely, 1997]

1.2 Example Relevance

Another important component of selective learning is selecting relevant training examples for
classifying a test case. Example selection involves selecting examples that aid the learning
process [Blum and Langely, 1997]. Such a type of learning can be considered as a selective
learning [Markovitch, 1989] or focused learning approach [Blum and Langely, 1997]. Selec-
tive learning helps reduce the effect of the harmful elements of information such as noise in
the data. Unlike the feature selection problem, example selection does not imply deleting
information in the training set, but it means using only the informative instances. There
are three reasons for selection examples: computational efficiency, which arises when there
are sufficiently large training examples, so learning from a subset will be computationally
efficient, high cost of labeling or easy generation of examples and increased rate of learn-
ing by focusing attention on informative examples to aid learning algorithms search the
hypotheses space [Blum and Langely, 1997].

The example selection schemes can also be classified into filter methods, wrapper meth-
ods and methods that are part of the learning algorithm. Other classifications of example
selection are shown in Figure 3.

The filter method of example selection acts as a preprocessor to the learning algo-
rithm. Various static sub-sampling methods come in this category. Lewis and Catlett
(1994) use one probabilistic classifier to select instances for training another classifier.
Wrapper models for example selection are used to iteratively update the models using
misclassified data like the windowing technique used for decision trees working on large
training sets [Quinlan, 1983]. Dynamic sub-sampling methods come under this category
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Figure 4: Feature Selection -Filter and Wrapper Approaches

[John and Langley, 1996]. The boosting algorithm [Schapire, 1990] that performs example
selection by changing the distribution of the training set also comes in this category.

In the embedded methods of example selection the learning algorithm selects the relevant
examples. The perceptron algorithm [Rosenblatt, 1962] uses only those examples that are
misclassified to update its weights. The k-nearest neighbor algorithm [Hart and Cover, 1967]
selects the ‘k’ most similar labeled instances in the training set to determine the class label
of the unseen example. These methods depend on the test case to select the relevant exam-
ples unlike the wrapper approaches like boosting, which perform global selection of training
examples independent of test examples. Winston(1975) presents a learning scheme with a
tutor who gives informative instances. A embedded method for selecting unlabeled data is
provided using ‘query by committee’ [Seung e tal., 1992].

2. Related Machine Learning Research on Feature and Example Selection

In the first part of this section we will review the existing feature selection algorithms and in
the second part we will discuss about the various example selection schemes. We will study
the different models of feature selection as either Wrapper approach or Filter approach.

Feature selection is one generic way of improving learning algorithms by adapting or opti-
mizing the representation of the examples. The problem of feature selection [John et al, 1994,
Langley, 1994] can be defined as the task of selection of a subset of features that describe
the hypothesis at least as well as the original set.

2.1 The Wrapper Approach

The Wrapper approach to feature selection conducts a feature space search for evaluating
features. The wrapper approach includes the learning algorithm as a part of their evaluation
function. The wrapper schemes perform some form of state space search and select or remove
the features that maximize an objective function. The subset of features selected is then
evaluated using the target learner. The process is repeated until no improvement is made
or addition/deletion of new features reduces the accuracy of the target learner. Wrappers
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usually provide better accuracy but are computationally more expensive than the Filter
schemes.

2.1.1 Sequential Search techniques

The idea of sequential search for feature selection was introduced by Devijver and Kitler
(1982). A search scheme forms the integral part of the feature selection algorithm. The
effectiveness of the heuristic used determines the performance of the Wrapper algorithm. Se-
quential search schemes add or remove features one-at-a-time. The Wrappers that perform
sequential search have a vulnerability of being trapped in local minima. The randomized
algorithms inject some non-determinism to help the search procedure to escape local min-
ima [Doak, 1992]. We will discuss some well known feature selection search schemes in this
section.

Forward Selection search
The forward selection is a simple algorithm that starts with an empty set and adds one

feature at a time until all features are added/dropped. The feature is added at each step
that most increases the performance of the learner.

Backward Elimination search
Backward elimination works exactly opposite to forward selection. Here we start with

the complete feature set and drop each feature and observe the performance of the learner.
If the generalization produced with the current set of features is better, then the feature is
dropped and we proceed with the next feature.

It is not clear whether backward elimination or forward selection will perform better on
a data set with no prior information on feature correlation.

Bi-directional search
In bi-directional search we do both forward selection search and backward elimination

search[Doak, 1992]. Convergence of the search procedure is ensured by not adding features
eliminated and not eliminating features added. Other, variants include the plus-L minus-R
[Devijver and Kitler, 1982] searches where ‘R’ features are removed after adding ‘L’ fea-
tures. If L > R we start with an empty set and if R>L then we start with the full set of
features. This scheme attempts to compensate for the weakness of forward selection and
backward elimination using back tracking. But optimal L and R values are difficult to set.

Greedy search
Caruana and Freitag (1994) explore some greedy schemes like backward stepwise elimi-

nation - SLASH (BSE-SLASH) scheme, which starts like the backward elimination with all
the features but after the evaluation using a decision tree, makes use of only those features
that were used to build the model by the learner at that step. BSE-SLASH does this at
every step during its search. They also explore the use of greedy bi-directional hill climbers.
Caruana and Freitag (1994) suggest that the hill climbing searches improves the generaliza-
tion performance. However, it is not clear whether a particular scheme might work better
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than the other on a given domain.

Best first search
The best-first search [Ginsberg, 1993] selects the most promising node generated but

not expanded for search. Kohavi and John (1998) used best first search in their wrapper
approach. Each node in the search space represents a feature subset. For ‘n’ features there
are ‘n’ bits in each state and each bit indicates whether a feature is present (1) or absent
(0). Compound operators are used to connect states. The operators used are addition or
deletion of a single feature. The search is initiated with the goal of finding a state with
maximum prediction accuracy. Because of the complexity of the search space O(2n), the
state space search is stopped if there is no improvement to the accuracy after ‘k’ attempts.

Kohavi and John (1998) found that their wrapper performed better than RELIEF when
used with the ID3 and the naive bayes learners.

RC: Relevance in Context
RC [Pedrod, 1996] is context-sensitive feature selection scheme. RC is similar to back-

ward selection Search but makes feature evaluations using local instances. It performs a
sequential search and finds nearest neighbor of same class to each instance. All the features
that change are hypothesized as irrelevant and are deleted. The current feature set is tested
on the target learner like in other Wrapper approaches. If the accuracy improves or remains
unaffected then the deleted features are not considered again. This feature evaluation is
done in parallel for all instances in the training set.

Beam search
The beam search is like breadth first search(BFS) but unlike BFS only the best ‘n’ nodes

at each level are placed at the head of the search queue and are used for further search.
The beam search becomes exhaustive if there are no bounds on queue size. If the queue size
becomes one, it reduces to forward selection search. Beam search is extremely powerful on
data sets with a small instance space and large number of features [Aha and Bankert, 1995].

2.1.2 Randomized Algorithms

Randomized algorithms prevent the feature selection search from converging to local min-
ima like the sequential searches. We discuss the use of simulated annealing and genetic
algorithms for the purpose of feature selection.

Simulated Annealing
Simulated Annealing [Kirk et al, 1983] & [Hayk, 1994] is another application of stochas-

tic optimization search scheme to feature selection. In simulated annealing the system state
is subjected to a small random change and we either accept the new state if it is better
than the previous state or accept a deteriorating state with a probability exp(-∆E

T ) where
E refers to energy of the state and T temperature.

