
TOWARDS PROBABILISTIC

UNIFICATION-BASED PARSING

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Ter Doest, Hugo

Towards probabilistic unification-based parsing /
Hugo ter Doest - Enschede: Neslia Paniculata. -I11.
Thesis Universiteit Twente Enschede. - With ref.
With summary in Dutch.
ISBN 90-75296-04-5
Subject headings: parsing

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

c©1999 Hugo ter Doest, Enschede.

Uitgeverij, Enschede

TOWARDS PROBABILISTIC
UNIFICATION-BASED PARSING

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 12 februari 1999 te 15.00 uur.

door

Hugo Wilfried Laurenz ter Doest

geboren op 17 november 1969
te Hengelo

Dit proefschrift is goedgekeurd door de promotor,

prof.dr.ir. A. Nijholt,

en door de assistent-promotor,

dr.ir. H.J.A. op den Akker.

Acknowledgements

This is the right time and the right place to look back, and to thank the people
that have supported me. I would never have finished this thesis without their
help, advise, and attention.

First of all I would like to thank my advisor Rieks op den Akker. He coached
me these four years, he believed in me, and he motivated me to start writing for
my thesis. I am also grateful to the other members of my begeleidingscommissie,
Anton Nijholt, Franciska de Jong, and Gerrit van der Hoeven, for their advise,
and their interest in my ideas.

I would like to thank Anton Nijholt for giving me the opportunity to work
as an Assistent in Opleiding at the Parlevink research group, and for providing
the freedom for working out my ideas.

I would like to thank Rieks op den Akker, Franciska de Jong, Anton Nijholt,
Klaas Sikkel, and prof. Schaafsma for their useful comments on an earlier version
of this thesis. It has greatly benefited from their advise and insights.

Thanks to my roommates Jos Buis and Hendri Hondorp for sharing lots
of coffee, UNIX, C, and all those other important things in life. I thank
Hendri Hondorp for TEXnical support and for enduring my moods and rest-
less behaviour in the past year.

I thank Eric Schol for all tea breaks, and for CDs plakken in the Dixo
(Stichting CD-Uitleen Drienerlo).

Thanks to everyone at the Dixo. In particular, I would like to thank Bart
Lucassen, André Reimerink, and Monique Engelbertink of the woensdag-avond-
1 team.

\selectlanguage{dutch}

Ik bedank Laura en Viola voor hun enthousiasme en humor. Tenslotte bedank ik
Ingrid voor onze interessante gesprekken over kennisrepresentatie en natuurlijke
taalverwerking, voor haar verdraagzaamheid en geduld, en voor alles wat ze
voor me heeft gedaan in het afgelopen jaar.

v

vi

Contents

Acknowledgements v

1 Introduction 1
1.1 Focus . 1
1.2 Setting of the research . 2
1.3 The SCHISMA system . 3

1.3.1 An architecture . 4
1.3.2 Processing modules . 6
1.3.3 Storage modules . 7
1.3.4 Interfaces between the modules 9
1.3.5 Keyboard input versus spoken input 9

1.4 Contribution . 10
1.5 Organisation of the thesis . 11

I Basics 13

2 Probabilistic Grammars, a Survey 15
2.1 Context-free grammars . 15
2.2 Probabilistic context-free grammars 17

2.2.1 Supervised training . 17
2.2.2 Unsupervised training: the Inside-Outside algorithm . . . 18
2.2.3 Discussion . 19

2.3 Extensions of probabilistic context-free grammars 20
2.3.1 Weakly restricted stochastic grammars 20
2.3.2 History-based grammars 21
2.3.3 Salomaa’s probabilistic grammars 22

2.4 Statistics of parser actions . 22
2.4.1 Probabilistic GLR parsing 22
2.4.2 Probabilistic left-corner parsing 23

2.5 Tree-based formalisms . 23
2.5.1 Tree adjoining grammar 24
2.5.2 Data-oriented parsing . 25

2.6 Unification grammars . 27
2.6.1 Probabilistic ALE . 27

vii

viii CONTENTS

2.6.2 Probabilistic LR parsing with unification grammars . . . 28
2.6.3 Probabilistic feature grammars 29
2.6.4 Stochastic attribute-value grammars 30

2.7 Extensions of Constraint Logic 30
2.7.1 Probabilistic CUF . 30
2.7.2 Weigthed constraint logic 31
2.7.3 Probabilistic constraint logic 32

2.8 Summary . 33

3 Unification-based Parsing 35
3.1 Feature structures . 36
3.2 Subsumption and unification . 38
3.3 Multi-rooted feature structures 41
3.4 Unification grammars . 43
3.5 Parsing . 44

3.5.1 Chart parsing . 45
3.5.2 Left-corner parsing . 46
3.5.3 Head-corner parsing . 49

3.6 Probabilistic extensions . 50
3.7 Summary . 51

4 Maximum Entropy Modelling 53
4.1 Some probability theory . 54
4.2 Entropy measures . 55
4.3 The maximum entropy method 59
4.4 Parameter estimation . 63

4.4.1 Generalized Iterative Scaling 63
4.4.2 Improved Iterative Scaling 65

4.5 Monte Carlo Sampling . 68
4.6 Predictive maximum entropy models 69
4.7 Summary . 69

II Application 71

5 The Grammar Inference Engine 73
5.1 A short introduction to SGML 73
5.2 Annotation scheme . 76

5.2.1 Tagset . 76
5.2.2 Syntactic relations . 77
5.2.3 Other attributes . 79

5.3 Annotation scheme comparison 82
5.4 Grammar inference . 83
5.5 Unification constraints . 85

5.5.1 Lexical constraints . 86
5.5.2 RHS nonterminal constraints 86

CONTENTS ix

5.5.3 Identifier attribute constraints 87
5.5.4 Referring attribute constraints 87
5.5.5 General constraints . 89

5.6 Facts and figures . 90
5.7 Summary . 91

6 Experimental Results 93
6.1 The parsing system . 93

6.1.1 Unknown words and parsing failure 94
6.1.2 Probabilistic parsing . 94

6.2 Parameter estimation . 96
6.3 Parser evaluation . 96
6.4 Experiment 1 . 98
6.5 Experiment 2 . 98
6.6 Experiment 3 . 99
6.7 Discussion . 101
6.8 Summary . 101

III Epilogue 103

7 Conclusions 105
7.1 Towards integration in a SCHISMA prototype 105
7.2 Recommendations for future research 106

IV Appendices 107

A SCHISMA Treebank DTD 109

B Meta-constraints 115

C Samenvatting 119

Bibliography 121

Index 131

Abbreviations 133

x CONTENTS

Chapter 1
Introduction

This thesis is about natural language parsing with corpus-based grammars that
are enriched with statistics. Parsing is the process of analysing the syntactic
structure of an utterance. The role of statistics is to improve the parsing pro-
cess. Our research is done in the context of the SCHISMA project, in which a
natural language dialogue system for theatre information and booking services
is developed. In the next section we further develop the subject of our research.
Section 1.2 describes the SCHISMA project which provided the setting of the re-
search, and in section 1.3 we propose an architecture for the SCHISMA system.
In section 1.4 we state the contribution of this thesis to language technology,
and section 1.5 gives an overview of the thesis.

1.1 Focus

Our research was motivated by the need for an efficient and effective syntactic
parser for the SCHISMA system. In a practical environment like a dialogue
system, parsing is a difficult task, mostly because of the enormous freedom the
user has to express himself. Even dialogue strategies that are carefully chosen to
influence the user in its behaviour, cannot prevent the use of syntactic structure
that is not covered by the grammar. This calls for a back-up strategy which can
process any sentence that is outside the language of the grammar. Ideally, such
a strategy takes into account the results of earlier at analysing the sentence,
i.e. it should do an educated guess at the right structure of the sentence using
partial results.

It is our conviction that automatic corpus-based development of grammars
is a good way to guarantee coverage and to keep expertise requirements to a
minimum. “Conventional parsers utilising hand-crafted generative grammars
and knowledge bases require considerable linguistic expertise and knowledge
engineering effort to produce, and suffer from problems of under-generation,
brittle behaviour and domain dependence.” (Keller 1998). Also, corpus-based
grammar engineering turns maintenance of the language model into a matter
of keeping the corpus (or corpora) and its annotation in line with the domain
and the system requirements. Moreover, corpus-based grammar development
can be integrated in an iterative development cycle of a dialogue system very

1

2 CHAPTER 1. INTRODUCTION

easily: fully functional prototypes of a dialogue system can be used to collect
additional data that can be used to improve the language model further.

Extending a grammar formalism with statistics does not imply that the for-
malism is inadequate for processing natural language. On the contrary, in my
view it confirms the adequacy of the formalism for modelling natural language.
The reason for combining it with statistics is that we recognise that we sim-
ply cannot model every aspect of natural language. It is impossible to collect
and represent all information needed to process language deterministically. Like
Abney we believe that “A probabilistic model is only a stopgap in absence of
an account of the missing factors: semantics, pragmatics, what topics I’ve been
talking to other people about lately, how tired I am, whether I ate breakfast this
morning” (Abney 1996). Such a lack of knowledge often results in overgenera-
tion, strictly speaking the generation of more than one parse tree. Associating
weights or probabilities with parse trees that represent preference or probability
of being correct, helps to choose the best analysis (or n-best analyses).

Research on probabilistic grammars and parsing is very much in line with the
classical model of probabilistic context-free grammars (PCFGs). Unfortunately,
the classical model is not very flexible for extension to more context-sensitive
probabilities, and the incorporation of knowledge other than rule frequencies
is cumbersome. We advocate maximum entropy modelling as a framework for
probabilistic extensions of grammar formalisms. Maximum entropy modelling
does not put any restrictions on the underlying formalisms, and the parameters
of the probabilistic model are not attached to the rules of the grammar. The
probability of a derivation tree simply does not have to depend on how the tree
was created.

The probabilistic extension of a grammar formalism serves to find the most
probable parse tree, and can be applied to pre-empt the analyses that will
receive low probabilities. The latter application is of computational interest
only, it may result in less memory consumption.

1.2 Setting of the research

SCHISMA is a research project of the Parlevink group1 aimed at the develop-
ment of a natural language dialogue system for theatre information and booking
services. (van der Hoeven et al. 1994) is an early overview publication on the
project; it gives a clear account of the motivation for the project and defines the
goals of the project: “The aim of the project is to develop a prototype of a nat-
ural language dialogue system. The envisaged system is capable of providing a
user with information about theatre performances, and it should allow the user
to book seats for such performances. In addition to the goal of building a proto-
type of some quality there is the equally important goal of gaining deeper insight
in the problems one encounters in the process of building a natural language

1Parlevink is a language theory and technology project of the Department of Computer
Science at the University of Twente. The main interests in research are linguistic engineering,
neuro-engineering and the use of formal methods in these areas.

