
To appear in the Journal of the Association for Computing Machinery�

Diversity�Based Inference of Finite Automata

Ronald L� Rivest Robert E� Schapire

MIT Laboratory for Computer Science

Cambridge� MA �����

January ��� ����

Abstract

We present new procedures for inferring the structure of a �nite�state automaton
�FSA� from its input�output behavior� using access to the automaton to perform ex�
periments�

Our procedures use a new representation for �nite automata� based on the notion of
equivalence between tests� We call the number of such equivalence classes the diversity
of the automaton� the diversity may be as small as the logarithm of the number of
states of the automaton� For the special class of permutation automata� we describe an
inference procedure that runs in time polynomial in the diversity and log�	���� where
� is a given upper bound on the probability that our procedure returns an incorrect
result� �Since our procedure uses randomization to perform experiments� there is a
certain controllable chance that it will return an erroneous result�� We also discuss
techniques for handling more general automata�

We present evidence for the practical e
ciency of our approach� For example� our
procedure is able to infer the structure of an automaton based on Rubik�s Cube �which
has approximately 	��� states� in about 
 minutes on a DEC MicroVax� This automaton
is many orders of magnitude larger than possible with previous techniques� which would
require time proportional at least to the number of global states� �Note that in this
example� only a small fraction �	����� of the global states were even visited��

Finally� we present a new procedure for inferring automata of a special type in which
the global state is composed of a vector of binary local state variables� all of which are
observable �or visible� to the experimenter� Our inference procedure runs provably in
time polynomial in the size of this vector �which happens to be the diversity of the
automaton�� even though the global state space may be exponentially larger� The
procedure plans and executes experiments on the unknown automaton� we show that
the number of input symbols given to the automaton during this process is �to within
a constant factor� the best possible�

� Introduction

We address the problem of inferring a description of a deterministic �nite�state automaton
from its input�output behavior�

This paper was prepared with support from NSF grant DCR��������� ARO Grant DAAL�	����K�

�
�
� and a grant from the Siemens Corporation� Authors� net addresses
 rivest�theory�lcs�mit�edu�

schapire�research�att�com� R� Schapire�s current address
 AT�T Bell Laboratories� ��� Mountain Avenue�

Room �A����� Murray Hill� NJ ������



Our motivation is the �arti�cial intelligence� problem of identifying an environment by
experimentation� We imagine a robot wandering around in an unknown environment whose
characteristics must be discovered� Such an environment need not be deterministic� or even
�nite�state� so the approach suggested here is only a beginning on the more general problem�

In line with our motivation� our inference procedures experiment with the automaton
to gather information�

A unique and valuable feature of our procedures is that they do not need to have the
automaton �reset� to some start state or �backed�up� to a previous state� instead� data is
gathered in one continuous experiment 	as in real life
�

Our procedures are practical� their time and memory requirements are quite reasonable�
For example� our procedures do not need to store the entire observed input�output history�

In Sections � and �� we present a new representation of �nite automata based on the
notion of test equivalence� We present and prove the e
ectiveness of a probabilistic algo�
rithm for inferring permutation automata� We also discuss possible techniques for handling
more general automata� and give some preliminary experimental results�

In Section �� we extend the work of the preceding sections focusing on one aspect of the
inference problem� namely� that of planning experiments for gathering information�

� Previous Work

For a fascinating discussion of the problem of inferring an environment from experience� the
reader is encouraged to read Drescher ��� ���� whose approach is based on the principles of
Piaget�

Kohavi ���� gives a �ne introduction to the theory of �nite�state automata� as do Hart�
manis and Stearns �����

The problem of inferring a �nite�state automaton from its input�output behavior has
a long history� Pitt provides an excellent survey of this history ����� Here are some of the
highlights�

Gold ���� presented a number of recursion theoretic results concerning several language
classes� including the regular languages� Gold considered the problem of identifying a
language �in the limit�� and showed that the feasibility of this problem for regular languages
depends on the manner in which examples of the language are presented to the learner� In
the same paper� Gold described the problem of �black box� identi�cation� closely related to
the particular problem that we are here addressing� In this situation� the learner is able to
experiment with an unknown black box� At each time step� the learner supplies the black
box with an input symbol and the black box in turn outputs an output symbol calculated
as a function of the input symbols provided to it so far� Gold shows that if the black box is
a �nite automaton� then it can be identi�ed in the limit� Note however that Gold�s results
do not address the time complexity of any of these problems�

In a later paper� Gold ���� examined more closely the problem of inferring a black box
�nite automaton� Here� Gold assumed that the experimenter has available to it a means
of resetting the automaton to some initial state� He described how the automaton can be
identi�ed in the limit� how experiments can be e�ciently planned� and how the automaton
can be identi�ed in a �nite amount of time if the learner is given beforehand the number
of states of the automaton�

Trakhtenbrot and Barzdin� ���� described several variations on the problem of identifying
a black box �nite state machine� Among their results are algorithms for �nding a perfect

�



model of an unknown �nite automaton that has been chosen partially at random� Like
Gold� Trakhtenbrot and Barzdin� generally did not consider the time complexity of their
algorithms�

Later� Angluin ��� elaborated on Gold�s algorithm to show how to e�ciently infer an au�
tomaton with active experimentation� In her model� the learner has a �minimally adequate
teacher� who can answer two kinds of queries� First� the teacher will tell the learner whether
any particular string is a member of the unknown automaton�s language 	i�e�� whether the
string is accepted by the automaton
� Second� the teacher is able to supply the learner with
a counterexample to an incorrect conjecture of the automaton�s identity� Angluin showed
that the number of queries required by her algorithm to correctly identify the unknown
automaton is polynomial in the number of states of the automaton and in the length of the
longest counterexample supplied by the teacher� Note that Angluin�s procedure depends
critically on the availability of a reset�

The problem of learning an automaton by passively observing its behavior is now well
established to be a hard computational problem� Angluin ��� and Gold ���� proved that
�nding an automaton of n states or less agreeing with a given sample of input�output pairs is
NP�complete� Pitt and Warmuth ���� showed that merely �nding an approximate solution is
infeasible if P �� NP� Kearns and Valiant ����� extending the work of Pitt and Warmuth �����
showed that learning �nite automata is intractable� regardless of the representation used
by the learner 	assuming the security of various cryptographic functions
� Note that in
all of these situations the inference algorithm does not have access to the automaton�the
input�output pairs are given and the learner is not able to experiment with the automaton
it is trying to identify� Their results indicate that active experimentation is an indispensable
tool for inference of �nite automata�

Finally� Angluin ��� showed how to infer in polynomial time a special�class of �nite�
state automata� called �k�reversible� automata� from a sample of input�output behavior�
Later� we will give special consideration to the class of permutation automata of which the
zero�reversible automata are a subclass�

As previously mentioned� our algorithms are based on a new �diversity�based� represen�
tation of �nite automata� This representation was previously considered by Bainbridge ����

� A New Representation of Finite Automata

��� Automata and Environments

Our de�nition of a �nite�state automaton is a generalization of the usual Moore automa�
ton ����� 	Our approach generalizes to handle Mealy automata� however� we �nd Moore
automata more natural�


A �nite�state automaton E is a ��tuple 	Q�B� P� q�� �� �
 where

� Q is a �nite nonempty set of states�

� B is a �nite nonempty set of input symbols� also called basic actions�

� P is a �nite nonempty set of predicate symbols� also called sensations�

� q�� a member of Q� is the initial state�

� � is a function from Q�B into Q� � is called the next�state function�

�



� � is a function from Q� P into ftrue� falseg�

When P only contains a single predicate 	e�g�� accept
� we have the standard de�nition
of a Moore automaton� We allow multiple predicates to correspond to the notion of a robot
having multiple sensations in a given state of the environment�

We assume henceforth that we are dealing with a particular �nite�state automaton
E � 	Q�B� P� q�� �� �
� which we call the environment of the learning procedure�

We say that E is a permutation environment if for each b � B� the function �	�� b
 is a
permutation of Q�

We let A � B� denote the set of all sequences of zero or more basic actions in the
environment E � A is the set of actions possible in the environment E � including the null
action ��

If q is a state in Q� and a � b�b� � � � bn is an action in A� we let qa � qb�b� � � � bn denote
the state resulting from applying action a to state q�

qa � �	� � � �	�	q� b�
� b�
 � � � � bn
� 	�


	The basic actions are performed in the order b�� b�� � � � � bn�
 Similarly� if q is a state and p

is a predicate� we let qp � �	q� p
 denote the result of applying predicate p to state q�
We say that E is strongly connected if

	�q � Q
	�r � Q
	�a � A
qa � r� 	�


We do not assume that E is strongly connected in our general discussion of automata and
diversity� However� when we describe our inference procedure� we will make this assumption
with little loss of generality� if E is not strongly connected� then an experimenting inference
procedure� having no �reset� operation� will sooner or later fall into a strongly connected
component of the state space from which it cannot escape� and so will have to be content
thereafter learning only about that component�

��� Tests

A test is an element of AP � that is� an action followed by a predicate� We let T denote the
set of tests AP � We say that a test t � ap succeeds at state q if qt � q	ap
 � qap � 	qa
p
is true� Otherwise we say that t fails at q� The length jtj of a test t is the number of basic
actions and predicates it contains�

We say that E is reduced if every pair of states can be distinguished by executing some
test�

	�q � Q
	�r � Q
	q �� r� 	�t � T 
qt �� rt
 	�


We assume henceforth that E is reduced�
We say that a robot has a perfect model of its environment if it can predict perfectly

what sensations would result from any desired sequence of basic actions� that is� if it knows
the value of every test in the current state� The goal of our inference procedures is to build
a perfect model of the given environment�

��� Equivalence of Tests and Diversity

A central notion in our development is that of test equivalence�

�



We say that tests t� and t� are equivalent� written t� 	 t�� if

	�q � Q
	qt� � qt�
� 	�


that is� from any state the two tests yield the same result�
The equivalence relation on tests partitions the set T of tests into equivalence classes�

The equivalence class containing a test t will be denoted �t��
The diversity of the environment E � denoted D	E
� is the number of equivalence classes

of tests of E �
D	E
 � jf�t� j t � Tgj� 	�


The following theorem demonstrates that the diversity of a �nite�state automaton is
always �nite� but is only loosely related to the size 	i�e�� number of states
 of the automaton�

Theorem � For any reduced �nite�state automaton E � 	Q�B� P� q�� �� �
�

lg	jQj
 
 D	E
 
 �jQj�

Proof� The �rst inequality lg	jQj
 
 D	E
� or equivalently jQj 
 �D�E�� holds because a
state is uniquely identi�ed by the set of 	equivalence classes of
 tests which are true at that
state� since E is reduced� The second inequality holds because the equivalence class that a
test belongs to is uniquely de�ned by the set of states at which that test succeeds�

Theorem � The lower and upper bounds on D	E
 given in Theorem � are the best possible�

Proof� For the lower bound� consider an environment where the states are n�bit words�
and� for � 
 i 
 n� there is a predicate pi which tests whether the i�th bit is one� The
set B consists of a single action� which is the identity operation 	no state change
� Then
D	E
 � n but jQj � �n� 	Although the state space in this example is disconnected� a similar
but connected example that nearly achieves the same bound is given in Section ������


For the upper bound� consider an automaton whose states are represented by an element
x which is either an n�bit vector 	x�� � � � � xn
 or the special value hit� there are ���n states�
The only predicate tests whether x � hit� The following actions are available�

� For each i � f�� � � � � ng� an action which �ips xi if x �� hit� and leaves x alone
otherwise�

� An action which sets x to hit if x is the all�zero vector �n� and leaves x alone otherwise�

Using these actions� for any subset X of the n�bit vectors� it is possible to construct a
test which is true if and only if the initial state begins with x � X or x � hit initially�
	Selective complementation can bring x into the all�zero state i
 it was originally in some
particular n�bit state y� this state can then be transformed to hit� otherwise the original
state can be restored by undoing the selective complementation� This can be repeated for
each y � X �
 Actually� this environment only comes within a factor of two of the upper
bound� its diversity is �jQj���

However� the following alternative environment does achieve the upper bound� although
its set of basic actions is enormous� The environment consists of n states numbered �
through n� �� and has a single predicate p which succeeds only at state �� For each subset
X of the states� there is an action bX which moves state x to state � if x � X � or to

�



state � otherwise� Thus� the test bXp is true i
 we are in one of the states in X � Hence�
D	E
 � �jQj�

We propose that the notion of diversity is more suitable than that of size for many
natural applications� To support this viewpoint� we will demonstrate that there exists a
natural encoding of a �nite�state automaton� whose size is polynomial in the diversity of the
automaton� Furthermore� it is straightforward to use this representation 	called the update
graph
 to simulate the behavior of the automaton�

��� The Update Graph

As a convenient means of representing the test classes� we may build a directed graph in
which each vertex is an equivalence class� and an edge labeled b � B is directed from test
class �t� to �t�� i
 t 	 bt�� We call this the update graph of the environment�

Since there is one vertex for each equivalence class� the size of the update graph is
precisely the diversity of E � Also� for b � B� every vertex has exactly one b�edge directed
into it� since if t 	 t� then bt 	 bt��

For any test t � ap where p is a predicate and a � b�b� � � � bn is a sequence of basic
actions� there is a path in the update graph along which vertex �p� can be reached from �t�
by following the edges labeled b�� b�� � � � � bn� Put another way� we can �nd t�s equivalence
class in the update graph by tracing backwards from �p� along the unique path bn� � � � � b��
Thus� the set of tests equivalent to t consists exactly of those tests ap for which there is a
path from �t� to �p� labeled with the basic actions of a�

We associate with each vertex �t� the value of t at the current state q� 	This value is
well de�ned since if t 	 t� then by de�nition of equivalence� qt � qt��
 When action b is
executed� the test �t�� gets its value from �t�� where t 	 bt�� yielding the new value of each
test in state qb� Thus� the update graph may be used to simulate the automaton� as we
prove in the following theorem�

An example update graph is described in Section ����

��� The Simulation Theorem

Theorem � To simulate E �i�e�� to have a perfect model of E� it su�ces to know	

�� The update graph�


� For each equivalence class �t�� the value qt at the current state q�

Proof� Suppose the automaton moves from state q to state qb� for some b � B� We need
to compute 	qb
t � q	bt
 for each equivalence class �t�� However� the test bt belongs to that
	unique
 equivalence class �s� for which an edge labeled b is directed from �s� to �t� in the
update graph� By assumption� we know qs� this is the desired value of 	qb
t�

��� Simple�Assignment Automata

We may regard the test equivalence classes as 	local
 state variables each of which is updated
under the execution of some basic action with the value of one other 	or the same
 variable�
We call such a structure a simple�assignment automaton 	SAA
� The output of an SAA
consists of the current values of one or more its variables�in this case the equivalence
classes of the predicates�

�



If we regard the current state of an SAA as the assignment of values to all the variables�
then it is clear that every SAA is deterministic and �nite state� and so can be simulated by
some FSA� Conversely� our construction and the simulation theorem show that every FSA
can be simulated by some SAA 	the one we have constructed being the smallest
� Thus� we
have proved�

Theorem � Every SAA can be simulated by an FSA� and every FSA can be simulated by
an SAA�

We will return to the topic of simple assignment automata in greater detail in Section ��

��	 Characterizing Diversity and the Update Graph

Dana Angluin ��� and Neal Young ���� have independently pointed out the following re�
lationship between the update graph of an environment with a single predicate� and the
original automaton�

Let E be an environment with a single predicate� 	Q�B� fpg� q�� �� �
� and let E � �
	Q�� B� fp�g� q��� �

�� � �
 be de�ned as follows�

� Q� � f�t� j t � Tg

� q�� � �p�

� ��	�t�� b
 � �bt�� for �t� � Q�� b � B

� ��	�t�� p�
 � q�t� for �t� � Q��

In this construction� Q� is just the vertex set of E �s update graph so that jQ�j � D	E
�
Furthermore� by the de�nition of ��� we see that the transition graph of E � is exactly this
update graph with all of the edges reversed in direction�

Theorem � Let E and E � be as described above� Then for any action a � A� q�ap � q��a
Rp�

where aR is the reverse of a�

Proof� Let a � b� � � � bn� where each bi � B� Then by the de�nition of ��� we have�

q��a
R � �p�bnbn��bn�� � � � b�

� �bnp�bn��bn�� � � � b�

� �bn��bnp�bn�� � � � b�
���

� �b� � � � bnp�

� �ap��

Thus� q��a
Rp� � � �	q��a

R� p�
 � ��	�ap�� p�
 � q�ap�
The language L	E
 accepted by automaton E is the set of actions a � A which move E

from its starting state to an �accepting� state in which the environment�s only predicate is
true� That is� L	E
 � fa � A j q�ap � trueg� Theorem � shows that the diversity of E is
exactly the state size of the minimum FSA which accepts the reverse of L	E
�

When E � 	Q�B� fpg� q�� �� �
 is a permutation environment with a single predicate�
the diversity and update graph can be characterized in a di
erent manner based on group

�



0 0000 01 1 1 1

Figure �� The ���bit Register World

theory� In this case� the set of basic actions generates a permutation group G on the states
of E � Let H be the subgroup of G which stabilizes the accepting states of E � That is� H
consists of those group elements a of G for which qp � qap for all q � Q� 	Equivalently� G
is the permutation group on the test equivalence classes of E � and H is the subgroup of G
which stabilizes �p��


We de�ne the left coset graph of H as follows� the vertices of the graph are the left
cosets of H � and an edge labeled b is directed from aH to a�H i
 aH � ba�H � 	Here�
aH � fah � h � Hg�


Then the following theorem shows that the diversity of E is exactly the index of H in
G 	i�e�� the number of left cosets of H
�

Theorem � Let E � 	Q�B� fpg� q�� �� �
 be a permutation environment� let G be the group
generated by the basic actions of E� and let H be the subgroup of G that stabilizes the
accepting states of G� Then the update graph of E is isomorphic to the left coset graph of
H�

Proof� For any two tests xp and yp� we have�

xp 	 yp � y��xp 	 p

� 	�q � Q
qy��xp � qp

� y��x � H

� x � yH

� xH � yH�

The generalization of both these characterizations to environments with multiple pred�
icates is straightforward�

��
 Two Example Environments

The motivation for the introduction of the notion of diversity was the realization that many
interesting �robot environments� can be modeled as �nite automata which� although they
have a large number of states� have low diversity� In this section� we make this point explicit
by describing two particular small �robot environments��

��	�� The n
bit Register World

In this environment� the robot is able to read the leftmost bit of an n�bit register� such
as the ���bit register depicted in Figure �� Its actions allow it to rotate the register left or
right 	with wraparound
 or to �ip the bit it sees�

�



L

L

L

R

R

R

F

F

F

F

L

R

L
R

L

R

F

F

L 1

R 1

F 1

L F 1

1

R F 1

Figure �� Update Graph of ��bit Register World

Clearly� this automaton consists of �n global states� but its diversity is only �n since
there is one test for each bit� and one for the complement of each bit� We note that the
register world is a permutation automaton�

The update graph of this environment for n � � is depicted in Figure �� The name ���
in the �gure refers to the predicate which returns true if the leftmost bit is a �� and �L��
�R� and �F� refer to the actions which rotate left and right� and which �ip the leftmost bit�
In the current state� the register contains the values ���� We have darkened the borders of
the tests which are true in the current state 	namely� �� R� and LF�
� If the register is
rotated left 	i�e�� if action L is executed
� then in the resulting state� tests F�� L� and R�
will be true�

So� for example� in this environment� the tests LFRR� and R� are equivalent as can be
deduced from the update graph� Informally� the two tests are equivalent because� regardless
of the current state� the result of executing either test is to return the value of the bit one
step to the right� Thus� the two tests will always return the same value despite the fact
that the tests� e
ect on the global state may be quite di
erent 	one test �ips a bit� the other
does not
�

��	�� The n� n Grid World

Consider a robot on an n � n square grid 	with �wraparound�� so that it is topologically
a torus
� See Figure �� The robot is on one of the squares and is facing in one of the four
possible directions� Each square 	except the one it currently occupies
 is either red� green�
or blue� The robot can sense the color of the square it is facing� 	This corresponds to the
predicates of our previous development�


�



B R G R G

B G B R B

R B R G R

B G G B

R RB GG

robot

Figure �� The �� � Grid World

The following actions are available to the robot� it can paint the square it faces red�
green� or blue� The robot can turn left or right by �� degrees� or step forward one square in
the direction it is facing� Stepping ahead has the curious side e
ect of causing the square
it previously occupied to be painted the color of the square it has just moved to� so moving
around causes the coloring to get scrambled up�

This environment is a �nite�state automaton which� even after reducing by factoring
out some obvious symmetries� has an exponentially large 	�n

���
 number of states�
However� the diversity of this environment is only O	n�
� The state of this environment

is completely characterized by knowing the color of each square 	using a robot�relative
coordinate system
� It is not hard to devise a set of O	n�
 tests whose results give all the
desired information� 	For example� the square behind the robot is red if and only if the test
�turn�left turn�left see�red� is true�


Given this information� it is easy to see how to predict the state of the environment
after a given sequence of actions� In fact� it becomes clear that this is the �natural�
representation of this environment� and that the intuitive representation and simulation
procedure one would use for this environment are captured almost exactly by the diversity�
based representation and simulation procedure given in the previous section�

We note that because of the �paint� operations� this environment is not a permutation
environment�

� Our Inference Procedure

The inference procedure tries to construct a perfect model of its environment by meeting
the two requirements of the simulation theorem 	Theorem �
� That is� the procedure �rst
infers the structure of the update graph� and then maneuvers itself into a state q where it
knows the value qt for every equivalence class �t��

��



We will see that the �rst problem of constructing the update graph is by far the harder
of the two� We therefore begin with the second problem of determining the associated value
of each test equivalence class�

��� Inferring the Values of the Test Equivalence Classes

Suppose then that the update graph�s structure is entirely known� and we now wish to
determine the value associated with each vertex 	equivalence class
 of the graph�

Assign to each vertex a variable xi which will stand for the value of that vertex in the
starting state� Since the execution of any action causes each vertex to be updated with the
value of one of the other vertices� we see that the value of each vertex in every future state
will just be one of these variables xi� Our goal is to reach a state in which all of the variables
still in existence are known� 	Some variables may disappear� but this is of no consequence
since� for perfect predictability� we only need to know the values of those that still exist�


Initially� all of the variables are unknown� We can �solve� for a particular variable xi
by causing one of the predicates p to be updated with the value xi� In this state� xi is the
value of p which is directly observable�

If all of the existing variables are known� then we are done� Otherwise� there must be a
vertex �t�� where t � ap� with unknown value xi� Then by executing action a� we move the
value of t to predicate p� and thus we learn the value of variable xi� Repeating this process�
we solve for all existing variables�

Note that the executed action sequence a above need not be longer than the size of the
update graph D	E
� Further� each iteration of this loop decreases the number of unknown
variables by one� Since there are initially only D	E
 variables� we see that this part of the
inference problem can be solved in O	D	E
�
 time�

We focus for the remainder of this section on the problem of inferring the structure of
the update graph�

��� An Inference Procedure Using an Oracle for Equivalence

We begin by supposing that we have an oracle available that can tell us whether two tests
s and t are equivalent�

Our algorithm 	Figure �
 builds up the update graph� adding one edge at a time and
creating new vertices when necessary� until no more edges can be added� Here� the program
variable V represents the current set of vertices 	equivalence classes
� We assume that the
predicates are inequivalent to one another� so initially V consists of one equivalence class
for each of the predicates�

The edges of the graph are represented by the function �� For each equivalence class �t��
and each basic action b� the program computes the vertex at the tail of the unique b�edge
directed into �t�� so that �	�t�� b
 � �bt�� If this is a vertex already in V� then an edge is
simply added� otherwise� a new vertex �bt� is �rst created and added to V before noting the
new edge�

Since jVj is bounded by D	E
� we see that the procedure must halt� and in particular�
makes no more than

jBj � jVj� 
 jBj �D	E
�

calls to the equivalence�testing oracle�

��



Input	
P � set of predicates
B � set of basic actions
Oracle for testing if s 	 t for any tests s and t

Output	
V � set of equivalence classes
� � V�B 
 V such that �	�t�� b
 � �bt�

Procedure	
V� f�p� j p � Pg
while �	�t�� b
 is unde�ned for some �t� � V� b � B do

if bt 	 s for some �s� � V then

�	�t�� b
� �s�
else

V� V � f�bt�g
�	�t�� b
� �bt�

endif

end

Figure �� An Inference Algorithm Using an Oracle for Equivalence of Tests�

��� Determining If Two Tests Are Equivalent

We now turn our attention to the problem of determining whether or not two tests are
equivalent� The inference procedure can prove that tests s and t are inequivalent if it can
�nd a state q where qs �� qt� a single counterexample to the conjecture s 	 t su�ces�

We wish to experiment with the available automaton E in order to prove s �	 t� There
are two problems we face�

�� �Inaccessibility of Counterexamples� It may be di�cult or impossible to get the au�
tomaton into a state q where qs �� qt� even if such states exist�

�� �Irreversibility of Actions� Even if we can get the automaton into such a state q� once
we run test s we are in general unable to �back up� so as to be able to run test t�

Let us de�ne two tests to be compatible if the action sequence of one is a pre�x of
the action sequence of the other� 	For example� in the Register World environment of
Section ������ the tests LLRF� and LL� are compatible�
 We note that irreversibility of
actions is not a problem when testing the equivalence of two compatible tests since they can
be executed simultaneously� In particular� a predicate is compatible with all other tests�

We present solutions to these di�culties for the special class of permutation environ�
ments� and then discuss progress toward a solution in the general case�

��� Determining Test Equivalence in Permutation Environments

Assume then that E is a permutation environment� i�e�� one in which each action permutes
the global states of the environment� It is not hard to show that E is a permutation
environment if and only if every action permutes the test equivalence classes so that

	�s � T 
	�t � T 
	�b � B
	s 	 t� bs 	 bt
� 	�


��



Input	
P � set of predicates
B � set of basic actions
Oracle for testing if s 	 t for any tests s and t

Output	
V � set of equivalence classes
� � V�B 
 V such that �	�t�� b
 � �bt�

Procedure	
V� f�p� j p � Pg
while �	�t�� b
 is unde�ned for some �t� � V� b � B do

n� �
while 	��s� � V
bnt �	 s do

n� n� �
for � 
 i � n

V� V � f�bit�g
�	�bi��t�� b
� �bit�

�	�bn��t�� b
� �s� fwhere s 	 bnt and �s� � Vg
end

Figure �� A Modi�ed Inference Algorithm for Permutation Environments

����� Overcoming Irreversibility of Actions

We show �rst how the problem of irreversibility of actions can be overcome by modifying
the control structure of the basic algorithm so that any test can e
ectively be made com�
patible to any other test 	Figure �
� This is essentially the same algorithm as in Figure ��
every new equivalence class is being compared against 	nearly
 all the known equivalence
classes� However� the order in which these comparisons are made has been altered to ensure
that every test in V can later be made compatible to any other test�

The following theorem shows that no equivalence class is added twice to V by this
algorithm� and furthermore that the inner loop is guaranteed to halt�

Theorem � Let �t� be a vertex in the program variable V� b a basic action in B� and n a
positive integer such that for all �s� � V and all � 
 i � n we have s �	 bit� Then the tests
bt� b�t� � � � bn��t are pairwise inequivalent�

Proof� Suppose to the contrary that bit 	 bjt for some i� j� � 
 i � j � n� Then by 	�
�
t 	 bj�it contradicting the hypothesis since � 
 j � i � n but �t� � V�

Essentially� the preceding theorem shows that the modi�ed algorithm of Figure � is �just
as good� as that of Figure � in the sense that both will correctly infer the update graph in
roughly the same number of calls to the equivalence testing subroutine� Both algorithms
also share the property that� at all times� the value of any equivalence class �t� in V can be
�read� directly simply by executing t� That is� if t � ap� a � A� p � P � then by executing a�
we pass the current value of t to the predicate p where it can be observed directly�

The following theorem shows that the modi�ed version of the algorithm has the addi�
tional property that the value of any �t� in V can be not only �read�� but �set up� as well�
The theorem states that a path a can always be found in the current state of the update
graph from some predicate class �p� to �t�� Thus� by executing a� we pass the observable

��



value of �p� to �t�� This property is crucial to the equivalence testing subroutine presented
below�

Theorem 	 At the beginning of each iteration of the outer loop of Figure �� if �t� is any
vertex in V then a path exists in the current state of the update graph from some predicate�s
equivalence class to �t��

Proof� By induction on the number of iterations of the outer loop�
Initially� V consists only of predicate equivalence classes� and so the property holds

trivially�
Suppose the theorem�s statement holds at the top of one iteration of the loop� Consider

the end of this iteration� We need to show there is a path from some predicate to each
new �bit�� � 
 i � n� added to V� We have bnt 	 s� for some �s� � V� and therefore� by the
inductive hypothesis� we know of some a � A� p � P for which a is a path from �p� to �s��
Thus� p 	 as 	 abnt � 	abn�i
bit� In other words� abn�i is a path to �bit� from the predicate
equivalence class �p��

Theorem � is used by the equivalence testing subroutine below� Although this procedure
could be generalized for testing the equivalence of any two tests t and s� we assume here
that the equivalence class of one of the tests� s� is already represented by a vertex �s� in V�
Then there is a path a from some predicate equivalence class �p� to �s�� that is� p 	 as� By
	�
 then� t 	 s if and only if at 	 as 	 p� Note that p� being a predicate� is compatible to
at� and so the values of the two tests in a given state can be compared directly by executing
both simultaneously�

Here is the algorithm for testing if s and t are equivalent�

�� Find a path a in the update graph from some predicate�s equivalence class �p� to �s��

�� Get the environment into some random state q�

�� Execute p and at 	simultaneously
 to �nd their values in q� If qp �� qat� then halt and
conclude s �	 t�

�� Repeat steps � and � until con�dent that s 	 t�

Thus� we have overcome the problem of irreversibility of actions in permutation environ�
ments by applying knowledge already gathered about the structure of the update graph to
e
ectively force the compatibility of any two tests which we might be interested in compar�
ing for equivalence� Still missing from this algorithm are a method of e
ectively randomizing
the environment 	step �
� and a corresponding bound on the number of iterations of steps �
and � necessary to con�dently conclude that s 	 t� These concerns are addressed in the
next section�

����� Overcoming Inaccessibility of Counterexamples

To rigorously prove that two tests are equivalent� we would have to show that their values
are the same at each of the global states� In general� this is infeasible 	one reason being
that the state space may be enormous
� Essentially� the preceding algorithm overcomes this
di�culty by selecting a random sample from the state space� If at a single state the tests
have di
erent values� then the inference procedure may conclude with absolute certainty
that the tests are inequivalent� Otherwise� the procedure concludes� with some possibility