In case of feature selection the transformation will consist of adding or removing the
features.
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Genetic Algorithms
Genetic algorithms [Goldberg, 1989] start from a random initial population and create a

better population by mating or cross-over between pairs of solutions and mutating solutions
to try to improve their fitness or some objective function. The instance space is represented
using bit strings with a ‘1’ if a feature was selected for the newer population and a ‘0’
otherwise [Doak, 1992].

2.2 Filter Approaches

Filter approaches for feature subset selection attempt to assess the features and their merits
using the data available [Liu and Motoda, 1998]. They remove the irrelevant features before
the data is presented to the learning algorithm. The decision tree filter [Clardie, 1993], FO-
CUS [Almuallim and Dietterich, 1991], RELIEF and its variants [Kira and Rendell, 1992,
Kononenko, 1994] are some of the widely known Filter algorithms. The decision tree filter
and FOCUS filter try finding MIN-FEATURES. The Filter algorithm evaluates the features
independent of the classifiers that use them. Statistical and information-theoretic measures
like information gain, cross-entropy, etc., can be used to weigh the relevance of the features
[Devijver and Kitler, 1982]. Other measure that has been used are intrinsic properties of
the data, probabilistic distance measures, probabilistic dependence measures, interclass
distance measures, information theoretic measures like entropy measures etc [Doak, 1992].
These measures capture the relationship of the feature with the target concept.

2.2.1 Decision-Tree Filter

The ID3 decision-tree induction algorithm [Quinlan, 1993] uses information gain computed
using the training set to evaluate features. The ID3 builds a top-down hierarchical model
of the concept with the most relevant feature as the root and less relevant features at the
lower levels (near the leaves) of the decision tree.

Gain(f,X) = Entropy(X)−
∑

v∈values(f)

|Xv|
|X|

Entropy(Xv)

Entropy is given by the equation

Entropy(X) = −p⊕log2p⊕ − p	log2p	

p⊕ is the proportion of positive examples in X and p	 is the proportion of negative examples
in X.

Decision trees use only those features that are required to completely classify the training
set and removes all other features. Cardie (1993) discusses the use of decision tree features
with a k-nearest neighbor for learning a natural language processing task. The results
show clearly that the quality of the subset generated by decision tree helped the k-nearest
neighbor to reduce its prediction error.

2.2.2 Cross-Entropy Filter

Koller and Sahami (1996) present the cross-entropy filter approach. They define the task
of feature selection as the task of finding a feature subset G such that Pr(C|G=fG) is close
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to Pr(C|F=f), where C is set of classes and F is the feature set and Pr(C|F=f) is the
probability of assigning an unlabelled instance to a particular label in C with features in F
assigned to values f. The cross entropy between two distributions measures the extent of
error if one distribution is substituted by the other. Suppose, that the distribution of the
original feature set is represented as µ and the approximated distribution due the reduced
feature set as σ. Then cross entropy is given by,

D(µ, σ) =
∑
x∈µ

µ(x)log
µ(x)
σ(x)

A feature set G that minimizes
∑

f Pr(f)D(Pr(C|f),Pr(C|fG)) is the optimal subset.

2.2.3 Focus

The FOCUS [Almuallim and Dietterich, 1991] algorithm tries to identify a subset of features
that is sufficient to re-construct the hypothesis correctly. Given a training space X, FOCUS
tries to find the subset of features called MIN-FEATURES that are sufficient. A subset of
features is said to be sufficient iff. there are no two instances that have same values for all
the features and have conflicting class labels. Alternatively, MIN-FEATURES is the least
number of features with which a consistent hypothesis can be constructed. FOCUS performs
exhaustive search to determine the best feature sub-set. The complexity of FOCUS is on
the order of O(mpnp) for a training set with m examples or instances, n features and p
relevant features.

2.2.4 RELIEF

The RELIEF algorithm is an instance based filter proposed by Kira and Rendell (1992). The
proposed version of the algorithm was not capable of handling instance spaces with more
than two class labels. Kononenko (1994) modified RELIEF to overcome this limitation.

Each feature i in the feature set fi is assigned a weight Wi. If this weight is greater
than a threshold τ then the feature is considered relevant to the target concept, else it is
dropped.

1. Initialize weights Wi =0 ∀ i∈ F (set of features).

2. for each instance in training set pick a near − hit+ and a near −miss−.

3. Update Weight: Wi = Wi - diff(xi, near − hit+i )2 +diff(x, near −miss−i )2.

In the above listing diff(Feature-Instance1, Feature-Instance2) calculates the difference
in the values of the features. If the feature is nominal then the difference is 0 or 1 depending
on whether they are same or different. If the feature is continuous then the difference is
normalized.

Kononenko (1994) suggested variants of this algorithm to handle missing values and for
multi-class problems.
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2.3 Example Selection

The problem of example selection is to identify a subset of examples from the example
space that aid the learning process more than others [Blum and Langely, 1997]. Like fea-
ture selection, the example selection methods can be grouped as Filter methods, Wrapper
methods and Embedded methods.

2.3.1 Filter Methods

Filtering techniques are least common among the example selection schemes. The different
sampling techniques like static sampling and random sampling fall in this category. Given
a sample, static sampling runs the appropriate hypothesis test on each of its fields to
test whether they come from the same distribution as the original database, and reports
whether the current sample size is sufficient [John and Langley, 1996]. The ‘Probably Close
Enough criterion (PCE)’ is a way of evaluating a sampling strategy. Another filter approach
presented by Lewis and Catlett (1994) suggest the use of one learning algorithm to filter
examples for the other.

2.3.2 Wrapper Methods

The best known Wrapper method for example selection is boosting [Schapire, 1990]. The
boosting technique modifies the distribution of the data. This is done by assigning increasing
probability to misclassified instances, which causes the weaker learning algorithms in an
ensemble to train on these highly probable misclassified instances.

Another well known Wrapper example selection method applied to decision trees is
windowing [Quinlan, 1983]. Windowing uses a random sub sample of the data for building
a initial tree. The remaining examples in the training set are tested for class label using
the built tree. A random sample of the examples that were misclassified are added to the
example set. The process is iterated until all examples are correctly classified.

2.3.3 Embedded Methods

Embedded methods are those learning algorithms that have the example selection strategy
embedded in their learning scheme. For example the perceptron algorithm [Rosenblatt, 1962]
selects all the instances that were misclassified for updating its weights. These schemes,
which ignore all the examples that were correctly classified are called ‘conservative algo-
rithms’ [Blum and Langely, 1997]. Lazy learners like k-nearest neighbors perform example
selection by identifying the k closest cases to the test example.

Seung et al (1992) proposed an embedded mechanism called query by committee. In
this method two random hypotheses amongst a list of consistent hypotheses of an induction
algorithm are selected for classifying a random example from the example space. If the
classification using both the hypotheses is different, then the example is selected for training.

3. SCRAP Feature Selection

A labelled instance is represented as an ordered pair (~x,y) where ~x is an element vector
of X (instance space) and y belongs to set of class labels Y. Each element vector contains
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Figure 5: An Example - XOR(f1,f3) Concept

‘n’ features represented as (f1,...,fn). Also the training set is comprised of ‘m’ instances
X=(( ~x1,y1), ...,( ~xm,ym)). We refer to the nth feature of mth element vector as xm,n.