1.3. THE SCHISMA SYSTEM 3

dialogue system. Getting experienced is considered one of the prerequisites for
a successful follow-up of the project.” An environment was developed to enable
the collection of a corpus of dialogues in Wizard of Oz experiments. All this
with an emphasis on keyboard input: “The emphasis is on keyboard input and
if possible we would like to add the possibility to access SCHISMA using speech
input.” (van der Hoeven et al. 1994).

Since 1994 a continuing stream of publications documents the SCHISMA
project. Komen (1995) evaluates Natural LanguageTM for application in the
SCHISMA domain. Natural Language is a tool for building natural language
query interfaces for databases. In (op den Akker et al. 1995) parsing with
unification grammars in the SCHISMA system is investigated. (ter Doest et al.
1996) investigates, from a language engineering point of view, the integration
in the SCHISMA system of the unification-based head-corner parser developed
by Moll (1995).

Papers that investigate semantical issues are (Hulstijn et al. 1996), which
applies topic-focus ideas to the SCHISMA domain, and (Hulstijn 1997), which
defines Update Semantics with Questions (USQ), a combination of update se-
mantics and partition semantics of questions. Andernach and van Steenbergen
(1994) investigate the several types of knowledge involved in natural language
dialogue systems. They consider representation languages for modelling knowl-
edge and give recommendations for the SCHISMA project. Andernach (1996)
presents a machine learning approach to the classification and prediction of
speech acts.

In (Lie et al. 1998) a SCHISMA prototype called Theatre Information Sys-
tem (THIS) is described. The natural language understanding in THIS is based
on a string rewriting technique. User utterances are rewritten into a normal
form through the application of context-sensitive string-to-string transforma-
tions. The resulting normal form is then interpreted in the context of the dia-
logue. Recently, this prototype has been integrated into a virtual reality model
of the Muziekcentrum, a theatre for music and play in Enschede, specified in
the Virtual Reality Modelling Language (VRML). The virtual Muziekcentrum
serves as an environment for the experimentation with multi-modal interaction
in task domains (Nijholt et al. 1998). In the near future the environment will
be extended with a speech-driven navigation functionality.

1.3 The SCHISMA system

SCHISMA is a natural language interface to a database, which “...is a system
that allows the user to access information stored in a database by typing re-
quests expressed in some natural language (e.g. English)” (Androutsopoulos
et al. 1995). We consider dialogue systems that allow the user to access the
database by engaging in a dialogue with the system. This implies that the sys-
tem should have an awareness of (the structure of) dialogues, and the capability
of interpreting the user’s input in the context of the dialogue. The dialogue sys-
tems we consider have task domains that are considerably restricted by the

4 CHAPTER 1. INTRODUCTION

information contained in the database; formulated somewhat more precisely, we
consider dialogue systems that allow the user to perform queries and updates
on the database through natural language dialogue.

Obviously, the system should have linguistic knowledge, i.e. knowledge about
language in general and about the language in which dialogues take place in
particular. In our definition, linguistic knowledge describes the morphology and
syntax of a language. It accounts for the form of the constituents an utterance
consists of, and the function they have within that utterance.

The database has a strong influence on the domain in which dialogues take
place. The system should have knowledge about the concepts related to the
contents and the structure of the database, and knowledge about the purpose of
such concepts. This type of knowledge is called domain knowledge; also it needs
some amount of world knowledge, i.e. knowledge of concepts and actions that
are not domain-specific, but necessary to understand natural language. Not
only should the system know things, it should know what it does not know as
well. If the user talks about things outside the domain, the system should act
intelligently. The boundary between world knowledge and domain knowledge is
difficult to define. The same holds for world/domain knowledge and linguistic
knowledge.

Information dialogues in restricted domains differ from general dialogue in
that they are directed at communicating and acquiring information relevant to
the domain. The structure of such dialogues reflects this directedness, and di-
alogue systems can exploit it by making assumptions on the user’s behaviour.
The system assumes that the user has an information need which fits the in-
formation it can provide. This is a strong assumption, but a relief at the same
time. The system’s behaviour can be based on assumptions about how users act
in information dialogues, and expectations about the user’s answers and wishes
may simplify the understanding task considerably. The maxim’s of Grice are
often cited in this respect (Grice 1975). Ultimately, the formulation of restric-
tions and assumptions gives perspective on a declarative specification of (classes
of) dialogue systems. A commercial product like Speech ManiaTM in which the
structure of dialogue can be defined in a specification language shows the po-
tential of a restricted view of information dialogue.

The purpose of the rest of this section is to place the parsing task in the
context of the SCHISMA system, and to make clear how a software module that
performs this task communicates with the rest of the system.

1.3.1 An architecture

We advocate a modular architecture for the SCHISMA system as given in figure
1.1. We have represented the processing modules by square boxes and the
storage modules by oval boxes. Processing modules are software programs that
perform a task, and storage modules are locations for storing something.

A modular architecture has several advantages over an integrated one. The
most obvious ones are maintainability and portability to new domains. An-
other consideration is that modularity requires the development of a dialogue

1.3. THE SCHISMA SYSTEM 5

speech model/
lexicon

speech recogn./
preprocessor

grammar syntactic
parser

knowledge
base

semantic
interpreter database user

dialogue
manager

database
manager

template
sentences

speech/lang.
generation

annotated utterance

syntactic representation

semantic representation

response action

speech/text

speech/text

Figure 1.1: An architecture for SCHISMA.

system to be divided in several subproblems, which is, taking into account the
complexity of such an enterprise, very welcome.

Our architecture of the SCHISMA system implies communication in one
direction only, from pre-processor to response generator. This is a severe ar-
chitectural restriction. It means that modules cannot dispose of information
extracted by ‘future’ modules from the current utterance. Modules either have
to hypothesise alternative interpretations, or force a decision on one interpre-
tation of their input. Disambiguation by dialogue history will be possible in
the dialogue manager only. The advantages of this pipe-line architecture are
mainly of engineering interest. For instance, the interfaces between the mod-

6 CHAPTER 1. INTRODUCTION

ules can be kept simple. It is straightforward to define the subproblems (and
therefore projects) involved in building a dialogue system. The final system can
be maintained much better. Different implementations of the same module can
be exchanged fairly simple, which is useful for testing and evaluation purposes.

In section 1.3.2 we discuss the processing modules, and in section 1.3.3 the
storage modules. Section 1.3.4 considers the communication between the mod-
ules of the system. In section 1.3.5 we restrict our research to a keyboard-driven
SCHISMA system, and we discuss the relevance of our research for spoken dia-
logue systems

1.3.2 Processing modules

Below we discuss the functionality of the processing modules of the SCHISMA
system.

speech recogniser In the case of spoken input, speech recognition will produce
a word lattice. A word lattice is a labelled directed acyclic graph. The vertices
of the graph represent boundaries in the speech signal. The edges are labelled
with words or segments of words that have been recognised.

pre-processor The pre-processor entails at least the functionality of a Part-of-
Speech (PoS) tagger and spelling-corrector. PoS tagging, if effective, lightens
the task of the parser considerably; it prevents the creation of a lot of alternative
interpretations. Spelling correction should repair spelling errors to some extent.
In addition, the following tagging functionality is necessary:

• The recognition of proper names that are in the database.

• The recognition of numbers and ordinals.

• The tagging of special phrases like references to time and/or date.

In the case of spoken input spelling correction can be left out. Instead the pre-
processor has to prune the word lattice it receives from the speech recogniser.
We assume the output of the pre-processor to be an annotated utterance stored
in a chart. A chart is a labelled directed graph. The vertices of the graph are
word boundaries, edges represent words or word groups, and the labels represent
syntactic information (categories, or features).

syntactic parser The syntactic parser assigns syntactic structure to the user
input. It receives a chart from the pre-processor, and it outputs a syntactic
representation which we assume to be a set of trees and/or feature structures
ranked w.r.t. preference. The parser needs a specification of a grammar.

1.3. THE SCHISMA SYSTEM 7

semantic interpreter The semantic interpreter applies selectional constraints to
rule out parse trees, and completes predicate argument relations where necessary
and possible. It maps the output of the parser to a semantic representation,
probably a formula in a logic tailored to application in dialogue systems. For
instance, the Quasi Logical Form (QLF) (Alshawi 1992) or Conceptual Graphs
(CGs) (Sowa 1984) can be used for semantic representation. It outputs as
many formulae as there are possible interpretations. The interpreter receives
a syntactic representation from the parser, and needs access to the knowledge
base.

dialogue manager The dialogue manager performs the contextual interpreta-
tion of the user input, and maintains the context of the current dialogue. The
context of a dialogue is a representation of the history of the dialogue. The dia-
logue manager selects one interpretation of the alternatives it receives from the
semantic interpreter by interpreting each of them in the context of the dialogue.
An important part of this interpretation phase is the resulution of anaphora
and ellipsis. After it has selected an interpretation, it does not discard the
other interpretations. If the continuation of the dialogue reveals the erroneous
interpretation of an earlier utterance, then an alternative interpretation of that
utterance can be retrieved.

The dialogue manager is responsible for the formulation of queries to meet
the user’s information need, it performs updates (for instance, ticket reserva-
tions), and it initiates the response generation. So, the dialogue manager is
responsible for the pragmatic interpretation of the user input.

database manager The database manager provides access to the database. It
supports both querying and updating. It accepts commands from the dia-
logue manager in some query language, returns information retrieved from the
database, and it confirms the update of the database according to requests of
the dialogue manager.

speech/language generation The generation module takes care of responding to
the user. We assume the use of template sentences for language generation. See
the section on the storage modules for an explanation of template sentences.
The dialogue manager commands the generation module by giving it a response
type, the information elements the generated response should contain, or the
type of information it should ask for. Information elements are phrases that
originate from the database, or references to date and/or time.

1.3.3 Storage modules

Now we discuss the storage modules.

knowledge base The knowledge base is a database for world and domain knowl-
edge. Separating world and domain knowledge from the other modules keeps

8 CHAPTER 1. INTRODUCTION

the dialogue system more portable to other application domains and improves
maintainability. An important part of such a knowledge base is an ontology of
the concepts that are important to the domain. Many knowledge representation
languages exist to date; we mention the KL-ONE family of description logics
(Woods and Schmolze 1992) of which LOOM (Brill 1993) and BACK (Hoppe
et al. 1993) are members. The semantic interpreter and the dialogue manager
will depend on the knowledge base for the semantics of domain-specific concepts
and world knowledge.

database We require the database to be a separate module to make sure that
the other modules cannot exploit database internal peculiarities, and to obtain
database independence to some extent. The dialogue manager (see below) may
update the database only through the database manager.

speech model In the case of a spoken system we need a model for the recognition
of spoken language. Often speech recognition is based on hidden markov models.

lexicon For domain-specific applications of natural language dialogue, the lex-
icon can best be divided in two sub-lexicons. One lexicon is domain-specific,
and provides detailed syntactic and domain-specific information for each word
it contains; for the domain-specific information references to domain and world
knowledge are made. The other lexicon aims at broad coverage and provides
superficial syntactic information (syntactic category only, for instance); it makes
references to world knowledge only.

grammar The grammar specification is an adequate description of the syntactic
structure of the language used in the SCHISMA domain. Certain constructions
(noun phrases, for instance) should be modelled more specific than others.

template sentences Template sentences are sentences with slots. These slots can
be filled with phrases about date, time, or (other) information from the domain
or the database. Slots are annotated with agreement information. Given a
response type, the information that should be asked for, and the information
it should provide or mention, the generation module can select the template
sentence that is applicable.

The semantic interpreter, dialogue manager, and response generator apply
world knowledge and domain knowledge, i.e. world knowledge specific to the
domain of the dialogue system. World knowledge is often thought of as di-
vided in declarative and procedural knowledge. Declarative knowledge is best
described as factual knowledge about objects and agents in the real world. Pro-
cedural knowledge is knowledge about how to do something: in the context of
a dialogue system, it is knowledge about what situation should trigger what ac-
tions. We believe, the most elegant solution to the problem of modelling world
and domain knowledge would be, in theory, to maintain a database that can

1.3. THE SCHISMA SYSTEM 9

be queried as necessary. In practice, world and domain knowledge are often
spread over several modules and specifications of the system. For instance, the
grammar specification for the parser is sometimes a semantic grammar, or the
implementation of the dialogue manager contains ‘hard-coded’ domain-specific
actions.

1.3.4 Interfaces between the modules

We believe the communication between the modules should be standardised in
some way. Several languages or interlinguae for this purpose can be found in
the literature. We mention the Knowledge Query and Manipulation Language
(KQML) (Labrou and Finin 1997), which can be used as a language for two or
more intelligent systems (agents) to share knowledge in support of cooperative
problem solving, and we mention the Knowledge Interchange Format (KIF)
(Genesereth 1998), which is a computer-oriented language for the interchange
of knowledge among disparate programs.

Another possibility is the definition of a communication language using Stan-
dard Generalized Markup Language (SGML) (Goldfarb 1990) or Extensible
Markup Language (XML) (Bradley 1998). A disadvantage is that the protocol
of the communication cannot be defined in SGML/XML. The parsing system
we present in chapter 6 has an SGML output interface for syntax trees and
feature structures. The choice for an SGML interface was motivated by the
evaluation of the parser on SGML-annotated data. See also section 5.1 for a
short introduction to SGML.

1.3.5 Keyboard input versus spoken input

In principle, we restrict ourselves to the parsing task in a keyboard-driven
SCHISMA system. However, the results of our research are relevant to spo-
ken dialogue systems as well, if we keep the following in mind:

• The output of a speech recogniser is word lattice possibly annotated with
measures that indicate the quality of the recognition. It may be very
large, and therefore it may be necessary to prune it before sending it to
the parser.

• The problems that occur in the processing of spoken language are different,
and spoken language use is different from ‘typed’ language. For instance,
restarts and corrections are a problem for speech recognition, whereas, in
the case of keyboard input, typing errors are a source of problems.

• In general, spoken language cannot be described by the same language
model (i.e. lexicon and grammar) as we would use for ‘typed’ language.
As a consequence, if we induce a grammar from data that was collected
in experiments with a keyboard interface, this grammar is not guaranteed
to be a good model for spoken language.

10 CHAPTER 1. INTRODUCTION

1.4 Contribution

The contribution of this thesis to language technology is the experimental eval-
uation in a task-oriented domain of probabilistic extensions of unification gram-
mars. Other contributions are the definition of an annotation scheme, and the
development of a flexible method for inferring grammars from annotated data.
Below we give an overview of the contribution of our research in the disciplines
of specification, experimentation, and implementation.

Specification

We specify an annotation scheme for syntax and syntactic relations. We apply
Standard Generalized Markup Language (SGML), and the specification of the
annotation scheme is a so-called Document Type Definition (DTD). We anno-
tated 873 client utterances from the SCHISMA corpus according to this scheme.
The resulting collection is called the SCHISMA Treebank, and serves as testing
material for our experiments.

Experimentation

Experiments will show how context-free and unification grammars can be de-
rived from the SCHISMA Treebank in a flexible way. We divide the tree-bank
in a train and test set, and compare the performance of context-free grammars,
PCFGs, and probabilistic unification grammars.

Implementation

To make possible the experiments with the SCHISMA Treebank, we had to
write and adapt some software. We mention:

syntactic parser A robust syntactic parsing system for the SCHISMA do-
main.

Statistics::MaxEnt A module for Maximum Entropy modelling (ter Doest
1998b).

grammar inference A highly configurable engine for the induction of gram-
mars from SGML-annotated data.

parser evaluation A module for the evaluation of parsing systems with bracket
precision, bracket recall, and crossing brackets measures. A module for
cross-evaluation of several test runs.

environment An environment for the training and testing of grammars derived
from the SCHISMA Treebank. The software components described above
are integrated into this environment.

1.5. ORGANISATION OF THE THESIS 11

1.5 Organisation of the thesis

This introductory chapter is followed by a chapter that surveys the literature
on probabilistic extensions of grammar formalisms and probabilistic parsing.
Then two somewhat theoretical chapters follow, which explain the theory of
unification grammars and maximum entropy modelling. Chapters 5 and 6 are
more practical in nature. They present the SCHISMA Treebank, and exper-
iments with probabilistic extensions of context-free grammars and unification
grammars. Chapter 7 gives the conclusions of the thesis. Below we give a short
description of each of the chapters.

Chapter 2 Probabilistic Grammar, a Survey

This chapter gives an overview of research on the application of statistics in nat-
ural language parsing. We start with a short introduction to context-free gram-
mar, and explain the ‘classical’ model of probabilistic context-free grammar.
Then we give a survey of the literature on probabilistic grammar formalisms
and probabilistic parsing.

Chapter 3 Unification-based Parsing

In chapter 3 we explain the theory of feature structures and unification gram-
mars. We define a parsing schema for left-corner chart parsing with unification
grammars, and discuss possible approaches to the probabilistic extension of
unification grammars.

Chapter 4 Maximum Entropy Modelling

In chapter 4 we explain the maximum entropy formalism which goes back to
(Jaynes 1957). Maximum entropy modelling is a way of inducing probability
distributions from real world data. Its main feature is its ability to select prob-
ability distributions without making any assumption except for the expectation
values of properties that we believe are characteristic for the data. It will be ex-
plained how the principle of maximum entropy is applied to achieve this. Then
we discuss two so-called scaling algorithms that estimate the parameters of max-
imum entropy distributions, and an algorithm for the induction of important
properties.

Chapter 5 The Grammar Inference Engine

In chapter 5 we present the annotation scheme we developed for annotating the
SCHISMA Treebank. We discuss the syntactic tags chosen, and how syntactic
relations are represented. Examples will help clarify the annotation scheme. It
is explained how unification grammars can be derived from the tree-bank. In
particular meta-constraints, tag patterns that trigger the generation of certain
unification constraints, are treated in detail.

12 CHAPTER 1. INTRODUCTION

Chapter 6 Experiments

We discuss the parser that we use for our experiments, and we explain the eval-
uation procedure that we apply to measure the performance of the parser. We
present experiments to investigate the performance of the parser with proba-
bilistic extensions of context-free grammars and unification grammars derived
from the SCHISMA Treebank.

Chapter 7 Conclusions

Chapter 7 presents the conclusions of this thesis. We recommend directions
for future research. Both practical issues like the application of our results
in the SCHISMA project, and theoretical subjects like the induction of good
probabilistic models are covered.

Appendix A Schisma Treebank DTD

Appendix A contains the SGML Document Type Definition that specifies the
annotation scheme of the SCHISMA Treebank.

Appendix B Meta-constraints

In appendix B we give the specification of the meta-constraints that we used to
generate a unification grammar from the SCHISMA Treebank.

Appendix C Samenvatting (Summary, in Dutch)

Samenvatting van dit proefschrift in het Nederlands.

Part I

Basics

13

Chapter 2
Probabilistic Grammars, a Survey

In this chapter we give an overview of the literature on probabilistic extensions
of grammar formalisms and probabilistic parsing.

The first section gives a short explanation of the theory of context-free
grammars. Then, in section 2.2, we treat the “classical” model of probabilis-
tic context-free grammars (PCFGs). We discuss supervised and unsupervised
training of PCFGs, and identify the most important defects of the formalism. In
section 2.3 we discuss some approaches directly based on context-free grammar.
Section 2.4 discusses approaches that attach probabilities to parser actions. In
section 2.5 we study probabilistic extensions of two tree-based grammar for-
malisms: tree substitution grammar and tree adjoining grammar. Section 2.6
gives an overview of probabilistic extensions of unification grammar formalisms
that are based on the PCFG approach. In section 2.7 we discuss grammar
weighting schemes based on constraint logic programming.

2.1 Context-free grammars

Before we turn to probabilistic grammar formalisms, we give a short introduction
to the theory of context-free grammars. “The concept of a context-free
language was first introduced by Chomsky in 1959 [Ch 3] in an attempt to find
a reasonable mathematical model of natural languages such as English, French,
etc.”1 (Ginsburg 1966).

Formally, a context-free grammar (CFG) is a quadruple (VN , VT , P, S) where
VN and VT are the symbols of the grammar, S ∈ VN the start symbol, and P
a set of production rules (or rules). The symbols VN are called nonterminals,
and can be rewritten by applying grammar rules. The symbols in VT are called
terminals, and cannot be rewritten. The rules in P are of the form A → α,
where A is a nonterminal and α ∈ (VN ∪ VT)∗ is a string of grammar symbols.
A is called the left-hand side (LHS) of the rule, and α the right-hand side (RHS).

A string αAγ can be rewritten into αβγ, denoted by αAγ ⇒ αβγ, if a rule
A → β exists. A derivation is a sequence of such rewritings. ⇒∗ denotes the
reflexive, transitive closure of the derivation relation. A leftmost derivation is a
derivation in which each derivation step rewrites the leftmost nonterminal.

1[Ch 3] refers to (Chomsky 1959). The smallcaps are by Ginsburg.

15

16 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

SGML

NAME

NP

is

V

a

DET

metalanguage

N

""""
LLL

NP

!!!!!!
AAA

VP

�������
\\\

S

Figure 2.1: Example of a derivation tree.