��



of error� that the tests are equivalent� We show below how this probability of error can be
made vanishingly small� We prove that� in permutation environments� we have an adequate
chance of �nding a state in which the values of two inequivalent tests di
er simply by taking
an appropriate random walk�

We begin with a discussion of random walks on directed graphs and of certain proper�
ties of point�symmetric graphs 	de�ned below
� Here we are concerned with properties of
graphs in general� Later� we will see how these general results can be applied in proving a
probabilistic upper bound on the running time of our algorithm�

Random Walks on Directed Graphs

We are concerned with random walks on a strongly connected directed graph G which
has n vertices and which is regular of degree d in the sense that every vertex has in�degree
and out�degree equal to d� The graph G may have self�loops and multiple edges between
vertices� Let A � 	aij
 denote the adjacency matrix of G� so that aij is the number of edges
directed from vertex i to vertex j� Note that because G is regular of degree d� the sum of
the elements in any row or any column of A is equal to d�

The random walk we are concerned with has the following form� We begin at an arbitrary
vertex� At each step we �rst �ip a fair coin� If we see �heads� then we stay at the current
vertex� otherwise we pick one of the d outgoing edges uniformly at random and traverse it�

This random walk de�nes a �nite Markov chain with transition matrix

B �
�

�

�
I �

�

d
A

�
	�


where I is the n � n identity matrix� Note that B is doubly stochastic� meaning that it is
nonnegative 	i�e�� all its elements are nonnegative
� and the sum of the elements in any row
or column is equal to ��

Let pt denote the row vector whose i�th component is the probability of the Markov
chain being in state i 	i�e�� at vertex i
 at time t� Then we have the recurrence�

pt�� � ptB� 	�


The initial vector p� has a � in the position of the starting vertex� and � in all other positions�
Let � � n��	�� �� � � � � �
� We will see that � is the stationary distribution for our Markov

chain� Thus� as we take more and more steps in our random walk� the probability vector
pt converges to �� we lose track of where we began and are more or less equally likely to be
at any vertex�

In the next theorem� we prove a strong upper bound on the rate at which the Markov
chain converges to its stationary distribution�

Theorem � Let A be the adjacency matrix of a strongly connected directed graph G on n
vertices that is regular of degree d� Let B� pt and � be as above� Then for t � ��

jjpt � �jj 
 e��t�dn
�

	�


where jj�jj is the ordinary Euclidean norm�

Proof� Let B � 	bij
 and let H � 	hij
 � BBT where BT is the transpose of matrix B�
In proving this theorem� we will be especially interested in properties of this matrix H �
Clearly� H is real and symmetric since H � HT � Also� H is doubly stochastic since B is�

��



Let ��� � � � � �n be the eigenvalues of H � Since H is real and symmetric� all of its eigenval�
ues �i are real� and moreover� there exists a set of corresponding eigenvectors v�� � � � � vn that
are real and mutually orthogonal 	see� for instance� Section ��� of Franklin ����
� Without
loss of generality� we also assume the vi�s have unit length� jjvijj � ��

We observe that H is primitive� meaning that all the elements of Hm are positive for
some m � �� To see that this is so� for any pair of vertices i and j� let i � i�� i�� � � � � i� � j

be a path in G from i to j� Such a path of length 	 
 n must exist since G is strongly
connected� Let i��� � i��� � � � � � in � j� By de�nition of matrix multiplication� and since
B is nonnegative� we have that

h
�n���
ij � bi�i�bi�i�bi�i�bi�i� � � �bin��inbinin

where Hm � 	h
�m�
ij 
� Moreover� by de�nition of B in terms of the graph G� this latter

quantity must be positive� Thus� Hn�� has all positive elements� and H is primitive�
Since H is doubly stochastic� its largest 	in magnitude
 eigenvalue is �� Since H is

primitive� � is strictly greater in magnitude than all other eigenvalues 	see� for instance�
Theorems ����� and ����� of Berman and Plemmons ���
� Thus� rearranging H �s eigenvalues
by magnitude� we can write

� � �� 
 j��j � � � � � j�nj�

It is easily veri�ed that v�� the unit eigenvector corresponding to ��� is simply
n���� � 	�� �� � � � � �
 since H is doubly stochastic�

The following lemma shows that the rate of convergence of pt to � is controlled by ���
the second largest eigenvalue of H � When this paper was about to go to press� we became
aware of a paper by Fill ���� that contains a result similar to Lemma � about the convergence
time of Markov chains based on H �s second largest eigenvalue� had we known of his work�
we could instead have used his results to obtain 	slightly weaker
 polynomial�time bounds�

Lemma � For t � ��
jjpt�� � �jj� 
 j��j � jjpt � �jj��

Proof� Let x � pt � ��
As noted above� v�� � � � � vn are orthogonal unit vectors� Therefore� we can write

x �
nX
i��

civi

for some real numbers c�� � � � � cn�
Let 	r� s
 � rsT denote the inner product of real row vectors r and s� Then� because

the vi�s are orthonormal�

jjxjj� � 	x� x
 �
nX
i��

c�i �

We have that pt�� � � � ptB � � � 	pt � �
B � xB since �B � �� Note that

jjxBjj� � xBBT xT � xHxT � 	xH� x
�

Since the vi are eigenvectors�

xH �
nX
i��

civiH �
nX
i��

�icivi�

��



Thus�

	xH� x
 �
nX
i��

�ic
�
i �

Since both pt and � are probability distributions� the sum of the elements of either
is equal to �� which implies that 	pt� v�
 � 	�� v�
 � n����� Therefore� c� � 	x� v�
 �
	pt� v�
� 	�� v�
 � ��

Combining these facts� we have that

jjpt�� � �jj� � 	xH� x
 

nX
i��

j�ijc
�
i 
 j��j

nX
i��

c�i � j��j � jjpt � �jj��

This proves the lemma�
Next� we show that j��j can be bounded in terms of the size and degree of G�

Lemma � j��j 
 �� ��dn��

Proof� We �rst note that �� � �� since

� 
 jjv�Bjj
� � v�BB

T vT� � 	v�H� v�
 � 	��v�� v�
 � ���

To upper bound ��� we apply Theorem ��� of Fiedler ���� which implies that

�� 
 �� �	�� cos	��n

�	H
 	��


where �	H
 is the �measure of irreducibility� of matrix H � Speci�cally�

�	H
 � min
���X�V

X
i�X�j�V�X

hij �

We argue now that �	H
 � ���d� Let X be any nonempty� proper subset of V � Since
G is strongly connected� there must be edges passing in either direction between X and
its complement� That is� G must contain edges 	i�� j�
 and 	j�� i�
 where i�� i� � X and
j�� j� � V �X � Clearly� bi�j� � ���d and bj�i� � ���d� Thus� since B and H are nonnegative�
and by H �s de�nition�

X
i�X�j�V�X

hij �
X

i�X�j�V�X

X
k�V

bikbjk � bi�j�bj�j� � bi�i�bj�i� �
�

�d
�

Therefore� �	H
 � ���d�
Since cos	��n
 
 �� ��n� for n � �� Equation 	��
 thus implies that �� 
 �� ��dn��
Combining Lemmas � and �� and since jjp� � �jj� 
 �� we have by an easy induction

argument that

jjpt � �jj� 
 j��j
t 


�
��

�

dn�

�t

 e��t�dn

�

completing the proof of Theorem ��
The next corollary follows immediately�

Corollary � After t � dn� ln	n
 steps we have a chance of at least ���n of being at any
given vertex�

��



We will later apply this corollary to a graph whose size is polynomial in the diversity
D�

Point
Symmetric Graphs

Next� we turn to a discussion of point�symmetric graphs� and prove a lemma needed in
proving Theorem �� below�

We say that a graph G is point�symmetric if for all pairs of vertices v� w in G� there
exists an automorphism on G which maps v to w� A bipartite graph G is bipartite point�
symmetric if for all pairs of vertices v� w on the same side of the graph� there exists an
automorphism on G which maps v to w�

It is easy to see that all vertices have the same degree in a point�symmetric graph� and
likewise for all vertices on the same side of a bipartite point�symmetric graph�

The proof of the following lemma is due in large part to Satish Rao� This lemma� at
least for the non�bipartite case� has also been proved in other places� such as in Lov�asz �����

Lemma � Let G � 	V�E
 be an undirected� connected point�symmetric or bipartite point�
symmetric graph with degree at least d at every vertex� Let m be the minimum number of
edges that must be removed to separate G into two non�empty pieces� Then m � d�

Proof� For arbitrary subsets S� T of vertices� let D	S� T 
 be the number of edges connecting
points in S to points in T � and let C	S
 be the number of edges cut in separating S from
the rest of the graph�

D	S� T 
 � jffs� tg � E j s � S� t � Tgj�

C	S
 � D	S� V � S
�

Then m � minfC	S
 j � �� S�V g�
Suppose� contrary to the theorem�s statement� that m � d� and let S be the smallest

non�empty subset of V for which C	S
 � m�
Since C	S
 
 �� S contains some boundary point j� that is� a vertex j connected to some

vertex outside of S�
We claim S contains an interior point i as well� i�e�� a vertex not on the boundary� If

this were not the case� then all k � jSj vertices in S are boundary points so that k 
 m�
The number of edges between pairs of vertices in S is at least

dk �m

�


dk � d

�
�
d	k � �


�
�
k	k � �


�

This is a contradiction since it is clearly impossible for more than
�k
�

�
edges to connect k

points�
In the case that G is only bipartite point�symmetric� we claim that we can assume

without loss of generality that i and j are on the same side of the graph� For suppose to
the contrary that all of the k� vertices of S on one side of the graph are interior� and all
of the k� vertices of S on the other side are boundary points� Then k� 
 m� and so the
number of interior edges is at most k�k� 
 k�m � k�d� a contradiction since the k� vertices
on the �rst side are interior�

Therefore� in either case� we may conclude that there is an automorphism 
 on G
mapping i to j� Let S� be the image of S under 
� Then jSj � jS�j and C	S�
 � C	S
 � m�
Also� since j�s neighbors are the image of i�s neighbors under 
� and since i is an interior
point of S� it follows that j is an interior point of S�� Therefore� since j is a boundary point
of S but an interior point of S�� it cannot be the case that S � S��

��



i
j

X

X'

S
S'

I

Z

Figure �� Construction for Lemma �

Let I � S � S �� X � S � I�X � � S� � I� and Z � V � 	S � S�
 	Figure �
� Since j � I �
I is not empty� The sets X and X � are also non�empty since S and S� are unequal sets of
the same size� Therefore� � � jX j � jSj and so C	X
 
 m by our choice of S� Similarly�
C	X �
 
 m�

We have�

C	S
 � D	X�Z
 �D	X�X �
 �D	I�X �
 �D	I� Z


C	S�
 � D	X �� Z
 �D	X �� X
 �D	I�X
 �D	I� Z


C	X
 � D	X�Z
 �D	X�X �
 �D	X� I


C	X �
 � D	X �� Z
 �D	X �� X
 �D	X �� I


	Note that D	X� I
 � D	I�X
 since G is undirected�

Thus� we have the following contradiction�

�m � C	S
 � C	S�


� C	X
 � C	X �
 � �D	I� Z


� C	X
 � C	X �



 �m�

Finding Counterexamples with Random Walks

With these results� we are �nally able to prove�

Theorem �
 Let s and t be two inequivalent tests of a permutation environment E of
diversity D� We take a random walk in E of length �jBjD� log	D
 beginning at an arbitrary
start state� At each step� with equal probability� we either do nothing� or we execute a

��



uniformly and randomly chosen basic action from B� Then the probability that the values
of s and t di
er at the state where we complete this walk is at least ���D�

Proof� Consider the graph P � 	VP � EP 
 de�ned as follows� The vertices of P are all
ordered pairs 	�as�� �at�
 for all a � A� and an edge b is directed from vertex 	�s��� �t��

to 	�s��� �t��
 i
 s� 	 bs� and t� 	 bt�� Clearly� P has no more than D	D � �
 
 D�

vertices� Further� as with the update graph� the vertices are permuted by each basic action�
so there is exactly one ingoing and one outgoing edge for each basic action at each vertex�
	Alternatively� P can be viewed as the left coset graph of the subgroup which stabilizes
both �s� and �t��


Let a � b� � � � bn be the chosen random sequence of basic actions� and let q be the
starting state� When a is executed� the environment moves to state qa where s and t have
the values qas and qat� In other words� s and t are updated with the values of as and at in
state q� The tests as and at have di
erent values at q if and only if s and t have di
erent
values at the completion of a�

Thus� we can regard the reverse of the random walk a as an equally random
walk through P � at each step� we move from vertex 	�bi�� � � � bns�� �bi�� � � � bnt�
 to
	�bibi�� � � � bns�� �bibi�� � � � bnt�
 by traversing the reversed edge bi� �nally arriving at
	�as�� �at�
�

Since we are taking a random walk of just the form and length described in the hypothesis
of Corollary � for a graph such as P with at most D� vertices� and both indegree and
outdegree equal to jBj at each vertex� we see that our 	reversed
 random walk has a roughly
equal chance of �nishing at any of the vertices of P � that is� the probability we �nish at
any given vertex is at least ���jVP j�

We now argue that� for at least jVP j�D of the vertices 	�s��� �t��
 of P � we have qs� �� qt��
This� combined with the preceding arguments� will prove the lower bound of ���D on the
probability of �nding a counterexample�

Let the orbit of any test u be the set Ou � f�au� j a � Ag�
Consider the graph C � 	VC � EC
 de�ned as follows� The vertex set VC of C is the

union Os �Ot� and an 	unlabeled
 edge is directed from �s�� to �t�� if 	�s��� �t��
 is a vertex of
P�that is� if s� 	 as and t� 	 at for some action a � A� Thus� jEC j � jVP j�

We argue �rst that C is 	bipartite
 point�symmetric� If �s�� and �s�� are in Os� then
there is some action a for which s� 	 as�� By de�nition of orbits� there exist actions a� and
a� such that s� 	 a�s and s� 	 a�s� Setting a � a�a

��
� � it follows that s� 	 as�� 	Here� a��

denotes the inverse of action a� i�e�� that action for which qaa�� � q for all q � Q�

Let 
 be the permutation mapping each vertex �u� to �au�� Then 
 maps �s�� to �s��

and furthermore de�nes an automorphism on C since if 	�s��� �t��
 is an edge� then so is
	
	�s��
� 
	�t��

 � 	�as��� �at��
� Similarly� for any two tests in Ot� there is an automorphism
on C mapping the �rst to the second�

By the de�nition of orbits� we have that Os and Ot are either equal or disjoint� In the
former case� the preceding argument shows that C is point�symmetric� In the other case�
C is a bipartite point�symmetric graph�

In either case� let ds be the outdegree of each vertex in Os 	necessarily the same at each
vertex by the preceding argument
 and similarly de�ne dt as the indegree of each vertex in
Ot� Then the number of edges in C is exactly jEC j � dsjOsj � dtjOtj� Let d � minfds� dtg�
Since jOuj 
 D for any u� it follows that d � jEC j�D�

Let X be the set of vertices �u� of C for which qu is true� Then each edge connecting
	in either direction
 a vertex in X with a vertex in the complement of X corresponds to

��



a vertex 	�s��� �t��
 in P for which qs� �� qt�� We therefore would like to show that at least
jVP j�D � jEC j�D of the edges of C connect X to its complement� This will be the case if
we can �nd at least d such edges�

Since s �	 t� there is at least one such edge� Let C� be the subcomponent of C connected
to this edge� The graph C� is still 	bipartite
 point�symmetric� Therefore� simply regarding
the edges of C� as undirected� and applying Lemma � to it� we see that at least d edges are
cut in separating X from its complement in C� as desired�

This completes the theorem�
Using this result� we can show the following theorem� the main result of this section�

Theorem �� Let E be a permutation environment with diversity D� Given � 
 �� our
algorithm infers the structure of E in time

O

�
jBj�D	 log

�
jBjD

�

�
� log	D


�
	��


with probability of error less than ��

Proof� The preceding theorem states that the probability of distinguishing two inequivalent
tests� having taken an appropriate random walk� is at least ���D� Thus� the probability of
failing to do so after n trials is at most 	� � ���D
n 
 e�n��D � This error probability is
bounded by a parameter � if we choose n � �D ln	���
�

As many as I � jBjD� inequivalence tests may be made in the course of inferring the
automaton� Setting � � ��I � we see then that the overall chance of failing to distinguish
any inequivalent pair of tests is at most ��

Hence� our procedure requires I inequivalence tests� Each of these requires up to
�D ln	I��
 experiments� each of which can involve a random walk of length �jBjD� log	D
�
	The time to run the actual experiment� or to determine which experiment is to be per�
formed next is negligible�
 We thus arrive at the running time stated in the theorem�

Thus we have completed our algorithm by exhibiting an e
ective random walk technique�
Note that� implicitly� we have assumed that the diversity� or an upper bound Dmax on the
diversity� has been given to the inference procedure since the diversity must be known to
calculate the length and number of random walks needed� If no such bound is available�
the algorithm can be executed repeatedly with Dmax � �� �� �� �� � � �� If Dmax is smaller
than the true diversity D� then either the algorithm will be unable to build a small enough
update graph� or it will construct an incorrect update graph which will sooner or later make
a wrong prediction� When either of these occur� we double Dmax and run the inference
procedure again�

The bounds stated in the preceding theorems have been tightened signi�cantly since
our original presentation of the algorithm� Empirically� however� we have found that much
shorter random walks and far fewer experiments are su�cient� and we therefore conjecture
that the bounds are still not tight� Also� we have more recently described ���� ��� a new
algorithm for this problem that achieves a superior time bound� This procedure is based
on the use of homing sequences and on some of the techniques developed in Section ��

��� Determining Test Equivalence in General

We discuss now the general case in which E is not necessarily a permutation environment�
We describe some heuristic techniques which� although not provably e
ective for all au�
tomata� seem to perform reasonably well in practice� In the most general case� there is no

��



rigorous way of handling the �rst di�culty of �nding a state in which two inequivalent tests
can be distinguished� even if we assume that E is strongly connected� 	It is not hard to show
that the family of �combination lock� environments described in the proof of Theorem ��
cannot be inferred in subexponential time�
 Nonetheless� in practice this may often not be
a concern� if two tests s and t are inequivalent then there are usually many easily reached
states q such that qs �� qt�

We now propose a technique for handling the irreversibility of actions in general envi�
ronments�

We need to �gure out how to get E into a state q where we know the value of the test
qt� even though we have not run test t yet� so that we can run test s instead�

Let t � ap� here a is the action part of test t and p is the predicate�
Suppose we run action a repeatedly� Eventually the predicate p will exhibit periodic

behavior� Once we know that this periodic behavior has been established� and once we
know the period m of this behavior� we can �gure out the value of qt for the current state
q without having to run the test t�

We have to address the problem that for general �nite�state automata� it is well known
that the eventual period can be as large as jQj� the number of states of the automaton�
This would be a serious problem for our proposed approach since the number of states can
be an exponential function of the diversity� However� the following theorem shows that the
period is no larger than the diversity�

Theorem �� Let D � D	E
� If we run action a repeatedly� then the behavior of predicate
p will exhibit transient behavior for no more than D steps� and then will settle down into
periodic behavior with period at most D�

Proof�

This follows easily from our simulation theorem 	Theorem �
� Consider the sequence of
tests p� ap� a�p� � � � � aDp� Since there are only D test equivalence classes� by the pigeon�hole
principle� at least two of these tests are equivalent� Say aip 	 ajp where i � j� Recall that
p is passed its value from akp under action ak� Therefore� p will exhibit transient behavior
for at most the �rst i executions of a� and will then settle into periodic behavior with period
j � i 	or rather� a divisor of j � i
�

To complete the description of our inference procedure� we suppose as above that an
upper bound Dmax is available on the diversity D	E
 of the automaton being inferred�

To run the algorithm of Figure �� we need a way to test s and t � ap for inequivalence�
The following procedure is suggested by the previous theorem�

� Get the environment into some random state�

� Run action a for Dmax steps� 	This is to eliminate transient behavior of p�


� Run action a for �Dmax steps� keeping track of qp for each state q reached�

� Use the information gathered in the previous step to determine the period of predicate
p under action a� Use this information to determine whether qt is true or false in
the current state q 	without running test t
�

� Run test s to determine qs�

� If qs �� qt� then s �	 t�

��



z

x

y

whole cube

whole cube

front face only

three visible tiles

Figure �� The Rubik�s Cube World

� Repeat until con�dent that s 	 t�

As before� this is a one�sided test� a report that s �	 t is certainly correct� but a report
that s 	 t may be erroneous�

The test must be re�run a number of times before concluding that s 	 t� To make the
trials as independent as possible� we may�

� Take a �random walk in E� between each trial� by executing some randomly chosen
sequence of actions�

� Repeatedly execute an action ab instead of just a in each trial� where b is an arbitrarily
chosen action in A�

These heuristics may not help to �nd a counterexample in all cases� but are reasonably
e
ective in practice�

Also� for e�ciency� we are in many instances able to force compatibilities as in the
permutation environment case� and can often compare many tests against many other tests
in single experiments� These heuristics lead to many�fold improvements of our experimental
running times�

As for permutation automata� the theoretical results for inferring general automata
have recently been extended using homing sequence techniques ���� ���� In particular� we
have described a provably e
ective� diversity�based algorithm for handling any automa�
ton� assuming the presence of a �teacher� that can provide counterexamples to incorrect
conjectures of the identity of the unknown automaton�

��



Figure �� The Little Prince�s Planet

��� Experimental Results

����� Three More Toy Environments

Consider the following permutation environment based on �Rubik�s Cube� 	Figure �
� The
robot is allowed to see only three of the �fty�four tiles� a corner tile� an edge tile and a
center tile� all on the front face� Each of these three senses can indicate any one of six
colors� The robot may rotate the front face� and may turn the whole cube about the x and
y axes� 	By reorienting the cube he can thus turn the cube to bring any tile into view�


As another example environment� consider a �Little Prince� robot ���� exploring his
home planet 	an asteroid� really
� This planet has a rose and a volcano� which the Little
Prince can see when he is next to them� the available sense values are �See Volcano� and
�See Rose�� The planet is very small�it takes only four steps to go all the way around
it� The basic actions available are �Step Forward�� �Step Backward�� and �Turn Around��
See Figure �� In the state shown� the Little Prince has no sensations� but he will see the
volcano if he takes a step forward� and will see the rose if he takes a step backwards 	or
turns around and takes a step forwards
�

In the �nal example micro�world� the robot can �ddle with the controls of a car radio
	see Figure �
 and can detect what kind of music is being played� There are three distinctive
stations which de�ne the robot�s sensations� rock� classical� and news� The robot can use
the auto�tune to dial the next station to the left or right 	with wrap�around
� or can select
one of the two programmed stations� or can set one of these two program buttons to the
current station� Unlike the last two environments� the Car Radio World is not a permutation
environment because of the robot�s ability to program stations�

��



auto - tune

1 2select station

1 2set station

98 .7

newsrockclassical

Figure �� The Car Radio World

Diver� Global Ver� Experi�
Environment sity States jBj jP j sion Time Moves Senses ments

Little Prince � � � 
 P ��	 ��� 	�
 �	
M ��
 ��� �

 ��

Car Radio � 
� � 	 M ��� 
����� ����� 	�	��
Grid World 
� � 	��� � 	 M ���� ����	�� 	
����	 �����
Rubik�s �� � 	��� � � P 	
��� ����		 ����
 
�
��

Cube M ��	�� 	������ ������ 
����
�
�bit �� � 	�� � 	 P 
��� 
�����	 	���	� �����

Register M 	��� �
���� 
����� ���

Table �� Experimental Results

����� Summary of Results

Table � summarizes how our procedures handled these environments� as well as the ���
Grid World environment and the ���bit Register environment described in Section ����

The most complicated environment 	Rubik�s Cube
 took less than two minutes of CPU
time to master�we consider this very encouraging�

Rubik�s Cube� the Little Prince and the ���bit Register Worlds were explored with an
implementation 	version �P�
 which exploits the special properties of permutation envi�
ronments� but which only compares one pair of tests at a time� All worlds were explored
as well by version �M�� which tries to compare many tests against many other tests in a
single experiment� The run times given are in seconds� The last three columns give the
number of basic actions taken by the robot� the number of sense values asked for� and
the number of experiments performed� 	An experiment is de�ned loosely as a sequence of
actions and senses from which the robot deduces a conclusion about equivalence between
tests� Information about several tests may be obtained in a single experiment� and the same
sequence of actions and senses may be repeated several times� each repetition counting as
one experiment� Also� we have generalized the notion of a test here to allow the function �

to map Q� P into an arbitrary set of sensations� not necessarily the set ftrue� falseg� For

��



example� in the Grid World� a single predicate gives the color 	red� green or blue
 of the
square faced by the robot�
 These implementations were done in C on a DEC MicroVax II
workstation�

� Inference of Visible Simple�Assignment Automata with

Planned Experiments

In this section� we focus on the problem of planning experiments when trying to infer the
structure of a �nite automaton by experimentation� In the preceding sections� we were
concerned with the same general problem� However� our focus was on the identi�cation of
hidden state variables� rather than on the planning of experiments�

The experimental technique used in the preceding sections was a simple one based on
the properties of random walks� As a consequence� we could only prove our techniques to
be e
ective for a restricted class of automata 	permutation automata
� The key di�culty in
extending our proof is that random walks are not in general guaranteed to get the automaton
into a desired state 	or set of states
 with su�ciently high probability� For the general case�
it seems clear that experiments have to be planned carefully�

This section does not address the issue of hidden state variables� we assume that all state
variables are visible to the observer� We make this simpli�cation to bring to the foreground
the issues regarding the planning of experiments� Of course� at some point we would like
to merge the techniques developed here with those for identifying hidden state variables� in
fact� the techniques described in this section have already proved to be of value as important
components of some of the later algorithms we have described for handling environments
with hidden state ���� ����

Aside from this di
erence in the visibility of state variables� the automata we study are
structurally identical to those studied up to this point� Recall from Section ��� that every
�nite�state deterministic system can be represented as a simple�assignment automaton in
which each variable stands for one test equivalence class� In this section� to simplify our
discussion� we drop the equivalence class terminology� and instead formally rede�ne an
environment as a simple�assignment automaton�

��� De�nitions

We de�ne a simple�assignment automaton to be a tuple 	V�B� �� q�
 where

� V � fx�� � � � � xng is a �nite nonempty set of n binary state variables�

� B is a �nite nonempty set of input symbols� also called basic actions�

� � is a function from f�� � � � � ng�B into f�� � � � � ng� � is called the update function� and

� q� 	the initial state of the automaton
 is a function mapping V into f�� �g�

The 	global
 state of the automaton is an assignment of a binary value to each variable
in V � As before� we let Q denote the set of all global states q reachable from the initial
state q� of the automaton�

On input a � B� the automaton makes a transition from its current state x �
	x�� � � � � xn
 to the state x� � 	x��� � � � � x

�
n
 where

x�i � x��i�a�� 	��


��



R

R GR R

RG G

G

G

R

x xxxx

x x xx x

1

2

3

4

5

6

7

8

9

1 0

Figure ��� The E
ect of Action p in Our Example Simple�Assignment Automaton

each variable is simultaneously updated by a simple�assignment from the value of some
other variable 	or possibly the same variable
�

In Section ��� we argued that every �nite�state binary output Moore automaton is
equivalent to a simple�assignment automaton where one or more of the state variables
speci�es the output� The number of state variables in the smallest corresponding simple�
assignment automaton is just the diversity of the original �nite�state automaton�

We say that a simple�assignment automaton is visible if all of its local state variables
are observable�

We assume henceforth that we are dealing with a particular visible simple�assignment
automaton E � 	V�B� �� q�
� which we call the environment of the learning procedure�

We assume that E is reduced in the sense that� for each pair of distinct variables xj � xk �
V � there is a state q � Q such that xj �� xk at q� 	This assumption is made for simplicity
here to avoid degenerate but easily handled cases where variables are indistinguishable�


We let A � B� denote the set of all sequences of zero or more basic actions in the
environment E � A is the set of actions possible in the environment E � including the null
action ��

We extend � to the domain f�� � � � � ng�A in the natural way� �	i� �
 � i and �	i� ba
 �
�	�	i� a
� b
 for i � f�� � � � � ng� b � B� a � A� Thus �	i� a
 identi�es the variable whose value
xi takes under action a� equation 	��
 now holds for any a � A�

Finally� we assume that E is strongly connected� it is possible to get from any state in Q

to any other� 	Otherwise� it may be impossible to infer E completely� since E will get stuck
in one of its several strongly connected components�


��� Example

To make things concrete� consider the simple�assignment automaton E illustrated in Fig�
ure ���

Here E has n binary state variables fx�� � � � � xng� where n is even� We think of the values
of these variables as being drawn from the set fRed�Greeng 	or fR�Gg in the �gure
�

We imagine the n variables as being divided into n�� �columns�� where x�i�� and x�i
are in the same column� for i � �� � � � � n���

There are four input symbols� or �basic actions�� p� q� r� s� On any input� the variables

��



in the i�th column are updated in some way from the variables in the i� �st column� 	We
assume that the variables in the �rst column never change value�x� is always Red and x�
is always Green�
 Since each of x�i�� and x�i can be assigned one of x�i�
 or x�i�� in two
ways� there are a total of four distinct ways in which the variables in column i can depend
upon those in column i� �� Each input symbol is associated with one of these possibilities�
but in a manner that is arbitrary and varies from column to column� Figure �� illustrates
the e
ect of action p� and a typical state of the automaton� the other three actions could
be illustrated with similar diagrams�

It is important to note that two of the four possibilities are guaranteed to give a column
a monotone coloration� independent of whether the column to the left has a monotone or a
mixed coloration�

This automaton has a number of states which is exponential in n � it is easy to see
that every column except the �rst can independently be made all Red or all Green� And
there are many other states where columns other than the �rst have a mixed coloration�

However� it is easy to see that in order for a column to receive a mixed coloration� its
neighbor to the left must have had a mixed coloration on the previous step� Furthermore�
mixed colorations are easily destroyed as the column colorations move rightwards� Once a
column has a monotone coloration� this coloration propagates to the right unchanged with
each input� It should be clear that a random string of input will have a small chance of
giving a mixed coloration to any columns except a few of the leftmost columns�

We now observe that in order for an inference algorithm to �gure out how the later
columns are wired together� the algorithm must propagate the mixed colorations all the
way down to the right� This can only be accomplished by careful planning and execution
of experiments� and not by random walk techniques�

We view this example as a fancy kind of �combination lock�� since the algorithm must
�gure out a correct �combination� for giving column i � � a mixed coloration before it
can �gure out a correct combination for column i� 	Of course� there are many correct
combinations� but there are many more incorrect ones�


It is not too hard to �gure out how to approach this particular example� given all of the
�side information� stated above� However� we must remember that the inference algorithm
we seek is only told that it is to infer a simple�assignment automaton where all local state
variables are visible � it is not told such things as that the variables are paired up into
columns� each column is updated from the one to the left� etc� 	Indeed� the unknown
automaton may not have these properties�
 In the absence of such side information� the
general problem can be challenging�

��� Our Inference Procedure

We now present a procedure for inferring E by systematic experimentation� Our procedure
is given as input V � B� and the ability to experiment with E by executing basic actions 	i�e��
giving the automaton inputs
 and observing the state changes� Our procedure outputs the
unknown function �� in time polynomial in n � jV j and jBj�

The algorithm maintains� as its fundamental data structure� a candidate set C	i� b
 of
possible values for the update function �	i� b
� for each variable xi and each b � B� Initially
C	i� b
 � V for all i and b�

Our basic strategy is to repeatedly plan and execute experiments which cause at least
one C	i� b
 to shrink� If no such experiment is possible� then C	i� b
 � f�	i� b
g for all i and
b� so � has been identi�ed�

��



We say b � B is an immediately useful experiment if there exist i� j� k such that j and k

are both in C	i� b
� and xj �� xk�
If we execute the immediately useful experiment b then either j or k is removed from

C	i� b
 	e�g�� j is removed if the new value for xi di
ers from the old value for xj
�
Finding an immediately useful experiment 	if one exists
 is easy since it requires knowl�

edge of C but not of �� But what shall we do if there are no immediately useful experiments
to do 

In such a case� there may exist some �setup action� a � A that will make b � B an
immediately useful experiment� We call the combined action ab a �useful experiment�� More
precisely� we call 
 � ab a useful experiment if there exist i� j� k such that x��j�a� �� x��k�a�
and j and k are both in C	i� b
�

The trouble with this notion is that to tell if ab is a useful experiment requires knowing
the unknown function �� in order to predict the e
ect of setup action a� We need an e
ective
way of �nding useful experiments�

We introduce the notion of a �plausible experiment� to remedy this defect�
First� as with the function �� we extend C to the domain f�� � � � � ng �A� C	i� �
 � fig

and C	i� ba
 �
S
j�C�i�a�C	j� b
 for i � f�� � � � � ng� a � A� b � B� We call 
 � A a plausible

experiment if there exist i� j� k such that j and k are both in C	i� 

� and xj �� xk � Note
that knowledge of C� but not �� is all that is required to �nd plausible experiments�

Note that all useful experiments are plausible since �	i� a
 � C	i� a
 always� However�
not all plausible experiments are useful� Our inference procedure depends on the following
critical theorem�

Theorem �� The shortest plausible experiment is also the shortest useful experiment�

Proof� Because every useful experiment is plausible� we need only show that the shortest
plausible experiment is useful�

Let 
 � ab� a � A� b � B be the shortest plausible experiment� Let j� k be members
of C	i� 

 for which xj �� xk� Then there exist r� s � C	i� b
 for which j � C	r� a
 and
k � C	s� a
� Since 
 is the shortest plausible experiment� and because jaj � j
j� all the
variables in C	r� a
 must have the same value� In particular� x��r�a� � xj � and likewise�
x��s�a� � xk� Therefore x��r�a� �� x��s�a�� so that 
 is useful�

Not only is the shortest plausible experiment useful� but there always exists a plausible
experiment up until the point when the inference task is �nished�

Theorem �� If there exists an i and b such that jC	i� b
j 
 �� then there exists a plausible
experiment �and thus a shortest plausible experiment��

Proof� Let xr and xs be two distinct variables in C	i� b
� By assumption� there exists a
global state q for which xr and xs obtain di
ering values� and such a state q is reachable
from the current state 	via some action a
� Then 
 � ab is a useful 	and therefore plausible

experiment�

����� The Basic Inference Algorithm

We now give a high�level description of our inference procedure� assuming the availability
of a subroutine which plans the shortest useful experiment�

Initially� each C	i� b
 � V � Our procedure then repeatedly �nds and executes useful
experiments� each of which eliminates at least one variable from at least one candidate set�

��



Input	 V � B� and access to the environment E � 	V�B� �� q�
�
Output	 �
Procedure	
for b � B

Sb � fV g
for i � f�� � � � � ng� C	i� b
� V �

while PLAN�EXP can �nd a useful experiment 
 � ab do
Execute a� Let 	x�� � � � � xn
 be the resulting state�
Execute b� Let 	x��� � � � � x

�
n
 be the resulting state�

for s � Sb fs � f�� � � � � ng a block of Sbg
Let �	s� �
 � fi � s j xi � �g�
Let �	s� �
 � fi � s j xi � �g�

for i � f�� � � � � ng� C	i� b
� �	C	i� b
� x�i

Sb �

S
i�f������ngfC	i� b
g

for i � f�� � � � � ng� b � B

Output ��	i� b
 � x�� where C	i� b
 � fxg�

Figure ��� The Basic Inference Algorithm

How many experiments are performed before each candidate set is a singleton Since
there are jBjn candidate sets� each initially of size n� at most jBjn� experiments are per�
formed� The following theorem gives a tighter bound�

Theorem �� After no more than jBjn useful experiments are performed� each candidate
set will be a singleton set�

Proof� An easy induction shows that� between each experiment� for �xed b � B� two
candidate sets C	i� b
 and C	j� b
 must either be disjoint or identical� 	Two such sets will
be identical if and only if xi � xj in every global state seen so far� When a state is �rst
observed for which xi �� xj � the common set C	i� b
 � C	j� b
 is split into two disjoint
nonempty blocks� one of which becomes the new C	i� b
 and one of which becomes the new
C	j� b
�
 Thus each set C	i� b
 is a block of a partition Sb of a subset of V into pairwise�
disjoint� non�empty subsets� Initially� Sb � fV g� there is only one block� Each useful
experiment ending in b causes at least one set C	i� b
 to shrink� and so causes one or more
of the blocks in Sb to either split or shrink� After n such operations� each block of Sb 	and
therefore each candidate set C	i� b
 as well
 will be a singleton� Thus� at most n experiments
are performed ending in each of the jBj basic actions�

The proof of this theorem suggests an e�cient representation of the candidate sets�
Rather than storing the sets explicitly� we maintain the partition Sb� and represent each
C	i� b
 as a pointer to one of the blocks in Sb� This allows faster updating of the candidate
sets between each experiment�

Figure �� gives a high�level description of our procedure 	less the assumed experiment
planning subroutine PLAN�EXP
�

Observe that each step of the main while loop takes O	n
 time� except possibly for the
execution of the experiment returned by PLAN�EXP whose length we discuss below�

��



Input	 C	i� b
 for i � f�� � � � � ng� b � B� and x�� � � � � xn
Output	 a useful experiment 

Procedure	
for i � f�� � � � � ng� Place i in an equivalence class by itself�
for b � B� s � Sb

Let j be an arbitrary member of s�
J � FIND	j

for k � s � fjg

K � FIND	k

if J �� K then

J � UNION	J�K

enqueue 	fj� kg� b


while queue not empty do
dequeue 	fj� kg� 


if xj �� xk then return 


for b � B
let j� be an arbitrary member of C	j� b

let k� be an arbitrary member of C	k� b

J � FIND	j�
� K � FIND	k�

if J �� K then

UNION	J�K

enqueue 	fj�� k�g� b



return FAIL

Figure ��� The Experiment Planning Subroutine PLAN�EXP

����� The Experiment Planning Subroutine

The subroutine PLAN�EXP is given the candidate sets and the current state� and is asked
to �nd the shortest useful experiment� By Theorem ��� this experiment is also the shortest
plausible experiment�

We can �nd the shortest plausible experiment by searching the space of unordered pairs
of variables fj� kg� both in some set C	i� 

� until we �nd one for which xj �� xk� More
precisely� we do a breadth��rst search of the forest of trees in which the root of each search
tree is a pair fi� ig� and the b�children of each node fj� kg are the pairs fj�� k�g for which
j � � C	j� b
� k� � C	k� b
� When a pair fj� kg is found for which xj �� xk� we return the
experiment which is the path from the node fj� kg to the root of its tree�

Since we search a forest of O	n�
 vertices� each vertex of degree O	jBjn�
� this experi�
ment planning subroutine runs in time O	jBjn�
� Furthermore� the length of the experiment
returned is bounded by the size of the search space� n�� Thus� the entire inference algorithm
will run in time O	jBj�n�
� having executed jBjn
 basic actions�

We now improve these bounds with a more e�cient subroutine 	Figure ��
 which main�
tains equivalence classes of variables using a �weighted union and collapsing �nd� data
structure 	see Tarjan ����� or Cormen� Leiserson and Rivest ���
� Initially� all the elements
of each candidate set 	or� equivalently� of each partition block
 are merged into the same
equivalence class� To merge a pair fj� kg� we check that the two are in the same equivalence

��



class� if they are not� their equivalence classes are UNIONed and the pair is placed on a
queue� Thus� a UNION operation is always coupled with an addition to the queue� When
the pair fj� kg is dequeued� the members of C	j� b
 are merged with those of C	k� b
 for all
the basic actions b� and the process continues�

The subroutine is constructed so that if 	fj� kg� 

 is on the queue� then j� k � C	i� 


for some i� Thus� if xj �� xk � then 
 is a plausible experiment�

During the execution of the subroutine� if 	fj� kg� 

 was the last pair enqueued� then
the current search depth is de�ned to be j
j� It is clear that the search depth increases
incrementally�

The next theorem is useful in analyzing and seeing the correctness of the subroutine�

Theorem �� Suppose j� k � C	i� 

� Then the subroutine of Figure �
 �if not interrupted
to return an answer� will merge j and k into the same equivalence class before the search
depth exceeds j
j�

Proof� By induction on j
j�
If j
j � �� then j� k � C	i� b
 for some b � B� and j and k are merged into the same

equivalence class during the initialization phase when the search depth is exactly one�
Let h 
 � and suppose that the theorem�s statement holds when j
j � h� Given

j� k � C	i� 

� where j
j � h� we wish to show that j and k are merged before the search
depth exceeds h�

Let 
 � ba� b � B� a � A and let r� s be such that r� s � C	i� a
 and j � C	r� b
� k �
C	s� b
� Since jaj � h � �� r and s have been merged by the time the search depth reaches
h� by our inductive hypothesis� Thus� there must have been a series of UNION operations
performed to bring this about� Since each UNION operation is coupled with an addition to
the queue� there must have been a series of enqueuings of the form�

	fr � r�� r�g� 
�


	fr�� r�g� 
�


	fr�� r
g� 
�


���

	frm� rm�� � sg� 
m
�

When 	frx� rx��g� 
x
 is dequeued� the members of the candidate sets C	rx� b
 and
C	rx��� b
 are merged into one equivalence class� so that� transitively� the sets C	r� b
 and
C	s� b
 are merged into one� In particular� j and k�s equivalence classes are merged� Since
each j
xj � h� this happens before the search depth exceeds h�

Corollary � The �rst plausible experiment discovered by the subroutine �i�e�� the one re�
turned� will also be the shortest plausible experiment�

Corollary � If there exists a plausible experiment� then the subroutine will discover it�
That is� a return of FAIL by the procedure will be correct�

Clearly� the running time of the procedure is bounded by the number of UNION�FIND
operations� Since we begin with n equivalence classes� no more than n UNIONs can be
performed� Therefore� n bounds the total number of enqueuings� and so the search depth
as well� Based on this fact and the fact that Sb is a partition of at most n elements� we see

��



that O	jBjn
 FIND operations are performed� yielding a running time for the subroutine of
O	jBjn � �	jBjn

� where � is an extremely slow growing functional inverse of Ackerman�s
function 	see Tarjan ����
� Finally� the length of the experiment constructed cannot exceed
the maximum search depth of n� Thus� we have�

Theorem �� Our inference algorithm correctly infers the environment E in time
O	jBj�n��	jBjn

� having executed no more than jBjn� basic actions�

��� Optimality

In this section� we prove that the upper bound on the number of basic actions executed by
our inference algorithm is 	within a constant factor of
 the best possible�

Theorem �	 There exists a constant � 
 � such that� for all n � �� m � �� there exists
a simple�assignment automaton E for which jBj � m and jV j � n� and which cannot be
inferred by any algorithm which executes fewer than �jBjn� basic actions�

Proof� Consider the following �combination lock� environment E � similar to the example
described in Section ���� n � jV j � �� jBj � �� B contains a special �clear� symbol c�
The �lock�s combination� is the sequence a�a� � � � an�� where a� � c and ai � B � fcg for
� � i � n� �� The update function � is de�ned as follows�

� �	�� b
 � � for b � B

� �	n� b
 � n for b � B

� �	i� ai��
 � i� � for � � i � n

� �	i� b
 � n for � � i � n� b � B � fai��g�

Initially� only x� is true�
It is easy to verify that x� is always true� xn is always false� and no more than one

variable at a time 	other than x�
 can be true� If � � i � n� the variable xi will be true if
and only if the action sequence a�a� � � �ai�� was just executed�

Consider the set P of pairs 	i� b
 where � � i � n� b � B � fcg and �	i� b
 � n 	i�e��
b �� ai��
� To positively identify E � an inference algorithm must� for each such pair in P �
eliminate the possibility that �	i� b
 � i� �� It is not hard to see that the only experiment
which will do this is the sequence 
i�b � ca�a
 � � �ai��b� Let E � f
i�b j 	i� b
 � Pg� Clearly�
jEj � jP j� At some time� each experiment in E must be executed� however� no two of these
experiments can overlap by our construction� Thus� the number of basic actions executed
must be at least X

��E

j
j �
X

��i�n

	jBj � �
	i� �
 � !	jBjn�
�

� Conclusions and Open Problems

We have presented a new representation for �nite�state systems 	environments
� and pro�
posed a new procedure for inferring a �nite state environment from its input�output be�
havior�

��



In the case of permutation environments� our procedure can infer the structure of the
environment in expected time polynomial in the diversity of the environment� and log	���
�
where � is an arbitrary positive upper bound given on the probability that our procedure
will return an incorrect result�

For general environments� our procedure appears to work well in practice� although we
do not have a proof to this e
ect�

When the environment has lots of �structure�� the diversity will typically be many
orders of magnitude smaller than the number of global states of the environment� in these
cases our procedure can o
er many orders of magnitude improvement in running time over
previous methods�

Finally� we have shown how to infer any visible simple�assignment automaton in time
polynomial in the number of variables and basic actions in that automaton� and have shown
that our procedure is optimal to within a constant factor in terms of the number of basic
actions executed�

Future work should be directed toward methods of handling� or handling better� a
broader class of environments� Environments apparently not handled well by our current
techniques include those with�

� Actions with conditional e
ects 	such as a Grid World with boundaries� so that the
�step ahead� action has no e
ect if the robot is facing and up against the boundary
�

� Dependence on global state variables or control variables 	e�g�� an �on�o
 switch in
the Car Radio World
�

� States that are di�cult to reach 	consider the �combination lock� environment of
Section � which is almost always in a locked state� and is unlikely to be unlocked by
trying random combinations
�

� Actions with probabilistic e
ects 	such as a �spin� operator in the Grid World� which
leaves the robot facing in a random direction
�

� Actions or sensations which are subject to noise� and so may have unreliable e
ects
or be providing unreliable information� 	Progress on this problem was recently made
by Dean et al� ���


� Environments that are in�nitely large 	such as an in�nitely long Register World
�

Acknowledgments

Thanks to Dana Angluin and Neal Young for their contribution to Theorem �� and to
Satish Rao for his help in proving Lemma �� Thanks also to Glenn Iba and Franz Pichler
for bringing some related previous work to our attention� and to two anonymous referees
for their careful reading and thoughtful comments�

References

��� Dana Angluin� On the complexity of minimum inference of regular sets� Information
and Control� ������"���� �����

��



��� Dana Angluin� Inference of reversible languages� Journal of the Association for Com�
puting Machinery� ��	�
����"���� July �����

��� Dana Angluin� Learning regular sets from queries and counterexamples� Information
and Computation� �����"���� November �����

��� Dana Angluin� A note on diversity� Unpublished� December �����

��� E� S� Bainbridge� The fundamental duality of system theory� In W� E� Hartnett� editor�
Systems	 Approaches� Theories� Applications� pages ��"��� Reidel� �����

��� Abraham Berman and Robert J� Plemmons� Nonnegative Matrices in the Mathematical
Sciences� Academic Press� �����

��� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to
Algorithms� MIT Press� �����

��� Thomas Dean� Dana Angluin� Kenneth Basye� Sean Engelson� Leslie Kaelbling� Evan�
gelos Kokkevis� and Oded Maron� Inferring �nite automata with stochastic output
functions and an application to map learning� In Proceedings Tenth National Confer�
ence on Arti�cial Intelligence� pages ���"���� July �����

��� Gary L� Drescher� Genetic AI � translating Piaget into Lisp� Technical Report ����
MIT Arti�cial Intelligence Laboratory� February �����

���� Gary L� Drescher� A mechanism for early Piagetian learning� In Proceedings of AAAI�
��	 Sixth National Conference on Arti�cial Intelligence� pages ���"���� Seattle� Wash�
ington� July �����

���� Miroslav Fiedler� Bounds for eigenvalues of doubly stochastic matrices� Linear Algebra
and its Applications� �	�
����"���� July �����

���� James Allen Fill� Eigenvalue bounds on convergence to stationarity for nonreversible
Markov chains� with an application to the exclusion process� The Annals of Applied
Probability� �	�
���"��� �����

���� Joel N� Franklin� Matrix Theory� Prentice�Hall� �����

���� E� Mark Gold� Language identi�cation in the limit� Information and Control� ������"
���� �����

���� E� Mark Gold� System identi�cation via state characterization� Automatica� �����"����
�����

���� E� Mark Gold� Complexity of automaton identi�cation from given data� Information
and Control� ������"���� �����

���� J� Hartmanis and R� E� Stearns� Algebraic Structure Theory of Sequential Machines�
Prentice�Hall� �����

���� Michael Kearns and Leslie G� Valiant� Cryptographic limitations on learning Boolean
formulae and �nite automata� In Proceedings of the Twenty First Annual ACM Sym�
posium on Theory of Computing� pages ���"���� May ����� To appear� Journal of the
Association for Computing Machinery�

��



���� Zvi Kohavi� Switching and Finite Automata Theory� McGraw�Hill� second edition�
�����

���� L� Lov�asz� Combinatorial Problems and Exercises� North�Holland� �����

���� Leonard Pitt� Inductive inference� DFAs� and computational complexity� Technical
Report UIUCDCS�R��������� University of Illinois at Urbana�Champaign� Department
of Computer Science� July ����� Also appears in Proceedings of the ���� International
Workshop on Analogical and Inductive Inference� Springer�Verlag Lecture Notes in
Computer Science�

���� Leonard Pitt and Manfred K� Warmuth� The minimum consistent DFA problem cannot
be approximated within any polynomial� In Proceedings of the Twenty First Annual
ACM Symposium on Theory of Computing� May ����� Available as Technical Re�
port UIUCDCS�R��������� University of Illinois at Urbana�Champaign� Department
of Computer Science� To appear� Journal of the Association for Computing Machinery�

���� Leonard Pitt and Manfred K� Warmuth� Prediction�preserving reducibility� Journal of
Computer and System Sciences� ��	�
����"���� December �����

���� Ronald L� Rivest and Robert E� Schapire� Inference of �nite automata using homing
sequences� In Proceedings of the Twenty First Annual ACM Symposium on Theory of
Computing� pages ���"���� May ����� To appear� Information and Computation�

���� Antoine de Saint�Exup#ery� The Little Prince� Harcourt� Brace� $ World� �����

���� Robert E� Schapire� The Design and Analysis of E�cient Learning Algorithms� MIT
Press� �����

���� Robert E� Tarjan� E�ciency of a good but not linear set union algorithm� Journal of
the Association for Computing Machinery� ��	�
����"���� April �����

���� B� A� Trakhtenbrot and Ya� M� Barzdin�� Finite Automata	 Behavior and Synthesis�
North�Holland� �����

���� Neal Young� Private communication� �����

��


