
The HPSG Formalism

Susanne Riehemann

May 1995

1 The Data Structures

1.1 AVMs

In HPSG, linguistic objects are described by sorted attribute value matrices like the one

shown in (1), which is part of the information lexically available for the verb walks.

(1)
2
6666666666666666666666666666666666664

word

phon
D
walks

E

synsem

2
666666666666666666666666666664

synsem

local

2
666666666666666666666666664

local

cat

2
66666666666666664

category

subj

*

2
6666666666664

synsem

local

2
6666666664

local

cont

2
666664

nom-obj

index 1

2
664
ref

num sing

per 3rd

3
775

3
777775

3
7777777775

3
7777777777775

+

3
77777777777777775

content

2
4content
walker 1

3
5

3
777777777777777777777777775

3
777777777777777777777777777775

3
7777777777777777777777777777777777775

The things in capital letters are the attributes (also called features), which are followed

by their values. Values can either be simple (or atomic), like sing(ular), which is the

value of the num(ber) attribute, or they can be complex, i.e. their value can again be

a complex attribute value matrix, like that for index in the �gure.

1

1.2 Sorts and Hierarchies

These attribute value matrices (AVM diagrams, or just AVMs for short) are sorted (or

typed) { for example, the value of the index attribute is of sort referential (abbreviated

as ref). The sort labels appear in italics in the upper left corner of an AVM. They are

sometimes omitted in �gures when they don't contribute relevant information.

Sorts constrain which kind of attributes are appropriate as their values. This is called

imposing `appropriateness conditions'. For example, things of type index can only have

the attributes num(ber), per(son) and gend(er).

Some sorts stand in a hierarchical relationship to each other (see e.g. (2) and (3)), and

since atomic values are also sorts (atomic sorts) they do, too. The relation between

atomic sorts and other sorts will be clearer once we get to the graph notation.

(2)

number

singular plural

(3)

sign

word phrase

The sorts which contain more information are lower in the hierarchy, while the more

general ones are higher up. Of course these hierarchies can get more complex when the

subtypes themselves have further subtypes. Constraints that hold for several types have

to be stated only once on a common supertype and are inherited by the subtypes, which

allows us to express generalizations and make our grammars and especially the lexicon

more elegant.

1.3 Objects vs. Descriptions

In HPSG a clear distinction is made between linguistic objects and their descriptions {

objects are assumed to be modeled by feature structures, which are graphs, while

these can be described by attribute value matrices (AVMs).

For example, essentially the same information that is contained in (1) can be represented

as a graph, as in (4):

2

(4)

word synsem local category

SYNSEM LOCAL CAT FIRSTSUBJECT

nelist synsem local ppro

content

CONTLOCAL INDEX

PER

GEND

NUM

3rd

fem

sing
ref

CONTENT
WALKER

In these graphs the arcs are labeled with the feature names, and the nodes are labeled

with the sort names. This shows the relationship between atomic sorts (=values) and

other sorts { in such a graph both are labels for nodes.

These have been taken to be alternative notations for the same thing by many people (e.g.

Shieber 1986 in your reading), and AVMs are often referred to as `feature structures',

but it is important to keep in mind that there is an important conceptual distinction

drawn between the two in HPSG.

The feature structures are assumed to be complete models of the linguistic objects, and

therefore cannot be underspeci�ed or partial in any way. Formally, this is called `totally

well typed and sort resolved' { every feature that is admissible for a given sort has to

actually be present, and all their values have to be of a maximal sort. This means

that for example the gender feature cannot be underspeci�ed as gend , but has to have
either fem or masc as its value when it is part of a feature structure modeling a linguistic

object. So, the thing in (4) could not really be part of HPSG { it is not fully speci�ed

(e.g. it is missing information about phonology), and can therefore not be a linguistic

object, and it is of the wrong kind to be a description.

1.4 Structure Sharing

The little boxed numbers in AVMs, called tags, indicate structure sharing. This means

that the values of the attributes marked with these tags are supposed to be token-

identical, which is stronger than just being accidentally the same. We'll see later that

this is an important distinction, because it a�ects the results of uni�cation.