The language of a grammar L(G) is the set of terminal strings that can be
derived from the starting symbol S:

L(G) = {x ∈ V ∗
T |S ⇒∗ x}

Below is an example of a context-free grammar.

Example 2.1 (context-free grammar)
S is the start symbol of the following grammar:

S -> NP VP
NP -> NAME
VP -> V NP
NP -> DET N
NAME -> SGML
V -> is
DET -> a
N -> metalanguage

The nonterminals of the grammar are S, NP, VP, DET, NAME, N, V. The terminals
are SGML, is, a, and metalanguage. A leftmost derivation w.r.t. this grammar
is

S => NP VP => NAME VP => SGML VP => SGML V NP =>
SGML is NP => SGML is DET N => SGML is a N =>

SGML is a metalanguage

The intermediate derivation results above are called sentential forms. The cor-
responding derivation tree is given in figure 2.1. Another sentence that can be
generated with this grammar is a metalanguage is SGML.

2.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 17

2.2 Probabilistic context-free grammars

Probabilistic context-free grammars (PCFGs) are the most common and well-
understood probabilistic grammars. In general, PCFGs are defined as context-
free grammars extended with a function that assigns a probability to each rule.
Formally, a probabilistic context-free grammar is a quintuple (VN , VT , S, P, π)
where (VN , VT , S, P) is a context-free grammar, and π : P → [0, 1] is a function
that assigns a probability to each rule such that for each A ∈ VN :∑

A→α∈P

π(A→ α) = 1

The probability of a derivation tree of the grammar is defined as the product of
the probabilities of the subtrees directly below the top node and the probability
of the production rule apply to the nonterminal of the top node. Formally,
given a derivation tree σ = σ(σ1 . . . σn), σ ∈ P , and σi derivation trees, the
probability of the derivation is given by:

p(σ()) = π(σ)

p(σ(σ1 . . . σn)) = π(σ)
n∏

i=1

p(σi)

If more distinct derivation trees derive the same sentence, the sum of the prob-
abilities of all possible derivations is taken as the probability of the sentence
(so-called sum-interpretation):

p(w) =
∑

σ∈Trees(G):yield(σ)=w

p(σ)

where Trees(G) is the set of trees grammar G generates. Similarly to the sum
interpretation, the max-interpretation can be used. In applications of natural
language parsing often the parse tree with maximum probability is considered
the right one and selected for further interpretation.

A nice property of PCFGs is that the probability of a sentence decreases with
its length. This corresponds to our intuition that long sentences have a smaller
probability to occur. We refer to (Suppes 1972) for a lengthier discussion of
the naturalness of PCFGs. For investigations into the more theoretical aspects
of PCFGs we refer to (Grenander 1967; Booth and Thompson 1973; Wetherell
1980; ter Doest 1994).

2.2.1 Supervised training

PCFGs can easily be inferred from a so-called tree-bank. Given a set E =
{e1, e2, . . . , eN} of trees (a tree-bank), the probability of a rule Ai → αj , where
Ai ∈ VN , and αj ∈ (VN ∪ VT)∗, is defined by

π(Ai → αj) =
n(Ai → αj)

n(Ai)
(2.1)

18 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

where n(Ai) denotes the number of times a (sub)tree occurs in the tree-bank
with nonterminal Ai as its root, and where n(Ai → αj) is the number of times
a (sub)tree occurs that is generated by Ai → αj .

A PCFG with rule probabilities that are estimated according to (2.1) in-
duces a probability distribution on its language that has maximum likelihood of
generating the data used to estimate the probabilities from; see (Fu and Booth
1975) for a proof. Abney (1997) uses the term expected rule frequency (ERF)
for this estimation.

2.2.2 Unsupervised training: the Inside-Outside algorithm

An unsupervised way to infer a PCFG is using the Inside-Outside algorithm
(Lari and Young 1990). The Inside-Outside algorithm is a generalisation of
the Baum-Welch algorithm used to train Hidden Markov Models (Baum 1972).
Charniak (1993) explains how the Inside-Outside algorithm can be derived from
the Baum-Welch algorithm.

The basic idea of the Inside-Outside algorithm is to use the current rule prob-
abilities to estimate from the sample the expected frequencies of certain deriva-
tion steps, and then compute new rule probability estimates as appropriate
frequency rates. Each iteration of the algorithm starts by calculating the inside
and outside probabilities for all sentences in the sample. These probabilities are
in fact probability functions that have as arguments a sentence w from the sam-
ple, indices that indicate what part of sentence w should be considered, and a
nonterminal, say Ak. With these arguments, the inside probability Iw(i, j, Ak) is
the probability that Ak derives wi+1 . . . wj . The outside probability Ow(i, j, Ak)
is the probability that a sentential form w1 . . . wi−1Akwj+1 . . . w|w| can be de-
rived.

We give a formulation along the lines of (Pereira and Schabes 1992) where
an adapted version of the Inside-Outside algorithm is given for re-estimation
from partially bracketed corpora. The grammar is assumed to be in Chomsky
Normal Form (CNF). This means that a rule is either of the form A → B C,
with A, B, C ∈ VN , or of the form A→ a, with A ∈ VN and a ∈ VT . In (Kupiec
1992) the Inside-Outside algorithm is defined for general context-free grammar.

Given the inside and outside probabilities, and a sample S of (not annotated)
sentences, the probability of rule Ap → AqAr, here denoted by Ppqr , is re-
estimated as follows:

P̂pqr = Ppqr

∑
w∈S

1/P (w)
∑

0≤i<j<k≤|w|
Iw(i, j, Aq)Iw(j, k, Ar)Ow(i, k, Ap)

∑
w∈S

Pw(p)/P (w)

where Pw(p) is the probability that nonterminal Ap is involved in a derivation
of w

Pw(p) =
∑

0≤i<j≤|w|
Iw(i, j, Ap)Ow(i, j, Ap)

2.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 19

and P (w) the probability of w according the current model, or Iw(0, |w|, S) in
terms of the inside probability. Intuitively, Ppqr is re-estimated by the ratio of
the expected number of times that rule Ap → AqAr is used in the sample, and
the expected number of times nonterminal Ap is used in the sample. Similarly,
the probability of rule Ap → aq, denoted by Ppq , is re-estimated according to

P̂pq = Ppq

∑
w∈S

1/P (w)
∑

1≤i≤|w|:wi=aq

Ow(i− 1, i, Ap)

∑
w∈S

Pw(p)/P (w)

The rule probabilities are known to converge such that the PCFG has maximum
likelihood of generating the sample.

The re-estimation algorithm can be used both to refine the current estimated
probabilities of a PCFG and to infer a PCFG from scratch. The former appli-
cation can be said to be incremental. In the latter case, the initial grammar
consists of all possible CNF rules over given sets of nonterminals and termi-
nals. The inference process should then be initialised with suitable (a priori or
random) nonzero probabilities.

2.2.3 Discussion

Presently it is generally agreed upon that PCFGs lack representational power
in the probabilistic sense, and that they are not flexible enough for the incor-
poration of probabilistic information other than rule frequencies.

context-sensitivity For the disambiguation of phenomena like PP attachment or
long distance dependencies the scope of rule probabilities is too small. In PCFG
the probability of a rule expresses the probability that it is used for rewriting its
LHS nonterminal; this is called the context-freeness assumption. But if we want
to model a phenomenon like PP attachment statistically, and some researchers
try to do so, we need distributions that model characteristics of syntax trees that
go beyond that of context-free grammar rules. A lot of research on statistical
language models concentrates on richer context-sensitive statistics. One obvious
improvement is to condition rule probabilities on characteristics of syntax trees
or derivations beyond grammar rules. In section 2.3 we discuss some of these
approaches. Another more fundamental solution is to abandon context-free
grammar, and use a different grammar formalism. Sections 2.5 through 2.7 give
an overview of such attempts.

lexical information PCFGs are not very flexible regarding the incorporation of
statistical information other than rule frequencies. For instance, co-occurrence
statistics (n-grams) of words or syntactic categories hold important information
about lexical dependencies. Incorporation into the PCFG of such information
obscures the notion of what events are modelled by the resulting statistical
model of language: “A difficulty with the hybrid approaches, however, is that

20 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

they leave unclear what the statistical model of the language is. In probabilistic
context-free grammar and in surface-string analysis of lexical co-occurrence,
there is a precise definition of the event space – what events go into making up
a sentence. (...) The absence of such a characterization in the hybrid approaches
makes it more difficult to identify what assumptions are being made, and gives
such work a decidedly empirical flavor.” (Resnik 1992) (p. 421). The tree
grammar formalisms that we treat in section 2.5 provide a framework for the
incorporation of lexical statistics. The maximum entropy method, treated in
chapter 4, allows the incorporation of arbitrary information sources.

generative nature Implicit in the definition of PCFGs is the assumption that
the application of a rule changes the probability of the final derivation tree.
The probability distribution over the language of a grammar is defined in a
generative way. I think PCFGs narrow the mind in thinking about probabilistic
languages too much. Why depend on the grammar for defining the probability
of a tree whereas we can define a probabilistic model that does not depend on
the grammar at all for the computation of the probability of a derivation tree?
In chapter 4 we will see how this can be done.

2.3 Extensions of probabilistic context-free grammars

As we saw in the previous section, the PCFG formalism is simply not rich enough
to capture phenomena that are outside the scope of context-free grammar rules.
In this section we discuss some approaches that try to overcome this problem by
conditioning rule probabilities on information outside the scope of context-free
grammar rules.

2.3.1 Weakly restricted stochastic grammars

In (op den Akker and ter Doest 1994) the authors propose a slight enrichment
of the PCFG formalism in order to obtain some context-sensitivity for the rule
probabilities. The idea is to assign rule probabilities depending on where in
the grammar the nonterminal to be rewritten was introduced. It is argued that
the knowledge about the rule that introduced the nonterminal will improve the
context-sensitivity of the probabilistic model.

Formally, a weakly restricted stochastic grammar (WRSG) is a quintuple
(VN , VT , S, P, π) where (VN , VT , S, P) is a context-free grammar and π assigns to
each RHS nonterminal occurrence Aij (which denotes the j-th RHS occurrence
of Ai) a function πij that assigns to each rule for Ai a probability. So, the
probability of a rule to rewrite some nonterminal depends on where in the
grammar it was introduced.

It is shown that a weakly restricted grammar can be transformed into a
PCFG that is stochastically strong equivalent. This implies that the increase
in probabilistic descriptive power is drawn from the size of the grammar, and
not from defining a more powerful formalism. Also an adapted version of the

2.3. EXTENSIONS OF PROBABILISTIC CONTEXT-FREE GRAMMARS 21

Inside-Outside algorithm is given to enable training and inference of WRSGs
directly from a tree-bank or from raw language data.

2.3.2 History-based grammars

In (Black et al. 1992) a sophisticated model of probabilistic grammar, called
history-based grammar (HBG), is introduced. The idea is that probabilities
are conditioned on the history of applied grammar rules (leftmost derivation is
assumed). HBG is a framework for rich probabilistic grammar models. The
rule probabilities are conditioned on the equivalence class of the sequence of
previously applied rules. Formally, the probability of a derivation σ = σ1 . . . σn,
σi ∈ P , is defined by

p(σ) =
m∏

i=1

p(σi|[σ1 . . . σi−1])

where m is the number of derivation steps, and [σ1 . . . σi−1] the equivalence class
of the previously applied grammar rules.

The grammar used for experiment with the HBG model is a hand-crafted
feature grammar that uses unification. Terminals and nonterminals are feature-
value pairs, similar to the model Goodman (1997) applies (see section 2.6.3
for a discussion). The difference is that some of the features are compiled
into the context-free backbone. The PCFG thus constructed is trained on the
Lancaster Treebank using the Inside-Outside algorithm. The grammar thus
obtained is used for later evaluation of the HBG model, and for ‘bootstrapping’
the induction of the HBG.

To obtain an HBG, the PCFG is run on the Lancaster Treebank. Each
most likely parse is considered an event if it matches the tree-bank analysis.
Each node of these trees is annotated with syntactic (Syn) and (Sem) features,
its primary and secondary head, and the rule that is applied to rewrite it.
The proposed model associates for each node of each parse tree the following
conditional probability:

p(Syn,Sem, R, H1, H2|Synp,Semp, Rp, Ipc, H1p, H2p)

Subscript p indicates features of the parent node, and Ipc is the index of the
node in the RHS of the rule that is applied to its parent node. This rule is
denoted by Rp. Then a statistical decision tree (see (Magerman 1994) for an
explanation) is designed to approximate this probability with the probability
that a rule will be used for rewriting a node in the parse tree:

p(R|Syn,Sem,Synp,Semp, Rp, Ipc, H1p, H2p)

The performance of the HBG shows a considerable improvement over the per-
formance of the PCFG that was constructed to create the event space of parse
trees.

22 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

2.3.3 Salomaa’s probabilistic grammars

A probabilistic grammar according to (Salomaa 1969) is a grammar extended
with probabilities such that each rule application receives a probability depen-
dent on the last rule applied. Formally, a probabilistic grammar of type i is a
triple (G, δ, φ) where G = (VN , VT , S, P) is a type i grammar, δ : P → [0, 1],
and φ : P × P → [0, 1]. The probability of a derivation σ = σ0, . . . , σn, σi ∈ P
is defined by

p(σ) = δ(σ0)
n∏

i=1

φ(σi−1, σi)

Clearly, the derivation order (left-most, or right-most, for instance) results in
different probabilities. Under the maximum interpretation the probability of a
string is the maximum probability of all possible derivations. The sum inter-
pretation instructs us to take the sum of the probabilities of all the derivations
of the string.

Salomaa does not mention the problem of inference or training. His paper
concentrates mainly on theoretical issues like the hierarchy of stochastic lan-
guages, and the relation of weighted grammars to programmed grammars and
time-variant grammars.

Although potentially much richer than PCFG, HBG is restricted to modelling
statistical dependencies that are in the history of the lefmost derivation. The
description of the experiments by (Black et al. 1992) shows that implemen-
tation of an HBG model is a complex undertaking. The claim that WRSG
is stochastically strong equivalent to PCFG makes it an interesting approach.
Salomaa’s definition of probabilistic grammar seems of theoretical interest only,
as the matter of parameter estimation is not solved.

2.4 Statistics of parser actions

Another approach to the enrichment of probabilistic grammar is by extending
the parser. Each parsing algorithm has a limited set of actions it can perform
in analysing a sentence. Typically, LR parsers do shift and reduce actions, left-
corner parsers shift, hypothesise, or complete. If each of these actions receives a
probability, then the probability of a derivation can be computed as the product
of the probabilities of the actions performed for building the derivation. Action
probabilities can be computed from an initial PCFG, or induced from a tree-
bank. In this section we discuss two probabilistic parser models: a probabilistic
LR parser that is compiled from a PCFG, and a probabilistic left-corner parser
that estimates its action probabilities from a tree-bank.

2.4.1 Probabilistic GLR parsing

Wright and Wrigley (1991) extend Generalised LR parsing by compiling prob-
abilities into the parsing tables. They describe how PCFG probabilities are

2.5. TREE-BASED FORMALISMS 23

transformed into probabilities of LR parser actions. Algorithms are given for
SLR, LALR, and canonic LR parsers. The transformation is based on the idea
that LR state transitions correspond to shift and reduce actions.

Furthermore, Wright and Wrigley give a Bayesian interpretation of the LR
action probabilities, propose a solution to the unknown words problem, and
show that probabilistic LR performs far better than Markov models.

See-Kiong and Tomita (1991) report on experiments with a number of corpus-
based grammars based on this model of probabilistic GLR parsing. (Inui et al.
1997) gives another formalisation of probabilistic GLR. In section 2.6 we look at
work by Briscoe and Carroll on a model of probabilistic LR parsing combined
with a unification grammar.

2.4.2 Probabilistic left-corner parsing

Manning and Carpenter (1997) present a probabilistic parser based on a left-
corner stack parser with probabilities assigned to its actions. A left-corner stack
parser employs a stack to keep track of the constituents it has found so far, and
the constituents it is looking for.

Typically, the parser employs three types of actions: shift, attach, and lc-
project. A shift action moves the dot over a lexical category, an attach action
shifts over a recognised consitituent, and an lc-project action predicts new con-
stituents using the left-corner relation. For an explanation of left-corner stack
parsing we refer to (op den Akker 1988; Nederhof 1994).

The probability of a left-corner derivation is defined as the product of the
probabilities of the parser actions applied during parsing. If the probability of
each action is conditioned on the history of parser actions, we have

P (t) =
∏

i

P (Ci|C1, . . . , Ci−1)

The authors recognise that in practice such conditional probabilities cannot
easily be estimated. They propose two models that classify histories of parser
actions. Note that the same problem arises with the definition of History Based
Grammar (see section 2.3.2), where a classification is defined on the history
of applied rules. In the simplest one, the history of parser actions is classified
according to the current left-corner category and goal category. It is argued
that this results in a probabilistic model slightly richer than the PCFG for-
malism. Experiments on the Penn Treebank II show a worthwhile performance
improvement over standard PCFG.

Furthermore a classification of parser histories is explored that is based on
the left-corner and goal categories (as before), and the depth of the stack. No
experiments are reported for such extended left-corner models.

2.5 Tree-based formalisms

In this section we treat two tree-based formalisms, stochastic lexicalised tree ad-
joining grammars (SLTAG) and stochastic tree substitution grammar (STSG).

24 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

Both formalisms are more powerful than the PCFG formalism, and therefore
interesting alternatives.

2.5.1 Tree adjoining grammar

Stochastic lexicalised tree adjoining grammars (SLTAGs) (Schabes 1992) are
stochastic extensions of lexicalised tree-adjoining grammars (LTAGs) (Joshi and
Schabes 1992). We refer to (Joshi 1987) for an introduction to tree adjoining
grammars (TAGs).

Schabes (1992) gives a definition of SLTAGs by defining stochastic linear
indexed grammars (SLIGs), and showing how their stochastic languages are
related. We follow the more intuitive definition of SLTAGs by Resnik (1992).
A lexicalised TAG is a pair (I, A) where I is the set of initial trees, and A the
set of auxiliary trees. Each auxiliary tree has a frontier node that matches the
root node. It is called the foot node, and the path from root to foot spine.

Adjunction and substitution are the two operations that allow building more
complex trees from I and A. Each tree should contain a terminal symbol on its
frontier to be lexicalised.

substitution each tree in I ∪ A has a (possibly empty) subset of its frontier
nodes marked as nodes at which an initial tree may be substituted; given
a tree α this set is denoted s(α);

S(α, α′, η) denotes the event of substituting α′ into tree α at node η; let S
denote the set of all substitution events;

adjunction the adjunction operation replaces a tree node γ by an auxiliary
tree; the root and foot nonterminal should of course match the nonter-
minal of the node that is being replaced; the node is not allowed to be a
substitutable node; give a tree α, the set of adjunction nodes is denoted
a(α);

A(α, β, η) denotes the event of adjoining auxiliary tree β into tree α at node
η; A(α,none, η) is the event that no adjunction is performed at η; let A
denote the set of all adjunction events.

LTAGs are extended with statistics by introducing the following probability
functions:

• PI : I → [0, 1] assigns a probability to each initial tree such that
∑
α∈I

PI(α) = 1

• PS : S → [0, 1] assigns a probability to each substitution event such that

∀α ∈ I ∪A : ∀η ∈ s(α) :
∑
α′∈I

PS(α, α′, η) = 1

2.5. TREE-BASED FORMALISMS 25

• PA : A→ [0, 1] assigns a probability to each adjunction event such that

∀α ∈ I ∪A : ∀η ∈ a(α) :
∑

β∈A∪{none}
PA(α, β, η) = 1

The probability of a derivation is the product of the probabilities of the sub-
stitution and adjunction events, and the probability of the initial tree. If the
derivation is given by τ = σ1, . . . σn, σi ∈ S ∪A, and the initial tree is given by
α0, then we have

p(τ) = PI(α0)
∏

i

P (σi)

Schabes (1992) gives an algorithm for computing the probability of a sentence
(in O(n6) time and O(n4) space), the Inside-Outside algorithm is given for
SLTAGs, and experiments are described in which SLTAGs are automatically
constructed from a corpus using the Inside-Outside algorithm. One particular
advantage of SLTAGs over PCFGs is the faster convergence of the former. The
author claim this to be a consequence of PCFGs’ deficit in the representation
of lexical influences on the distribution, while SLTAGs integrate both lexical
distributional and hierarchical statistics.

An interesting restriction of the SLTAG formalism is given by stochastic lex-
icalised tree insertion grammars (SLTIGs) (Schabes and Waters 1993). SLTIGs
are based on LTIGs (Schabes and Waters 1994), and LTIGs are restricted from
LTAGs by forbidding wrapping auxiliary trees. This restriction is accomplished
if

• there are no wrapping elementary trees, i.e. auxiliary trees that have
non-empty frontier nodes on both left and right side of the spine;

• left (right) auxiliary trees cannot be adjoined to a node that is on the
spine of an elementary right (left) auxiliary tree; and

• there is no adjunction allowed to the right (left) of the spine of an elemen-
tary left (right) auxiliary tree.

LTIGs lexicalise CFGs without changing the trees that are derived. Furthermore
a constructive procedure exists to transform any CFG into an equivalent LTIG
(Schabes and Waters 1994).

SLTIGs can be parsed in O(n3) time, and Inside-Outside training of an
SLTIG can be accomplished in O(n4) time. It is claimed that an Inside-Outside
algorithm can be constructed that has time complexity O(n3) just like the pars-
ing algorithm.

2.5.2 Data-oriented parsing

In data-oriented parsing (DOP) (Bod and Scha 1997; Bod 1998) stochastic tree
substitution grammars (STSGs) are defined, a generalisation of PCFGs. An
STSG is a PCFG with the set of rules replaced by a set of trees. Formally, an
STSG is a quintuple (VN , VT , S, T, π) where

26 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

• VN is a finite set of nonterminals;

• VT is a finite set of terminals;

• S ∈ VN is the start symbol;

• T a finite set of elementary trees; an elementary tree is a tree with non-
terminals at the root and the interior nodes; the final nodes may be either
terminal of nonterminal; root(t) denotes the nonterminal at the root of
tree t;

• π is a function that assigns a probability to each elementary tree, such
that for each nonterminal A

∑
t:root(t)=A

π(t) = 1

The notion of derivation is based on the binary substitution operator ·. If t1 and
t2 are trees, and the leftmost frontier nonterminal of t1 equals the root of t2,
then t1 · t2 is the tree that results from substituting t2 for the leftmost frontier
nonterminal. A leftmost derivation is defined as a sequence of elementary trees
(t1, . . . , tn), such that t1, . . . , tn ∈ R, the root of t1 is labelled by S, and the
yield of t1 · . . . , ·tn is a string of terminals. The probability of a derivation is the
product of the elementary trees it consists of. Clearly, a parse tree may have
multiple (leftmost) derivations; the probability of a parse tree is defined as the
sum of the probabilities of its distinct derivations. The string language of an
STSG consists of those strings for which a parse tree exists; the probability of
a string is the sum of the probabilities of its distinct parses, and this equals the
sum of the probabilities of its distinct derivations.

STSGs are weakly equivalent to PCFGs, e.g. “The set of stochastic string
languages generated by STSGs is equal to the set of stochastic string language
generated by SCFGs” (Bod 1998) (p. 29).2 Bod shows that STSGs “are not
only stronger than SCFGs because there are STSGs for which there are no
strongly equivalent SCFGs, but that STSGs are really stochastically stronger,
also with respect to SCFGs that are strongly equivalent to STSGs” (Bod 1998)
(p. 33).

An STSG can easily be inferred from a corpus by collecting all and every
subtree it contains, count them and normalise by the total number of subtrees
that have the same nonterminal at the root. Clearly, STSGs will become very
large, even larger than a PCFG would be for the same tree-bank. A possible
way to ‘tame’ STSG is restricting the elementary trees. Bod applies restrictions
on the depth of the elementary trees. Still, the grammar may be very large, and
parsing an expensive operation. Often the size of the grammar is not taken into
account in time complexity analyses, because it is a constant factor. However,
if a grammar is large, this constant factor will dominate the sentence length
factor.

2SCFG stands for stochastic context-free grammar, another term for PCFG.

2.6. UNIFICATION GRAMMARS 27

Bod defines parsing as a sampling procedure. If during parsing, either bot-
tom up or top down, several subtrees can be substituted on the same node, then
the parser selects one subtree by sampling, substitutes it, and continues.

Goodman (1996) showed that for each STSG a PCFG can be constructed
that is strongly equivalent, i.e. for each STSG derivation tree there exists a
PCFG derivation tree that has equal probability, and vice versa. Then he
presents a parsing algorithm that runs in O(n3) time. It does does not pro-
duce the most probable derivation, but the Maximum Constituents Parse, the
parse that is likely to have the largest number of correct constituents. Bod
(1996) replies, correctly I think, that Goodman’s PCFG model is not a DOP
model as it does not produce the same tree language and the parsing algorithm
does not produce the same (best) tree as the DOP parsing algorithm.

If we compare the STSG formalism to the SLTAG formalism, we see that
the SLTAG formalism is more powerful than the STSG formalism because of
the adjunction operation, and SLTAGs can, in theory, “capture at least the
stochastic dependencies that can be captured by STSG” (Bod 1998) (pp. 36-37).
In both formalisms co-occurrence (or other lexical) statistics can be represented
very easily. The main difference is in the philosophy that has motivated the
formalisms. In the DOP research the STSG formalism is applied to use a corpus
of annotated data as a performance model of human language use(rs), whereas
the TAG formalism is a linguistically motivated grammar formalism for the
development of hand-crafted grammars.

2.6 Unification grammars

Extending unification grammar with statistics is not a trivial matter. In prin-
ciple, it is wrong to attach probabilities to the rules of the unification grammar
like is done with PCFGs. The possibility of unification failure causes such
probabilities and therefore the distribution they induce to be invalid. However,
successful experiments that apply such rule probabilities can be found in the
literature.

2.6.1 Probabilistic ALE

Brew (1995) develops stochastic HPSG as a pendant of PCFG. His model is
based on a probabilistic extension of ALE signatures. ALE stands for Attribute
Logic Engine, and “is an integrated phrase structure parsing and definite clause
logic programming system in which the terms are typed feature structures”
(Carpenter and Penn 1994). An ALE signature is a mixture of type hierarchy
and appropriateness specification. Appropriateness is a way of constraining the
set of possible feature structures by specifying required features with types and
the types these features may introduce. For a more theoretical discussion of
well-typedness and appropriateness we refer to (Carpenter 1992).

Brew formalises probabilistic signature as a quintuple (TN , TT , τs, I, P) where

• TT is a set of maximal types

28 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

• TN a set of non-maximal types;

• τs the starting symbol;

• I is a set of introduction relationships of the form (ti ⇒ tj)→ ξ, ti, tj ∈ TN

and ξ a multi-set of maximal and non-maximal types; and

• P : I → [0, 1] a function that assigns probabilities to introduction rela-
tionships such that the sum of the relationships that apply to a given type
sums to one.

The probability of a (well-typed) feature structure is defined recurrently by

• P (τs) = 1;

• if f and f ′ are feature structures, and f ′ differs from f in that a non-
maximal node of f having type σ ∈ TN has been refined to type τ ∈ TN ,
and subsequently expanded to ξk, then P (f ′) = P (f)×P ((σ ⇒ τ)→ ξk).

(Brew 1995) is rather cryptic on the issue of training. “Training is a matter
of counting the transitions which are found in the observed results, then using
counts to refine initial estimates of the probabilities of particular transitions.”
He explains here that training comprises parsing a corpus, and counting the
number of times each introduction relationship is applied. Afterwards counts
are normalised to obtain estimations of the probabilities of the introduction
relationships.

The matter of re-entrancy is handled by associating a probability pτ with
each non-maximal type τ ∈ TN . Given a feature tree, and a possible re-entrancy
regarding type τ , then the probability of the part of the structure not involved
is multiplied by pτ , in case the re-entrancy is added; otherwise the structure
not involved is multiplied by 1 − pτ . Brew describes this procedure from a
generative point of view, whereas we would like to know how to re-estimate the
probabilities already found for the introduction relationships.

The practical value of the model is unclear as long as no experiments have
been performed. Abney (1997) argues that the estimation procedure defined by
(Brew 1995) is based on expected rule frequencies, and that it converges to the
wrong distribution.

2.6.2 Probabilistic LR parsing with unification grammars

In (Carroll and Briscoe 1992) and (Briscoe and Carroll 1993) an approach to
probabilistic parsing with a unification-based grammar is described. Briscoe and
Carroll used the ANLT (Alvey Natural Language Tools) wide-coverage grammar
of approximately 800 grammar rules, and a lexicon of about 64,000 entries built
from the Longman Dictionary of Contemporary English (LDOCE).

The most important features of the grammar are compiled into the context-
free ‘backbone’ from which a non-deterministic LR parser is constructed. “Prob-
abilities are assigned to transitions in the LALR(1) action table via a process

2.6. UNIFICATION GRAMMARS 29

of supervised training based on computing the frequency with which transitions
are traversed in a corpus of parse histories constructed using a user-driven,
interactive version of the parser” (Carroll and Briscoe 1992).

An LR parser with probabilities on the state transitions can discriminate
between distinct derivation trees that are created using the same grammar rules.
Clearly, this is impossible for a PCFG: the probability of a derivation tree of a
PCFG is independent of the order in which the rules were applied.

2.6.3 Probabilistic feature grammars

In probabilistic feature grammars (PFGs), introduced by Goodman (1997), ter-
minals and nonterminals are vectors of features. Typically a binary PFG rule
looks like

(a1 . . . ag)→ (b1 . . . bg)(c1 . . . cg) (2.2)

Features are instantiated one by one, and each instantiation is considered an
event. Two kinds of events are distinguished: binary events and start events.
A binary event is the application of a rule like (2.2). A start event is the
introduction of the root of a tree. Both are modelled probabilistically by so-
called EventProb’s. An EventProb is a triple e = (K, N, F), where

• K is a set of conditioning features (the known features),

• N = N1, N2, . . . , Nn is an ordered list of conditioned features (the new
features), and

• F = f1, f2, . . . , fn is an ordered list of functions;
fi(ni, k1, . . . , kk, n1, . . . , ni−1) returns the conditional probability P (Ni =
ni|K1 = k1, . . . , Kk = kk, N1 = n1, . . . , Ni−1 = ni−1), i.e. the probability
that feature Ni receives value ni given the known features K1, . . . Kk and
the lower indexed new features N1, . . . , Ni−1.

Given the PFG rule in (2.2), a binary event is represented by

eb = ({a1, . . . , ag}, (b1, . . . , bg, c1, . . . , cg), Fb)

which means that the child features b1, . . . , bg and c1, . . . , cg are conditioned
on earlier child features and all parent features a1, . . . , ag. A start event is
modelled by

es = ({}, (a1, . . . , ag), Fs)

meaning that parent features are conditioned on each other.
Because the number of conditional probabilities that need to be estimated

easily become very large, data sparsity is a serious problem. Goodman applies
smoothing to overcome this problem. Smoothing makes sure that events having a
zero frequency in an event space are given a non-zero probability (are smoothed).

The paper gives the Inside-Outside algorithm for PFGs, and describes ex-
periments using the Penn Treebank II. Performance comparable to state of the
art is reported.

30 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

2.6.4 Stochastic attribute-value grammars

A very advanced approach is inspired on random field theory as applied in (Mark
et al. 1991) to context-free grammars and in (Della Pietra et al. 1997) to
orthography. Random field theory is well-known in Bayesian image analysis
(Winkler 1995). (Abney 1997) explains how the general idea of random field
induction can be applied for estimating parameters of stochastic attribute-value
grammar (SAVG).