Definition 3.0.1 (Hamming distance) Hamming distance between two instances is the
count of the number of features that differ. (excluding the target feature)

dist(~xi, ~xj) =
n∑
1

δ(xi,k, xj,k) (1)

where δ(a,b)
1 if a 6= b
0 if a = b

For example the hamming distance between x1 and x4 in Figure 5 is two.

Definition 3.0.2 (Point of Class Change) “A point of class change” (PoC) is defined
as the closest instance with different class label. Let (~xi,yi) and ( ~xj,yj) be two labelled
instance in X. ( ~xj, yj) is called point of class change with respect to (~xi, yi)iff.

dist(~xi, ~xj) < dist(~xi, ~xz)

∀ z 6= j ∈ X and yi 6= yj

In Figure 5, the point of class change for x1 is x4.

Definition 3.0.3 (Neighborhood) A neighborhood of an example (~xi, yi) in instance
space is a set of labelled instances ( ~xi1, yi1),..., ( ~xik, yik) such that

dist(~xi, ~xj) < ε ∀ j = (i1), ..., (ik).
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where
ε=dist(~xi, ~xi′)

( ~xi′ ,yi′) is the point of class change for (~xi,yi). Neighborhood can be thought of as a pure
cluster ( A pure cluster is one in which all the instances in the cluster belong to the same
class). The instances in the neighborhood are called neighbors. In the example in Figure
5, there are 3 neighborhoods with members (x1,x2,x3),x4,x5 respectively.

Definition 3.0.4 (Strongly relevant [Blum and Langely, 1997]) A feature fi is strongly
relevant to the concept if there are 2 examples ~xk and ~xj that differ only in their value of
fi and have different class labels. In Figure 5, the absolutely relevant feature is feature f3.

Definition 3.0.5 (Irrelevancy of a feature) Irrelevancy of a feature fi is the number of
pairs of examples ~xk and ~xj that differ only in their value of fi and have the same class
labels.

Irrel(fi) =
∑
j

∑
k

δ(xj,i, xk,i) ∗ (1− δ(yj , yk))

where δ(a,b)
1 if a 6= b
0 if a = b.

and dist( ~xj , ~xk)=1. In the example given in Figure 5, the irrelevancy of feature f2 is one.

Definition 3.0.6 (Weakly relevant [Blum and Langely, 1997]) A feature fi is weakly
relevant to the concept if it becomes strongly relevant on removal of few features. This means
that all features fk are weakly relevant if for some ~xi, ~xj is the point of class change and
fi,k 6= fj,k. In our example in Figure 5, the weakly relevant features are f1 and f2.

Definition 3.0.7 (Incremental relevancy) Blum and Langely (1997) define a feature
that improves prediction accuracy on inclusion as incrementally useful. We extend the same
to relevancy. A weakly relevant feature fi is incrementally relevant if its more relevant than
irrelevant. This means that the feature is in the strongly relevant feature set or appears
more in the weakly relevant feature set than its irrelevancy.

3.1 The SCRAP Feature Selection Algorithm:

SCRAP is a sequential search filter. SCRAP constructs pure clusters called ‘neighborhoods’.
The entire neighborhood is considered as a single search node for feature evaluation. Each
neighborhood is uniquely identified by two points of class change. The first point of class
change is where the neighborhood construction started and the second one is its termina-
tion point. The two instances at the point of class change are used for determining feature
relevancy. The weak and the strong relevancy subsets are updated accordingly. The irrel-
evancy measure of the features is also updated. The search proceeds from the new point
of class change and the process is repeated in until the entire search space is covered. On
completion of this sequential search the entire instance space will be organized by nodes
(neighborhoods) that are connected only to its adjacent node that belong to a different
class. The edges are defined by the set of features that change between the two nodes.
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Figure 6: Search Space after SCRAP search

The essence of this feature selection scheme is that it tries to identify all features that
are required to define the discriminating hypothesis to distinguish adjacent pure clusters.

All the features in the Sstrong are selected. Sstrong + Sweak are MIN-FEATURES along
this search path. In order to strike balance between feature relevance for forming consistent
hypothesis and features that increase prediction accuracy, features in the subset Sweak -
Sstrong are checked for incremental relevancy. The features that are in Sstrong and those in
Sweak that are incrementally relevant are selected.

3.1.1 SCRAP Algorithm

initialize the starting point of search with a random ~xi.
Sstrong = φ; Sweak = φ; Irrelevancy(fi)=0 (∀ fi ∈ f)

while there are still training instances unmarked

form the neighborhood of ~xi using unmarked examples and identify its point of
class change ~xj . Mark ~xi and all its neighbors

update Sstrong,Sweak and irrelevancy of all features

repeat the search with ~xj

Sincrement= Sincrement+fi ; (∀ fi ∈ Sweak-Sstrong & n(fi ∈ Sweak) > Irrelevancy(fi))

Ssubset=Sstrong+Sincrement

3.1.2 Example: XOR(f1,f3) Concept

Let us consider the XOR concept provided earlier and perform the search conducted by
SCRAP on this instance space. SCRAP starts the instance space search with ~x1. The
point-of-class-change for ~x1 is ~x4. Features f1 and f2 become weakly relevant features
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Figure 7: SCRAP’s Instance Based Search on XOR(f1,f3) Concept

(Sweak={f1,f2}). SCRAP identifies irrelevance of f2 (( ~x1, ~x2)) and increments irrelevance(f2).
The instances (x1, c1),(x2, c1),(x3, c1) after becoming part of neighborhood 1 cannot become
part of any other neighborhoods, and are excluded from further search. SCRAP resumes
search with ~x4 and finds new point-of-class-change as ~x5. The feature f3 is identified as
strongly relevant feature (Sstrong={f3}). ~x4 becomes neighborhood 2 and ~x5 becomes neigh-
borhood 3. Sincrement={f1 } because irrelevancy(f2)=1. SCRAP returns features f1 and f3
as the selected features. Feature f4 did not show any evidence of relationship to the target
class determination and hence is ambiguous feature and is discarded. Feature f2 was also
filtered because there was nothing to gain on its inclusion.

3.1.3 Complexity Analysis

The neighborhood construction component of the SCRAP algorithm compares the features
of each instance with the search instance. So the complexity of one execution of the inner
loop is O(fn). The check for instance coverage (while loop) has worst case time of O(n).
The total complexity is O(fn2).

4. LASER Algorithm

Before we discuss the LASER algorithm we will present the intuition behind our example
selection strategy.

4.1 Complementary Algorithms

The probability estimate for a non-parametric approach is given by,

p(x) =
k

NV

where ‘N’ is the total number of examples, and ‘V’ is the Volume containing the ‘k’ neigh-
bors. If value of ‘V’ is fixed and the corresponding ‘k’ is found then the problem becomes
a Kernel Density Estimation problem. On the other hand, if value of ‘k’ is fixed and the
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corresponding ‘V’ is found then it becomes k-nearest neighbor approach.

k-Nearest Neighbor Classifier
The non-parametric equation and the Bayes rule can be combined to derive one of the

powerful instance based learning algorithms, namely k-nearest neighbors.
The probability estimate that the test example belong to the class ‘y’ is,

P (x | y) =
ki

NiV

where ‘Ni’ is the number of training instances belonging to class ‘y’ and ki is the number
of examples with class label ‘y’ in volume ‘V’.
The prior probability of class ‘y’ in the volume ‘V’ is,

P (y) =
Ni

N

Substituting these probabilities in Bayes rule we get:

P (y | x) =
ki

NiV
Ni
N

k
NV

=
ki

k

To minimize the probability of misclassification we must choose the class with largest ki/k.
This is k-nearest neighbor classification rule. It is clear that k-NN is a special selective case
of Bayesian learner [Bishop, 1995].