The concept of `sharing structure' can be seen quite easily in the graph notation { note

that the two arcs actually lead to the same node. These feature structures are also called

`reentrant'.

3

2 Subsumption

AVMs can be as partial as you like, and if you want to describe general properties of

linguistic objects they can be very underspeci�ed. In fact, they can be partially ordered

according to their speci�city. For example, (5)

(5)
h
num sing

i

is more general than (or subsumes) (6)

(6)
"
num sing

per 3rd

#

(6) contains more information, and therefore imposes stricter constraints and describes

fewer linguistic objects.

The same kind of relation also holds when the sorts stand in a hierarchical relationship

{ for example, since num is more general than sing, (7) is more general than (8).

(7)
h
num num

i

(8)
h
num sing

i

But not every pair of AVMs stands in a subsumption relation { if the two AVMs are

either mentioning di�erent attributes, or else if they contain conicting information,

neither one subsumes the other.

3 Uni�cation

Uni�cation is the main information combining operation in HPSG (and other uni�cation

based grammars). It means that information from two or more sources is combined

(uni�ed). In order to compute the result of unifying the information from two AVMs,

one just puts together the information from both, without adding anything more. This

results in the most general description that is compatible with the two inputs. You can

think of this as similar to logical `and'. If the information is incompatible, uni�cation is

said to `fail'.

For example, (9) uni�ed with (10) gives (11) ((9) t (10) = (11)):

(9)
h
num sing

i

(10)
h
per 3rd

i

(11)
"
num sing

per 3rd

#

4

But (12) t (13) fails, because the values for the num feature are incompatible:

(12)
h
num sing

i

(13)
h
num plur

i

Now we can see more clearly why structure sharing is not the same as having the

information present twice { it makes a di�erence when unifying something into one part

of it:

(14)

2
664
A

h
B a

i
C

�
D

h
B a

i�
3
775t

"
C

�
D

h
E b

i�#
=

2
66664
A

h
B a

i

C

2
4D

"
B a

E b

#35

3
77775

But

(15)

2
64A 1

h
B a

i
C

h
D 1

i
3
75t

"
C

�
D

h
E b

i�#
=

2
6664
A 1

"
B a

E b

#

C
h
D 1

i
3
7775

4 Notation and Abbreviations

4.1 Lists and Sets

Lists are written in angle brackets: h i

HPSG lists are just like the standard lists you're used to { they are ordered, and the

same object can be on the list twice.

There is an alternative notation for lists { for example hNP;PPi corresponds to:2
664
first NP

rest

"
first PP

rest elist

#
3
775

Sets are written in curly brackets: f g

HPSG sets are a little di�erent from what you're probably familiar with { it is possible

for two descriptions in the set to actually describe the same object. So, a set with three

descriptions in it could have three objects, two objects, or even just one object in it.

4.2 Sorts

Remember that the book uses a di�erent notation for types { you'll �nd them on the

bottom corner outside the AVM bracket. This is purely a notational di�erence, and (16)

is exactly the same description as (17).

5

(16)
2
6666666666666666666666666666666666664

word

phon
D
walks

E

synsem

2
666666666666666666666666666664

synsem

local

2
666666666666666666666666664

local

cat

2
66666666666666664

category

subj

*

2
6666666666664

synsem

local

2
6666666664

local

cont

2
666664

nom-obj

index 1

2
664
ref

num sing

per 3rd

3
775

3
777775

3
7777777775

3
7777777777775

+

3
77777777777777775

content

2
4content
walker 1

3
5

3
777777777777777777777777775

3
777777777777777777777777777775

3
7777777777777777777777777777777777775

(17)

word

2
6666666666666664

phon
D
walks

E

synsem

synsem

2
666666666664
local

local

2
66666666664

cat

category

2
666664subj

*

synsem

2
6664local

local

2
664cont

nom-obj

2
64index 1

ref

2
4num sing

per 3rd

3
5
3
75
3
775
3
7775
+
3
777775

content
content

h
walker 1

i

3
77777777775

3
777777777775

3
7777777777777775

4.3 Paths

It is common to leave out sort labels when they are not necessary and to avoid brackets

by using a path notation within AVMs. If you compare (18) to (17) (=1) you will see

that for example synsemjlocal has been put together, since the bracketing would not

be helpful because there is only one attribute mentioned. Such paths can get as long as

you like, e.g. you can say that sing is the value of

synsemjlocaljcatjsubjjlocaljcontjindexjnum.

6

(18)
2
666666666666664

phon
D
walks

E

synsem j local

2
66666666664

cat j subj

*
local jcont

2
666664

nom-obj

index 1

2
664
ref

num sing

per 3rd

3
775

3
777775
+

content
h
walker 1

i

3
77777777775

3
777777777777775

4.4 Abbreviations

Some further common abbreviations are:

Abbreviation: Abbreviated AVM Diagram:

NP i

2
666664local

2
666664
category

2
664
head noun

spr h i

comps h i

3
775

content j index i

3
777775

3
777775

S: i

2
666664local

2
666664
category

2
664
head verb

subj h i

comps h i

3
775

content i

3
777775

3
777775

VP: i

2
666664local

2
666664
category

2
664
head verb

subj h synsem i

comps h i

3
775

content i

3
777775

3
777775

h synsem i means that the list has only one element, which is of type synsem.

Alternative notations for this are h [synsem] i or h [] i

In general, subscripts are always taken to refer to the index value, and tags after a

colon refer to the content value.

7

Sometimes more information is added about the index:

NP i [3rd;sing]

2
6666666664
local

2
666666664

category

2
664
head noun

spr h i

comps h i

3
775

content j index i

"
per 3rd

num sing

#

3
777777775

3
7777777775

Sometimes the values of frequently needed attributes such as case or vform are put

in square brackets behind the abbreviation, e.g.:

NP[nom]

2
6666664
local

2
666664category

2
666664
head

"
noun

case nom

#

spr h i

comps h i

3
777775

3
777775

3
7777775

VP[�n]

2
6666664
local

2
666664category

2
666664
head

"
verb

vform �n

#

subj h synsem i

comps h i

3
777775

3
777775

3
7777775

These abbreviation are often combined:

NP[nom] i [3rd;sing]

2
6666666666664
local

2
666666666664

category

2
666664
head

"
noun

case nom

#

spr h i

comps h i

3
777775

content j index i

"
per 3rd

num sing

#

3
777777777775

3
7777777777775

8

5 Changes from HPSG II to the current Version

of HPSG III

5.1 Valence

In HPSG II, i.e. the �rst 8 chapters of the book, we have a subcat list:

h
synsem j local jcategory j subcat list(synsem)

i

For example, a simple transitive verb would have �rst the subject and then the object

on the subcat list:

h
synsem j local jcategory j subcat hNP[nom], NP[acc]i

i

In HPSG III this is replaced by separate attributes for subjects, complements, and spec-

i�ers:

2
664synsem j local jcategory jvalence

2
664
subj list(synsem)

comps list(synsem)

spr list(synsem)

3
775
3
775

For example:

2
4synsem j local jcategory jvalence

"
subj hNP[nom]i

comps hNP[acc]i

#35

5.2 ARG-S

There is a new attribute arg-s for `argument structure', which takes a list of synsem
objects as its value. For now make it an attribute at the same level as valence:

2
664synsem j local jcategory

2
664
head head

valence valence

arg-s list(synsem)

3
775
3
775

5.3 DTRS

The attribute dtrs has been eliminated, and the attributes hd-dtr, subj-dtr, comp-

dtrs, and spr-dtr have become direct attributes of phrases (for details see your \hi-

erarchy of headed phrases" handout).

9

5.4 Relations

The information about the semantic relation of a verb got moved from being the value

of an attribute relation to being a subsort of content .

2
664synsem j local jcont

2
664
relation love

lover

loved

3
775
3
775

becomes:

2
664synsem j local jcont

2
664
love-rel

lover

loved

3
775
3
775

10