The 1-nearest neighbor learner is a non-parametric approach that always performs local
search. The 1-nearest neighbor algorithm tries to find evidence in proximity and uses that
to categorize instances. The Nearest Neighbor learning algorithms introduce the bias of
similarity.

Learners like naive bayes use global information for calculating the prior and conditional
probabilities. This form of information gathering can be viewed as a search in global space.
The naive bayes classifier introduces bias in assuming conditional independence. Probability
of an unlabelled instance x belonging to class y is given by,

P (y|x) = P (y)
∏

i=1..n

P (fi|y)

Whereas 1-nearest neighbor uses one most similar instance in the instance space for
class label determination, the naive bayes classifier uses all the instances in the training set.
Observing the search, bias, example selection and their relation to Bayes rule, it is clear that
the two learners complement each other. We will define them to belong to a new category
of learning algorithms called ‘complementary algorithms’. This forms the foundation of our
LASER framework that exploits this complementary property of these two strategies.

4.2 LASER Framework

LASER is a embedded example selection method that consists of two main components,
namely an example selection scheme and the target learner. The example selection scheme
is made of two sub components. The example filter method identifies instances similar to
the unlabelled instance to be classified. Similarity is measured in Hamming Space rather
than the conventional Euclidean space.
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Figure 8: LASER Framework

Definition 4.2.1 (Min-Ham distance) The Min-Ham distance for a unlabelled instance
is the least distance in Hamming space where there is a neighbor. Suppose Min-Ham(~xi) = ε

HammingDistance(~xi, ~xj) ≥ ε, ∀ ~xj ∈ X (2)

A search ring of Min-Ham radius is formed in Hamming space with the example to be
classified at its center. All the examples present on the ring are selected by the filter. There
are three possible scenarios that arise on selection of these instances.

• Case #1 only one example is at Min-Ham distance.

• Case #2 all the examples (at Min-Ham distance) are of same class.

• Case #3 the selected examples (at Min-Ham distance) come from more than one class.

To evaluate our framework we used the naive bayes classifier. Case #1 shows a test
example that is close to a singe training case than all others training examples. Case
#2 indicates an instance that has a strong local knowledge. For case #1 and case #2 the
examples in the search ring belong to a single class. Case #3 indicates an instance that falls
near the decision boundary and needs the global probability distribution of the component
classes to determine its class. LASER filters the case #1 and case #2 instances and returns
the class of the search ring. This is in effect 1-NN and k-NN in Hamming Space. For case
#3 instances, the naive bayes learner is used to predict the class label. LASER in effect
uses hybrid examples selection strategy, that is one or k-closest examples for case #1 and
case #2 and all examples for Case #3. The reason for choosing a local example selection
strategy for case #1 and case #2 is because inclusion of other instances might include more
irrelevant examples. The naive bayes is known to perform with degraded performance in
presence of irrelevant or redundant instances. So a focused or selective approach is used
for these instances. Where as for Case #3 instances the global distribution information is
necessary to determine its class membership. Hence all training instances are selected.
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Figure 9: Hybrid Example Selection Strategy

LASER - Example Selection (unlabelled ~x, training set X)

Example Filtering

form a search ring of radius rMin−Ham.

select all the labelled instances Xselected (xi, yj) ∈ (X,Y) such that h(x,xi)=Min-
Ham Distance.

pass the selected examples Xselected to the Case-Based Reasoner

Decision Maker(Search Ring)

Case #1 and Case #2 return yi.

Case #3 select all training instances X.

Naive Bayes Classifier(Selected Examples).

5. Results

This section presents the empirical results of our feature selection (SCRAP) and example
selection (LASER) schemes. A detailed discussion of the results is presented in the next
section. In the first section we present the results of SCRAP feature selection and compare
the performance of three families of learning algorithms with/without feature selection. In
the second section we show the performance of LASER and compare it with the nearest
neighbor and the naive bayes classifiers. Finally we combine the feature selection and
example selection approaches and study the benefits of focused learning to the naive bayes
learner.
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Dataset Inst. No.of. Sstrong Irrel Sweak No.of Neigh
Space Feat. -borhoods

breast cancer 217 9 3.875 5.75 3.375 29.375
credit 653 15 0 0.25 15 50.125
diabetes 768 8 0 0 8 93.5
DNA 106 57 0 0 57 10.875
glass 214 9 0 0.125 9 25.125
heart 296 13 0 0 13 25.25
iris 150 4 1 2.375 2.75 28
rotate 1000 2 1 1 1 105
voting 435 16 1.25 12.875 13.375 16.625

>= 3-of-6-of-13 1000 12 4.33 11.67 8 63.33
= 3-of-6-of-13 1000 12 4.375 11.125 8.25 112.75
= 5-of-10-of-13 1000 12 7.675 11.75 4.75 94.625

Sstrong - Strongly Relevant Features.
Sweak - Relatively Relevant Features.
Irrel - # Features with Irrelevance measure > 0.

Table 1: SCRAP-Statistics

Dataset All SCRAP RELIEF

breast cancer 9 4.88 5.25
credit 15 15 11.875
diabetes 8 8 6.63
DNA 57 56 47.13
glass 9 9 5.63
heart 13 13 10.25
iris 4 2.75 3.88
rotate 2 2 1.5
voting 16 4.5 12.14

>= 3-of-6-of-13 12 5.33 8.38
= 3-of-6-of-13 12 5.75 7.25
= 5-of-10-of-13 12 8.625 8.625

Table 2: Feature Selection Details
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5.1 SCRAP Feature Selection

For evaluating SCRAP, we used nine real domains mostly from UCI Machine Learning
Repository [Blake and Merz] and three artificial data sets. Langley and Sage (1994b) in-
dicate that many of the datasets in UCI repository have just a few completely irrelevant
features and no complex feature interactions.

We also used three artificial data sets that were either M-of-N concepts or X-of-N con-
cepts [Murphy and Pazzani, 1991]. The three artificial data sets used for study were at least
3-of-6 among 13 features (>=3-of-6), exactly 3-of-6 among 13 features (=3-of-6) and exactly
5-of-10 among 13 features (=5-of-10). These domains have many irrelevant features and the
“exactly” concepts represent a non linearly separable problems [Murphy and Pazzani, 1991].

Table I, shows the different elements of the SCRAP feature selection algorithm. Ten
runs with one-third training instance and one-third testing set was used to validate the
results. It can be seen that real domains have many weakly relevant features rather than
strongly relevant or totally irrelevant features as noted by Langley and Sage (1994b). The
number of neighborhoods denotes the pure clusters that are possible on a sequential search.

The SCRAP filter did not reduce feature space on five real domains namely credit,
diabetes, glass, heart and rotate data sets (see Table II). All the features were found to be
relevant to defining consistent hypotheses. This is an important observation as RELIEF
filter did reduce features on these data sets, which reduced the prediction accuracy of many
learning algorithms.

5.2 Performance with learning algorithms

We compared the generality and relevancy to prediction accuracy of the feature subsets
generated by SCRAP and RELIEF. This was done by comparing their performance on
three families of learning algorithms namely Instance Based Learners (k-Nearest Neighbor),
Symbolic and Statistical learners (naive bayes and Decision Trees), Connectionist Models
(Back-Propagation Neural Network).

5.2.1 k-Nearest Neighbors

The Nearest Neighbor classifier [Hart and Cover, 1967] is a non-parametric approach that
selects ‘k’ similar examples for determining the classification of the unlabelled instance.
Instance based schemes like the Nearest Neighbor show degraded performance when there
are many low relevance features [Aha and Bankert, 1995]. We tested the selected feature
subset on 1-Nearest Neighbor.

SCRAP improved performance of 1-nearest neighbor on two real domains and two artifi-
cial domains (see Table III). In comparison, RELIEF improved prediction accuracy on four
real domains and one artificial domain but reduced the accuracy on six data sets. Hence
we can conclude that SCRAP was the more stable feature selection method amongst the
two for this class of learners. SCRAP improved the prediction accuracy of 1-NN on both
real and artificial domains.

20



SCRAP & LASER

Dataset 1-NN 1-NN 1-NN
+SCRAP +RELIEF

breast cancer 72.75 72.125− 72.375−

credit 83.125 nfr 79.57−

diabetes 69.25 nfr* 69−

DNA 67.75 71.375+ 71.5+

glass 71.125 nfr 67.25−

heart 75.375 nfr 77.875+

rotate 72.125 nfr 62−

voting 91.75 93+ 93.5+

>= 3-of-6-of-13 81.625 88.25+ 88.625+

= 3-of-6-of-13 73.5 92.5+ 68.25−

= 5-of-10-of-13 77.50 76.75− 74.625−

Average Real 75.41 75.94+ 74.13−

Average Artif 77.54 85.83+ 77.17−

nfr - no feature reduction.
+ = better than 1-NN, - = worse than 1-NN.

Table 3: k-Nearest Neighbor Learner kNN (k=1),with/without Feature Selection using
SCRAP and RELIEF filters.

5.2.2 Symbolic and Statistical Learners

We used two well known Symbolic and Statistical classifiers namely the ID3 decision trees
[Quinlan, 1993] and the naive bayes learner [Mitchell, 1997] for evaluation.

Decision Trees

The ID3 algorithm [Quinlan, 1993] was designed to build the decision tree. The ID3
algorithm has bias to produce the smallest tree structure that explains the training set
consistently[Caruana and Freitag, 1994]. In many real domains the relevant feature set
selected by SCRAP and RELIEF were larger than the subset selected for constructing the
tree by the ID3 learner (Table IV). Hence the ID3 classifier did not gain much from feature
selection. But on the artificial domains with large number of irrelevant features, this was not
the case. The ID3 tree was larger than the selected subset, and therefore contained irrelevant
features. ID3 predicted with higher accuracy when trained on the subset generated by
SCRAP. RELIEF was not able to improve ID3 on either real or artificial domains.

ID3 over-fits the data due its inherent bias. This can be rectified by pruning the ID3
tree [Elomaa and Kaariainen, 2001]. We used the reduced error pruning method for pruning
the tree. Feature selection and reduced error pruning improved performance on both real
and artificial domains as can be seen in Table V. Esposito et al (1997) note that reduced
error pruning produces the most accurate subtree with respect to the training set. This
augmented with relevant feature set identified by SCRAP produced the optimal prediction
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Dataset # feat* ID3 # feat ID3 # feat ID3
% acc +SCRAP +RELIEF

breast cancer 7.125 71.5 4.625 73.25+ 4.75 71.75+

credit 8 84.285 8 nfr 8 86.143+

diabetes 7.6 76.4 7.6 nfr 6.625 75.25−

DNA 3.25 79.875 3.0 77.125− 2.875 75.75−

glass 5.125 84.125 5.125 nfr 3.75 82.5−

heart 8.75 79.625 8.75 nfr 7.625 79.938+

iris 1.875 96.125 1.25 94.25− 1.75 94.75−

rotate 1.75 94.75 1.75 nfr 1.75 95.313+

voting 4.125 95.375 3.875 94.125− 6.875 94.625−

>= 3-of-6-of-13 8.625 95.75 5.25 97+ 6.5 94.625−

= 3-of-6-of-13 11.75 70.75 5.375 79.25+ 6.5 66.5−

= 5-of-10-of-13 9.75 74.375 8.25 74.89+ 7.625 73.625−

Average Real 84.67 84.22− 84.00−

Average Artif 80.29 83.71+ 78.25−

# feat - is the # distinct features in the decision tree.
+ = better than ID3, - = worse than ID3.

Table 4: ID3 with/without Feature Selection using SCRAP and RELIEF filters.

Dataset # feat ID3+REP # feat ID3+REP # feat ID3+REP
+SCRAP +RELIEF

breast cancer 7 68.875 4.5 73.75+ 4.75 74.375+

credit 8 86.71 8 nfr 8 86.42−

diabetes 7.6 76.1 7.6 nfr 5.625 76.125+

DNA 3.25 77 2.875 78.25+ 2.875 82.5+

glass 5 83.875 5 nfr 3.75 83−

heart 8.625 79.5 8.625 nfr 7.625 81+

iris 1.875 94.75 1.25 96.25+ 1.75 95.875+

rotate 1.75 94.75 1.75 nfr 1.75 95.5+

voting 4.125 96.25 3.875 95.125− 6.625 95.125−

>= 3-of-6-of-13 8.735 96.125 5.25 96.875+ 6.5 94.375−

= 3-of-6-of-13 11.75 74.25 5.375 80.375+ 6.625 70.125−

= 5-of-10-of-13 9.5 75.25 8.25 75.25 7.625 74.25−

Real 84.20 84.92+ 85.55+

Artificial 81.88 84.17+ 79.58−

# feat - is the # distinct features in the pruned decision tree.
+ = better than ID3 with Pruning, - = worse than ID3 with Pruning.

Table 5: Pruned Decision Trees with/without Feature Selection using SCRAP and RELIEF
filters.
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accuracy for ID3.

Naive Bayes Learners

The naive bayes learner is a simple learning scheme based on the Bayes Rule. Langley
and Sage (1994) have shown that the naive bayes classifier is affected by presence of irrele-
vant features and redundant information. This case was observed in our results too (Table
VI). Langely and Sage (1994) also note that selective or focused approach (feature selection)
improves naive bayes low asymptotic accuracy, on domains with redundant features like the
voting data set. On domains where naive bayes already performs well like DNA and breast
cancer such efforts does not produce any significant returns. Table VI shows this property
of naive bayes. Naive Bayes learner benefited from using only the selected feature subset
on the artificial domains with large number of irrelevant features. This clearly shows that
focused or selective approaches are required to improve the naive bayes classifier on domains
with redundant or irrelevant information.

5.2.3 Neural Networks

There are different architectures of Neural Network like the single layer model or Per-
ceptron [Rosenblatt, 1962], the multi-layer model [Rumelhart et al., 1986] etc. We used a
back-propagation neural network with one hidden layer and learning rate being 0.1 for eval-
uating our feature selection scheme. Neural networks was able to handle the problem of
noisy information well(Table VII). The multi-layer network did not benefit from feature se-
lection on the real domains. But on artificial domains with many irrelevant features SCRAP
was able to improve the prediction accuracy of back-prop network. Table VII shows con-
siderable improvement to prediction accuracy on at least and exactly 3 out of 6 amongst 13
features concepts. This suggests the importance of feature selection even to stable learning
algorithms on domains with many irrelevant features.

5.3 Summary

A comparison of prediction error by various families of algorithms on using the feature sets
generated by the SCRAP and RELIEF filters is presented in Table VIII. The δ values are
all positive indicating that SCRAP was the better feature selection scheme on all the three
classes of learning algorithm.

SCRAP clearly out performed RELIEF for generality of the feature subset produced.
By generality, we mean the feature set being independent of any particular learning algo-
rithm. SCRAP feature subsets improved the prediction accuracy of the different families of
classifiers more than the RELIEF filter.

Table IX shows the statistical significance of the results presented. The paired t-tests
were conducted to test the significance of difference in prediction accuracy between doing
feature selection and not doing feature selection and between SCRAP and RELIEF. We
used the average performance of learning algorithms 1-NN, ID3 with/without reduced error
pruning, naive bayes and back propagation networks on each of the real and the artificial
domains to compute the 2-tailed p-Values for determining the significance of difference. The
tests show that SCRAP performed significantly better than RELIEF and doing no feature
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Dataset NB NB NB
+SCRAP +RELIEF

breast cancer 74.46 74.19− 73.12−

credit 78.73 nfr 79.42+

diabetes 74.51 nfr 76+

DNA 79.76 76.37− 72.56−

glass 71.52 nfr 69.96−

heart 82.25 nfr 82.16−

iris 96.06 93.63− 90.45−

rotate 91.92 nfr 90.93−

voting 91.53 93.32+ 90.93−

= 3-of-6-of-13 92.52 97.606+ 93.70+

= 3-of-6-of-13 68.81 69.46+ 68.81
>= 5-of-10-of-13 73.50 76.31+ 75.30+

Average Real 82.30 81.83− 80.61−

Average Artif 78.28 81.13+ 79.27+

Table 6: Naive Bayes Learner (NB) with/without Feature Selection using SCRAP and RE-
LIEF filters.

Dataset MNN MNN MNN
+SCRAP +RELIEF

breast cancer 85.82 80.95− 85.17−

credit 90.20 nfr 89.78−

diabetes 82.37 nfr 70.65−

DNA 90.57 93.40+ 92.69+

glass 83.91 nfr 83.57−

heart 69.93 nfr 75.76+

iris 85 84.85− 81.25−

rotate 92.23 nfr 91.43−

voting 93.45 93.27− 92.75−

>= 3-of-6-of-13 91.01 92.23+ 91.43+

= 3-of-6-of-13 69.12 71.52+ 69.47+

= 5-of-6-of-13 81.23 79.91− 78.03−

Average Real 85.91 85.69− 84.78−

Average Artif 80.45 81.22+ 79.64−

Table 7: A Multi-Layer Neural Network(MNN), with/without Feature Selection using
SCRAP and RELIEF filters.
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Class Data sets Base Accuracy SCRAP RELIEF δ∗

Instance Based Real 75.41 75.94 74.13 +1.80
Learners Artif 77.54 85.83 77.17 +8.67
Symbolic Real 83.72 83.66 83.39 +0.27
Statistical Learners Artif 80.15 83.00 79.03 +3.97
Neural Networks Real 85.91 85.68 84.78 +0.90

Artif 80.45 81.22 79.64 +1.58

Average Real 82.50 82.52 81.81 +0.71
Artif 79.69 83.21 78.78 +4.43

δ = SCRAP - RELIEF.
Base Accuracy= Accuracy without feature selection.

Table 8: SCRAP vs RELIEF

selection on artificial domains. But on real domains there was no significant differences
between doing and not doing feature selection. The Cronbach’s reliability coefficients gives
how reliable can a conclusion be made using the data. For reliability, the data should have
Cronbach alpha score greater than 0.7 for their data.

Data sets no feature set RELIEF SCRAP pVal pVal alpha
reduction(nfr) SCRAP-nfr SCRAP-RELIEF

Real 82.50 81.81 82.52 .981 .146 .9832
Artif 79.69 78.78 83.21 .019 .021 .9521

Table 9: Significance of the results

5.4 LASER Example Selection

The same data sets used for evaluating the feature selection algorithm were used for eval-
uating LASER. Table VIII presents the information about these domains using a 4-tuple
(#Inst,#Feat,#Disc,#Cont) which gives the number of instances in the instance space, di-
mensionality of the domain, number of discrete features and number of continuous features
respectively.

Table X summarizes performance of 1-NN, naive bayes (NB), and LASER on benchmark
data sets. 1-NN always selects one closest example for determining the class label. The
naive bayes learner always uses the entire training space for classification. LASER is hybrid
between these two example selection approaches. So, we compare the three approaches
namely 1-nearest neighbor, naive bayes and LASER to demonstrate the robustness of our
approach. δNB shows the difference between the predictive accuracy of LASER and naive
bayes algorithms. pVal(LASER-NB) gives the significance of the difference between the
means of LASER and naive bayes scheme at 95% significance. Ten runs of each algorithm
on the data set was used in determining the significance of the difference. This was done
by paired-t testing. LASER out-performed 1-NN on all domains. The average difference of
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Dataset Majority kNN NB LASER δNB pVal
(Inst,Feat, Class (k=1) LASER-NB
#Disc,#Cont)

breastcancer
(217,10,10,0) 70.76% 72.75 73.11 78.8+ 5.69 0.000
credit
(653,16,10,6) 54.67% 83.125 78.30 85.3+ 7.0 0.000
diabetes
(768,9,0,9) 65.1% 69.25 73.89 78.59+ 4.7 0.017
DNA
(106,58,58,0) 50% 67.75 73.33 77.71+ 4.38 0.235
glass
(214,100,0,10) 59.35% 71.125 63.89 76.34+ 12.45 0.000
heart
(296,14,8,6) 54.05% 75.375 81.41 82.86+ 1.45 0.362
iris
(150,5,0,5) 33.33% 85 95.69 92.8− -2.89 0.140
rotate
(1000,3,0,3) 76.51% 72.125 91.5 90.57− -0.93 0.195
voting
(435,17,17,0) 61.38% 91.75 90.93 93.51+ 2.58 0.349

>= 3-of-6-of-13
(1000,14,14,0) 63.1% 81.625 94.04 92.64− -1.4 0.152
= 3-of-6-of-13
(1000,14) 68.8% 68.81 67.24 77.06+ 9.82 0.000
= 5-of-10-of-13
(1000,14,14,0) 75.8% 77.50 77.233 78.23+ 0.9 0.447

Average Real 76.472 80.227 84.053 3.825
Average Artif 75.978 79.504 82.643 3.139

+ = better than Naive Bayes, - = worse than Naive Bayes.
p-Val < .05 indicates significant difference.

Table 10: Naive Bayes Learner (NB)& LASER performance on benchmark datasets
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Dataset case1% Acc# case1 case2% Acc# case2 case3% Acc# case3

breast
cancer 47.17 84.56 7.5 76.81 45.32 73.14
credit 50.27 88.82 6.86 75.84 42.86 82.69
diabetes 41.83 82.63 6.95 66.85 51.25 76.82
DNA 72.57 82.6 6.57 60.87 20.85 65.75
glass 39.58 86.12 9.85 77.14 50.56 68.52
heart 48.87 84.97 6.4 63.49 45 82.7
iris 49.2 91.87 10.6 86.79 40.2 95.5
rotate 38.13 89.13 4.17 90.65 47.69 91.94
voting 44.07 94.2 1.8 88.89 54.2 92.88

at least 3 46.06 91.91 8.2 86.45 45.7 94.5
exactly-3 46.69 86.69 9.1 74.25 44.2 67.46
exactly-5 46.27 82.54 9.7 71.91 44 75.08

Table 11: Case-Wise Performance of LASER.

Dataset NB NB LASER LASER
C1 C2 C1 C2

breast
cancer 79.32 53.37 85.86 58.87
credit 82.76 76.21 87.14 84.02
diabetes 78.72 63.88 83.65 68.03
DNA 77.59 69.35 80.95 73.91
glass 71.46 54.26 80.21 72.02
heart 82.11 80.89 85.68 79.31
rotate 95.68 78.97 94.21 79.58
voting 93 90.13 91.01 95.17

>= 3-of-6-of-13 98.88 91.74 93.14 91.95
= 3-of-6-of-13 67.89 43.2 78.32 72
= 5-of-10-of-13 80.12 47.5 80.77 62.05

C1 - Majority Class
C2 - Minority Class

Table 12: Class-wise accuracy of Naive Bayes Learner (NB)& LASER.
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prediction accuracy on real domains was 7.58% and on artificial domains was 8.13%. LASER
performed better than naive bayes on all but 3 data sets, but these were not significant and
the accuracy of both the schemes on those data sets were above 90%. The overall predictive
accuracy of LASER was 3.8% more than naive bayes on real domains and 3.1% more on
artificial domains.

Table XI gives the percentage of instances that were classified into different cases of
example selection and the prediction accuracy of the on those cases. It can be seen that case
2 is infrequent than the other two cases. The test instances that are closer to one training
instance than all others in Hamming space are more likely to have the same class label. This
can be clearly seen in Table XI that there is a consistent high accuracy of prediction for
case1 instances. The case3 presents the more tough classification instances as they fall near
the decision boundary. The performance of naive bayes learner on these instances where
global probability distribution of classes is required for classification is better on many
domains than naive bayes learner performance on all instances. This indicates that naive
bayes performance must reduces on case1 and case2 examples due to irrelevant examples
that reduces the over all performance and LASER hybrid strategy has helped solve this
problem.

Table XII gives the accuracy of predicting each class label by naive bayes and LASER.
The case-wise accuracy clearly indicates that the success of the example selecting strat-
egy. Further explanation of how LASER helped naive bayes handle the problem of class
imbalance is presented in the next section.

5.5 Summary

The LASER example selection strategy improved the performance of naive bayes on do-
mains with known irrelevant features (that is the artificial domains). LASER was also able
to boost naive bayes Performance on the real domains suggesting the presence of redundant
information or irrelevant information. Table XIII shows the results on one-tailed hypothesis
testing and Cronbach’s reliability coefficient (α). A p-Val of .0096 indicates that the prob-
ability of naive bayes performing better than LASER is less than 1%. It is clear from the
Table XIII that LASER outperformed the naive bayes and the nearest neighbor approaches.

Comparision p-Val Reliability α

NB vs LASER 0.0096 0.9295
1-NN vs LASER 0.0001 0.8746

p-Val < .05 indicates significant difference.

Table 13: Significance of Results
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6. Combining Feature Selection (SCRAP) and Example Selection
(LASER)

We combined the SCRAP feature selection algorithm and LASER example selection scheme
to improve the performance of the naive bayes learner. Table XIV presents a comparison of
naive bayes with/without SCRAP feature selection or/and LASER example selection. Fea-
ture selection improved the performance of naive bayes on domains with irrelevant features.
Example selection improved performance of naive bayes on both real and artificial domains.
The combined approaches of SCRAP and LASER yielded the maximum improvement to
the prediction accuracy of naive bayes learner demonstrating the benefits of selective learn-
ing. Even ID3 and Neural Networks get at most 80% accuracy on the artificial domains
with/without feature selection. LASER was able to comprehensively outperform these ap-
proaches by following a focused learning approach on these domains with many irrelevant
features.

Dataset NB NB LASER LASER pVal
+SCRAP +SCRAP Combined-LASER

breast cancer 74.46 74.19 78.8 81.41+ 0.117
credit 78.73 78.73 85.3 85.3 -
diabetes 74.51 74.51 78.59 78.59 -
DNA 79.76 76.37 77.71 87.71+ .026
glass 71.52 71.52 76.34 76.34 -
heart 82.25 82.25 82.86 82.86 -
iris 96.06 93.63 92.8 93.8+ .475
rotate 91.92 91.92 90.57 90.57 -
voting 91.53 93.32 93.51 95.52+ .069

>= 3-of-6-of-13 92.52 97.606 92.64 97.87+ .00
= 3-of-6-of-13 68.81 69.46 77.06 99.52+ .00
= 5-of-10-of-13 73.50 76.31 78.23 90.42+ .001

Real 82.30 81.83 84.053 85.79+

Artificial 78.28 81.13 82.643 95.94+

Combined - LASER + SCRAP
+ = better than LASER.
p-Val < .05 indicates significant difference.

Table 14: A comparison of Naive Bayes Learner (NB)with/without Feature Selec-
tion(SCRAP) & Example Selection (LASER).

7. Discussion

In this section we present a detailed analysis of the results presented in the previous section.
We use the results to analyze the behavior of stable learning algorithms on feature selection.
We present a detailed study of LASER’s solution to the class imbalance problem.
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7.1 Balancing Hypothesis Consistency and Prediction Accuracy

The SCRAP feature selection procedure arranges the instance space as pure clusters (all
instances belonging to same class). The feature subset required to differentiate adjacent
pure clusters of different class labels are identified and classified as strongly relevant or
weakly relevant. Some of the weakly relevant features help defining fewer hypothesis and
are not incrementally relevant. Removing such features provides the necessary tradeoff
between defining consistent hypothesis and improving prediction accuracy.

The only bias introduced by the SCRAP sequential search filter is the MIN-FEATURE
bias [Almuallim and Dietterich, 1991]. The feature subsets selected by SCRAP were found
to be general. By general we refer to being beneficial across multiple families of learning
algorithms. This is because SCRAP presents features that hold the information for iden-
tifying the hypotheses and is algorithm independent. Higher accuracy can be achieved by
selecting the features that suit the bias of the learning algorithm. This is done by the
Wrapper approaches. But this comes at the cost of losing generality of the feature subset.

7.2 Performance of learning algorithms with Feature Selection

We had presented earlier, the prediction accuracy of different learning algorithms with/
without feature selection. The results present an interesting foundation for a discussion on
the benefits of feature selection realized by different learning algorithms. We will use the
SCRAP’s results for this analysis.

7.2.1 1-Nearest Neighbors

The nearest neighbor schemes use every feature in the feature set for finding the closest
neighbors. If there are more irrelevant features, the performance of the k-nearest neighbors
is going to be affected severely. On real domains that had no totally irrelevant features,
feature selection selects the incrementally useful [Blum and Langely, 1997] features. Due to
this reason the nearest neighbor approach was only marginally improved on these domains.
But on domains with many irrelevant features (as in the artificial domains), feature selection
can be expected to improve the performance by a larger margin. The performance of 1-
nearest neighbor on the three artificial domains that had many irrelevant features indicates
the utility of feature selection to nearest neighbor approaches.

7.2.2 Decision Trees

The ID3 algorithm build the smallest decision tree that is consistent with the training
examples and introduces the MIN-FEATURE Bias[Almuallim and Dietterich, 1991]. This
bias of ID3 is also called the Smallest Tree bias [Caruana and Freitag, 1994]. The feature
subset selection scheme must return a smaller subset (subset of those selected by ID3) to
produce a different decision tree. On real domains where there were no irrelevant features,
the feature selection scheme usually returns all the features. Hence the same decision tree
was built and there was no improvement to the performance. But on the artificial domains
the count of distinct features in the decision tree was larger than the feature subset selected
by the SCRAP. The prediction accuracy of ID3 on the three artificial domains improved on
feature selection.
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7.2.3 The Naive Bayes Learner

The naive bayes learner assumes the existence of a single probability distribution for each
class which is sufficient for identifying the membership of each instance and that the features
are independent of each other [Langely and Sage, 1994].

The real domains chosen for our experiments were mostly from UCI repository. Many
of these domains were noted to be with almost no irrelevant features or complex fea-
ture interactions [Langely and Sage, 1994b]. SCRAP was able to improve the performance
of naive bayes on the voting data set that has been shown to have redundant features
[Langely and Sage, 1994b]. The artificial domains did present both irrelevant features
and feature interactions. The naive bayes learner improved its overall performance by
3% on these domains by using the SCRAP filter for feature selection. This validates
the fact that the naive bayes classifier is affected by irrelevant and redundant attributes
[Langely and Sage, 1994b].

7.2.4 Back Propagation Network

The back propagation neural network proposed by Rumelhart et al. (1986) is a robust
model capable of handling noisy information effectively. Bishop (1995) notes that multi-
layer model of neural networks can be used for dimensionality reduction. Therefore, we
might expect Neural Network them to benefit least from feature selection. Table VII shows
that the Neural Networks can benefit through feature selection on domains with many
irrelevant features, though less so than other algorithms like naive bayes.

7.3 The Class Imbalance Problem

The class imbalance problem corresponds to domains for which one class is represented by
a large number of examples while the other of represented only by a few [Japkwicsz, 2000].
Earlier works to overcome this problem includes re-sampling, in which the smaller class is
re-sampled until there is an equivalent number of instances as the major class, down-sizing
which removes the instances of majority class until the representation is balanced, and
learning by recognition in which a multi-layer perceptron is made to recognize either the
majority class or the minority class [Japkwicsz, 2000].

Japkowicz (2000) has shown that the connectionist systems have degraded performance
on domains with class imbalance. In the previous section we have shown that the naive
bayes learner tends to predict the minority class labels with lower prediction accuracy on
such domains.

LASER presents a solution to this problem by adapting the example selection strat-
egy,that is by selective learning. LASER specifically improved the predictive accuracy in
the minority class to achieve a gain in overall predictive accuracy. The class-wise prediction
accuracy of both LASER and naive bayes show that there is a huge difference (more than
10%) in the class-wise predictive accuracy in breast cancer, diabetes, glass, exactly and
exactly(2) data sets. The majority classifiers of these data sets were around 70% (except
glass). The δ value for these data sets in Table IX was also high. The minority class in-
stances in these highly imbalanced domains will be wrongly classified if global information is
used. This is exactly where a hybrid approach like LASER can comprehensively outperform
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Figure 10: Predictive Measure a. MMR b.CBA

the the traditional scheme due to its adaptability to different example selection strategy at
different regions of instance space.

We define two prediction quality metrics to evaluate performance for class imbalanced
domains.

Definition 7.3.1 The Min-Max Ratio (MMR) is the ratio between the Minority Classifiers
(Min) predictive accuracy to Majority Classifiers (Max) predictive accuracy.

MMRi =
MinorityClass(yci)Accuracy%

MajorityClassAccuracy%
(3)

MMR for a classifier, which predicts the entire instance accurately for every class, is
1.0 and which predicts all instance of a single class alone is 0. The higher the MMR, the
more the learner is consistent in classifying the instance belonging to various class labels in
instance Space.

Definition 7.3.2 The Class Balance Accuracy (CBA) is the measure of predictive accuracy
when corrected for an equal distribution for all class labels in the instance space.

CBA = 1/n
∑

i=1..n

Accuracy(yi) (4)

where Accuracy(yi) returns % accuracy for class label yi ∈ Y.

Figure 11 shows the two metrics MMR and CBA against the majority classifier percent-
age. The label identifies the data set, its majority class percentage(x-axis) and MMR or
CBA value (y-axis) of LASER and naive bayes on that domain. Both MMR and CBA are
negatively correlated with the majority classifier. It is clear that the percentage of correctly
predicted minority class instances decreases with increase in percentage of majority class.
Also, the quality of prediction (CBA) drops with increase in majority classifier’s propor-
tion. LASER was able to improve the minority class prediction and maintain the CBA
much higher than naive bayes.
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7.4 Comparison of Feature Selection and Example Selection

Feature selection (SCRAP) is necessary to improve the performance of all categories of
learning algorithms on domains with many totally irrelevant features. On domains with no
or few irrelevant features, feature selection does not provide any significant improvement to
learning algorithms accuracy. The Examples selection scheme (LASER) was able to improve
the performance of the learning algorithm on domains with many irrelevant features and
domains with no or few irrelevant features. Table XIII shows that a combined approach
of feature and example selection produced the optimal results for the naive bayes learner
amongst the three approaches and the simple naive bayes learner.

8. Conclusion

We have presented the SCRAP feature selection algorithm and the LASER example selec-
tion scheme. Our feature selection approach is based on the assumption that features that
are relevant to defining consistent hypotheses locally along a sequential search path will
be a close approximation of the MIN-FEATURES. Also checking for incremental relevancy
of weakly relevant features is an acceptable tradeoff between defining consistency and im-
proving prediction accuracy. The SCRAP filter was able to remove most of the irrelevant
features on the artificial domains, which had many irrelevant features. SCRAP produced
general data sets that were able to improve the performance of three families of learning al-
gorithms: Instance-based learners, Statistical and Symbolic learners and Neural Networks.
The limitation of this approach is that the feature subset produced is often large and on
few real domains it returned the entire feature set as relevant.

Our LASER example selection scheme presents the other aspect of selective learning.
The example selection component was used with naive bayes classifier. LASER was able
to improve the prediction accuracy of naive bayes on both real and artificial domains sig-
nificantly. Analysis suggested that this helps mitigate problems especially in domains with
class imbalance. The only limitation of LASER is that its decision strategy is target-learner
specific and needs to be modified to suit different learners.

We showed the benefits realized by the components of the selective learning mechanism
namely selective attention and selective utilization. We combined the both these schemes
to observe their combined effect on naive bayes. The results suggest that the naive bayes
learner benefited significantly by taking a focused or selective approach.
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