An attribute-value grammar (AVG) according to Abney is a context-free
grammar with attribute labels and path equations. The attribute labels uniquely
identify the symbols in the RHS of the rules (or: the children of the LHS node).
The path equations specify what paths in the derivation tree lead to the same
child node. AVGs can conveniently be represented by feature structures over
a set of syntactic category types and integer feature labels that represent the
ordering of the children nodes.

Abney explains that maximum likelihood estimation for PCFGs cannot be
applied to attribute-value grammars, unification grammars, HPSGs, and other
unification-based grammars, because the application of rules is not independent.
He proposes the application of MaxEnt models with lattice-based properties.
Properties detect substructures of feature structures and new properties can be
built from existing ones by combining the structures they detect.

2.7 Extensions of Constraint Logic

Context-free grammars can very conveniently be specified in a logical program-
ming language like Prolog. Moreover parsing with respect to a grammar is equiv-
alent with querying the goal that corresponds to the top node of the derivation
tree. Definite clause grammars (DCGs) are based on some Prolog definitions
that facilitate the definition of grammars even further (Pereira and Warren
1980). Also the specification of attribute-value grammars and unification gram-
mars is straightforward. In this section we discuss probabilistic extensions of
grammar formalisms that are based on the underlying constraint language.

We start with the definition of P-CUF, an extension still very similar to the
PCFG formalism, both from the definition and the training point of view. Then
we go on to the better fundamented weighted constraint logic and probabilistic
constraint logic by Riezler.

2.7.1 Probabilistic CUF

Eisele (1994) defines a probabilistic extension of the Comprehensive Unification
Formalism (CUF) (Dörre and Dorna 1993; Dörre et al. 1994). CUF is, like
PATR II and ALE, a declarative language for describing natural language.

Eisele argues that CUF definitions can be expressed in a relational way as
clauses of the form

r ← q1 ∧ . . . ∧ qn ∧ φ (2.3)

2.7. EXTENSIONS OF CONSTRAINT LOGIC 31

where r, q1, . . . , qn are predicates with distinct variables as arguments, and φ
a constraint in the underlying constraint language (Prolog, for instance) that
relates these variables. He proposes to annotate these clauses with probabilities
such that the probabilities of all clauses for the same predicate sum to 1. The
probability of a proof, the intuitive counterpart of a derivation, then is the
product of the probabilities of the clauses applied in it. Due to the possibility
of failure, the probabilities of the possible proofs of a particular goal will, in
general, not sum to 1.

In order to train a P-CUF specification on a corpus of queries, the Baum-
Welch algorithm is applied. It expects the clauses of the specification to have
some initial probabilities attached. Then, in each iteration the clause prob-
abilities are re-estimated by multiplying them by their expected (normalised)
frequency of being applied in a proof. Note the similarity to the Inside-Outside
algorithm.

Riezler (1996) observes that this approach is correct for the context-free
case only. In cases where the independence of clauses of the CUF specification is
harmed (the φ in 2.3 is non-empty), the estimation of expected clause frequencies
no longer results in a valid probabilistic model of CUF.

2.7.2 Weigthed constraint logic

In (Riezler 1996) the syntax and semantics of a weighted extension of constraint
logic are given. The paper defines constraint logic, and definite clause specifica-
tion over such logics formally. Then the quantitative extension of definite clause
specifications is defined formally as an annotation of definite clauses:

r ←f q1 ∧ . . . ∧ qn ∧ φ

where f ∈ (0, 1]. The weight of a proof is defined as the minimum of the weights
assigned to the clauses used in the proof. If more proofs exists the maximum
weight applies. So, the usual and/or trees for the representation of all possible
proofs, have become min/max trees.

The application Riezler has in mind is the specification of weighted definite
clause grammars. Seen from this perspective, the min/max interpretation of
proofs is strongly related to the min/max interpretation of derivation trees in
fuzzy grammar (Lee and Zadeh 1969).

Two possible interpretations of the weighted extension are discussed. One
possible interpretation is that the weight of a proof tree gives the “degree of
grammaticality”; clearly this interpretation corresponds to the notion “degree of
membership” in fuzzy set algebra (Zadeh 1965). And the other, more common,
interpretation is to consider the weights as preference values. However, the
paper lacks an account of the parameter estimation problem. The author is
aware of this problem: “Regarding the interest in computational linguistics
problems such as ambiguity resolution, however, a necessary prerequisite for a
more sophisticated semantics for probabilistically interpreted quantitative CLP
is the development of a probabilistic model for CLP which allows for correct

32 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

parameter estimation from empirical data.” (p. 364). The work by Riezler
treated in the next section repairs this defect by defining a probabilistic model
based on maximum entropy models.

2.7.3 Probabilistic constraint logic

In (Riezler 1998c) and (Riezler 1998b) a probabilistic extension of constraint
logic programming based on the MaxEnt method is presented. The idea is to
induce a probability distribution that gives the probability of a proof condi-
tional on some query. Riezler advocates unsupervised learning of probabilistic
constraint logic programs (CLPs), and introduces a revised version of Improved
Iterative Scaling for incomplete data; it is called Iterative Maximization (IM) .
The data is incomplete because, if more than one proof for a query is possible,
their frequency is not known. The IM algorithm accounts for this incomplete-
ness.

The event space for IM is defined as follows. Y denotes the set of observed
queries, and X a set of proofs. Let c(y) denote the number of times y was
observed, and proofs(y) the set of proofs for y w.r.t. program P . Each x ∈ X is
a proof of some query in y ∈ Y . It is unknown how often a proof x of y occurs.

Now two probability distributions are defined, one on X and one on Y ,
denoted by pX and pY resp. pX is a MaxEnt distribution, and pY depends on
pX as follows:

pY (y) =
∑

x∈proofs(y)

pX(x)

Given a program P , the IM algorithm determines the parameters of pX such
that the likelihood of observing Y is maximised:

L(α) = α ∈ Rk
∏
y∈Y

pY (y)c(y)

The IM algorithm is given by the iterative step

α(n+1) = M(α(n))

where

M(α) = γ̂ + α

γ̂ = arg max
γ∈Rk

A(γ, α)

A(γ, α) =
∑
y∈Y

(1 + p(x|y)[γ.f]− pX [
∑

i

f ie
γif#])

p(x|y) =
pλ(x)∑

x∈proofs(y) pX(x)

The auxiliary function A is a lower bound on the gain in maximum likelihood if
the parameters α are adapted by γ, i.e. on L(γ+α)−L(α). This re-estimation is
indeed very similar to that of the IIS algorithm. In both algorithms an auxiliary
function that serves as lower bound on the difference in likelihood is maximised.

2.8. SUMMARY 33

2.8 Summary

In this chapter we have given a survey of the literature on probabilistic exten-
sions of grammar formalisms. In table 2.1 we have summarised the formalisms
we considered together with their location in this chapter and the relevant lit-
erature reference. Also we have indicated what methods exists for supervised
and unsupervised learning of the parameters of the probability distributions.

We distinguished 5 types of probabilistic extensions. Two of them, CFG/rule-
based and CFG/action-based, are strongly related to context-free grammar and
PCFG. Probabilistic extensions of Tree-based formalisms are more powerful than
the PCFG formalism. In general, training and parsing are more difficult and
computationally more expensive. In practice, restrictions and approximations
make these formalisms computationally feasible.

We saw extensions of Unification-based grammar formalisms based on rule
frequencies, and a theoretically better motivated approach based on the maxi-
mum entropy method. The probabilistic extension of Constraint Logic offers a
very general approach to the extension of unification grammars.

34 CHAPTER 2. PROBABILISTIC GRAMMARS, A SURVEY

formalism sec. reference unsup. sup.

CFG/rule-based

PCFG 2.2 (Grenander 1967) I/O ERF
WRSG 2.3.1 (op den Akker and

ter Doest 1994)
I/O -

Salomaa’s PCFG 2.3.3 (Salomaa 1969) - -
HBG 2.3.2 (Black et al. 1992) - decision tree

CFG/action-based

GLR 2.4.1 (Wright and Wrigley
1991)

- ERF

LR-parsing UG 2.6.2 (Briscoe and Carroll
1993)

- action/manual

left-corner 2.4.2 (Manning and
Carpenter 1997)

- action

Tree-based

SLTAG 2.5.1 (Schabes 1992) I/O -
SLTIG 2.5.1 (Schabes and Waters

1993)
I/O -

STSG 2.5.2 (Bod 1998) - ERF

Unification-based

PFG 2.6.3 (Goodman 1997) I/O -
SAVG 2.6.4 (Abney 1997) - MaxEnt
LR-parsing UG 2.6.2 (Briscoe and Carroll

1993)
- action/manual

P-ALE 2.6.1 (Brew 1995) - ERF

Constraint Logic

P-CUF 2.7.1 (Eisele 1994) - ERF
Quantitative - 2.7.2 (Riezler 1996) - -
Probabilistic - 2.7.3 (Riezler 1998a) MaxEnt -

Table 2.1: Overview of probabilistic extensions of grammar formalisms. I/O
is an abbreviation of Inside-Outside algorithm, and ERF of expected rule fre-
quency.

Chapter 3
Unification-based Parsing

Unification grammars, often referred to as constraint-based grammars, provide
a popular way of modelling syntax in computational linguistics. They are more
powerful than context-free grammars, flexible, and can be specified declaratively.
Moreover, description logics can be defined easily to show nice properties like
monotonicity, soundness, and completeness (Kasper and Rounds 1986; Carpen-
ter 1992).

In this chapter we give formal definitions of unification grammar and left-
corner chart parsing with unification grammars. The parser we used for our
experiments (see chapter 6) closely conforms to the definition in this chapter.

First we will define type hierarchies and typed feature structures which are
rooted labelled directed acyclic graphs. Then we discuss how the domain of
feature structures is structured by the subsumption relation, a relation similar
in nature to the subset relation in set theory. Furthermore we define unification
of feature structures. Then we define multi-rooted feature structures to enable
a convenient definition of unification grammars. Multi-rooted feature structures
are feature structures that may have multiple roots (Sikkel 1997; Wintner 1997).
We express derivations in terms of multi-rooted feature structures, and define
the language generated by a unification grammar. We discuss the chart parsing
algorithm, and present a parsing schema (Sikkel 1997) for left-corner parsing of
unification grammar based on multi-rooted feature structures.

In the first section we define feature structures. Section 3.2 discusses sub-
sumption and unification, and algebraic properties of the domain of feature
structures. In section 3.3 we define multi-rooted feature structures, the sub-
sumption relation, concatenation, and some other convenient operations. In
section 3.4 we define unification grammar in terms of multi-rooted feature struc-
tures. Section 3.5 presents a parsing schema for left-corner chart parsing of
unification grammar. In section 3.6 we discuss possibilities for the probabilistic
extension of unification grammars.

For the definition of ordinary feature structure we used (Shieber 1992; Shieber
1986; Carpenter 1992). For the theory of orders and lattices we consulted (Davey
and Priestley 1990) and (Wechler 1992). We obtained the idea for the definition
of unification grammar as a set of multi-rooted feature structures from (Sikkel
1997) and (Wintner 1997). The definition of chart parsing and the left-corner
parsing schema is based on (Sikkel 1997).

35

36 CHAPTER 3. UNIFICATION-BASED PARSING

3.1 Feature structures

Feature structures are directed a-cyclic graphs. Their edges are labelled with
features, and their nodes with types. Types are partially ordered in a so-called
type hierarchy. Unlike Carpenter (1992), who defines types as sets of concepts,
we adopt a rather simple definition of types: our types are atomic. The set of
all types is denoted by Type. A type hierarchy is a bounded complete partial
order on Type.

Definition 3.1 (type hierarchy)
A type hierarchy is a partially ordered set of types (Type,v) such that

• it is bounded complete: for every subset T ⊆ Type, a unique least upper
bound, tT , exists;

• types >,⊥ ∈ Type exist such that tType = >,uType = ⊥, resp.

If types σ, τ ∈ Type σ v τ , we say that σ subsumes τ , i.e. σ is more general
than τ . It can be shown that (Type,t,u) is a bounded complete lattice.

Feature structures are directed acyclic graphs (DAGs). Their nodes are
labelled are labelled with types from Type. The edges are labelled with feature
labels. The set of all feature labels is denoted by Feat. Feature labels (or
features) are atomic as well, and we assume the intersection of Feat and Type
to be empty.

Definition 3.2 (feature structure)
A feature structure (FS) over a set of features Feat and a set of types Type is a
rooted, connected, labelled, DAG (N, n0, δ, θ) where

• N is a finite set of nodes,

• n0 ∈ N is the root of the graph,

• δ : N × Feat→ N a partial function,

• θ : N → Type a function that assigns types to nodes.

Note that the type assignment function θ is total: every node has a type from
the type hierarchy assigned. The set of all feature structures is denoted by FS.

A path is a string of feature labels. The value of a path is a type if the
path points to a final node (which is a node that has no edges leaving it). The
value of a path is a feature structure if it points to a node that is not a final
node. Apparently, multiple paths may point to the same node: this is called
coreference, two paths share the same value, either a type or a feature structure.

We consider an example of an FS now.

3.1. FEATURE STRUCTURES 37

n3

third

n0 n1 n2

verb noun agr

n4

sing

subj agr

person

num

agr

Figure 3.1: Directed labelled graph for the typed feature structure of example
3.3.

Example 3.3 (feature structure)
The feature f = (N, n0, δ, θ) structure depicted in figure 3.1 is written formally
as

N ={n0, . . . , n4},
δ ={((n0, subj), n1), ((n1, agr), n2), ((n0, agr), n2),

((n2, person), n3), ((n2,num), n4)},
θ ={(n0,verb), (n1,noun), (n2,agr), (n3, third), (n4, sing)}.

For convenience, feature structures are written in the attribute value matrix
(AVM) notation:

f =

2
6666664

verb

agr : 1

2
4 agr

num: sing
person: third

3
5

subj :

�
noun

agr : 1

�

3
7777775

We adopt the convention of writing the types at the top of the left square
bracket. Alternatively, we can write the feature structure by means of path
equations. A path equation is a partial specification of a feature structure; a
path equation is of the form p = q where p is a path and q is either a type or
a path. A set of path equation may define a feature structure, but not every
set of equations defines a feature structure (think of cyclicity). Below we have
given a set of path equations which specifies f .

38 CHAPTER 3. UNIFICATION-BASED PARSING

<f > = verb
<f subj> = noun

<f subj agr> = agr
<f subj agr person> = third

<f subj agr number> = sing
<f agr> = <f subj agr>

Note that this is not the only set of equations which specifies f .

3.2 Subsumption and unification

Subsumption is a relation on FSs that defines a partial ordering in terms of
information content. A feature structure is subsumed by another one if it con-
tains more information. Subsumption is defined syntactically in terms of feature
graph morphisms. A feature graph morphism is a mapping of the nodes of one
feature structure to the nodes of another.

Definition 3.4 (feature graph morphism)
A feature graph morphism g is a total function that, given two feature graphs
(N, n0, δ, θ) and (N ′, n′

0, δ
′, θ′), maps each node in N to a node in N ′.

A feature structure may contain another feature structure in the following way:

Definition 3.5 (substructure)
An FS f1 = (N, n0, δ, θ) is contained in another FS f2 = (N ′, n′

0, δ
′, θ′) as a

substructure, written as f1 ≤ f2, if and only if there exists a feature graph
morphism g : N → N ′ such that:

1. for all n ∈ N and for all l ∈ Feat, if δ(n, l) is defined then δ′(g(n), l) should
also be defined, and g(δ(n, l)) = δ′(g(n), l);

2. ∀n ∈ N : θ(n) v θ′(g(n)).

The substructure relation induces the lub and glb operators ∨, ∧ on FS, and
(FS,∨,∧) is a lattice. We define subsumption as the substructure relation ex-
tended with the requirement that root nodes should be related by the morphism.

Definition 3.6 (subsumption)
An FS f1 = (N, n0, δ, θ) subsumes another FS f2 = (N ′, n′

0, δ
′, θ′), written as

f1 v f2, if and only if there exists a morphism g : N → N ′ such that f1 ≤ f2,
and g(n0) = n′

0.

Feature structures that subsume each other mutually, only differ in their node
labels. In (Carpenter 1992) such feature structures are called alphabetic vari-
ants. We will ignore node labels, and consider feature structures that subsume
each other as equal.

Example 3.7 (subsumption)
Consider the feature structure g:

3.2. SUBSUMPTION AND UNIFICATION 39

n1 n2 n3

noun agr third

n0 n6 n4

verb third sing

n5 n7

agr sing

subj

agr person

num

agr person

num

Figure 3.2: Graph representation of the feature structure of example 3.7

g =

2
666666664

verb

agr :

2
4 agr

num: sing
person: third

3
5

subj :

2
4 noun

agr :

�
num: sing
person: third

�
3
5

3
777777775

In formal notation this is feature structure g = (N, n0, δ, θ) (see also figure 3.2):

N ={n0, . . . , n7},
δ ={((n0, subj), n1), ((n1, agr), n2), ((n2, person), n3), ((n2,num), n4),

((n0, agr), n5), ((n5, person), n6), ((n5,num), n7)},
θ ={(n0,verb), (n1,noun), (n2,agr), (n3, third), (n4, sing), (n5,agr),

(n6, third), (n7, sing)}.
The feature structure f of example 3.3 and g seem to state the same facts about
agreement features of the verb and that of the subject. The difference is that
f uses a coreference for the agreement information and that g carries a copy of
the agreement subgraph (or substructure). We can find that g v f with the
following morphism:

{(n0, n0), (n1, n1), (n2, n2), (n3, n3), (n4, n4),
(n5, n2), (n6, n3), (n7, n4)}.

But f 6v g, as mapping node n3 is a problem here: should it map to n1 or
n6? Intuitively, this is exactly what we want, since f not only says that the
agreement features of the verb and that of the subject are equal, but that they
are equal because they are shared.

40 CHAPTER 3. UNIFICATION-BASED PARSING

The least upper bound operator t and greatest lower bound operator u are
defined as usual. Unification is defined as the least upper bound.

Definition 3.8 (lub, join)
The least upper bound (or lub) of two feature structures f and g with respect to
subsumption is a feature structure f t g such that

(i) f v f t g and g v f t g, and

(ii) ∀h ∈ FS : f v h ∧ g v h⇒ f t g v h

The lub is also called join.

Now we will see what the algebraic structure of feature structures under the lub
operator is like.

Theorem 3.9 ((FS,t) is a semilattice)
(FS,t) is a semilattice (i.e. idempotent and commutative semigroup).

We need to show that (FS,t) is an idempotent and commutative semigroup.
That (FS,t) is a semigroup follows from associativity of t. A proof of associa-
tivity, commutativity, and idempotency is straightforward. For completeness,
we give the definition of the greatest lower bound of two feature structures.

Definition 3.10 (glb, meet)
The greatest lower bound (or glb) of two feature structures f and g with respect
to subsumption is a feature structure f u g such that

(i) f u g v f and f u g v g

(ii) ∀h ∈ FS : h v f ∧ h v g ⇒ h v f u g.

The glb is also called meet.

Furthermore it can be shown that (FS,u) is a bounded complete semilattice, and
that (FS,t,u) is a lattice.

For the definition of unification we need to define the union of two next-
node functions with disjoint domains. Given next-node functions δ and δ′ with
disjoint domains, the union denoted by δ ∪ δ′ is defined as

δ ∪ δ′(n, l) =

δ(n, l), if δ(n, l) is defined,
δ′(n, l), if δ′(n, l) is defined,
undefined, otherwise

The union of two type functions with disjoint domains is defined similarly. We
now define the unification of two feature structures.

Definition 3.11 (unification)
The unification of two FSs f = (Nf , n0f

, δf , θf) and g = (Ng, n0g , δg, θg) having
Nf ∩Ng = ∅, is defined by the the feature structure h = (Nh, n0h

, δh, θh) where

3.3. MULTI-ROOTED FEATURE STRUCTURES 41

• Nh = (Nf ∪ Ng)/∼ where ∼ is the least equivalence relation on nodes
Nf ∪Ng such that

– n0f
∼ n0g ; and

– δf (n, f) ∼ δ(n′, f) if both are defined and n ∼ n′.

• n0h
= [n0f

]∼ = [n0g]∼;

• δh(n, [f]∼) =
{

[δf ∪ δg(n, f)]∼, if (δf ∪ δg)(n, f) is defined
undefined, otherwise ;

• θh([n]∼) =
⊔{θf ∪ θg(n′)|n′ ∈ [n]∼}.

Unification fails if θh results in > for some [n]∼.

It can be shown that, given two FSs f and g, unification as defined above results
in the least upper bound f t g. We give an outline of the proof. First show
that it results in an FS. This can easily be established with the definition. Then
show that unification results in an upper bound by constructing morphisms from
the argument FSs into the unified FS. Finally show that it is the least upper
bound by proving that the unification subsumes arbitrary upper bounds of the
argument FSs. For a formal proof we refer to (Carpenter 1992).

3.3 Multi-rooted feature structures

A multi-rooted feature structure (MRFS) is a feature structure that may have
multiple root nodes. An index function regulates the ordering of these nodes.

Definition 3.12 (MRFS)
A multi-rooted feature structure (MRFS) is a five tuple (N, N0, δ, θ, I) where

• N is a finite set of nodes;

• N0 ⊆ N a non-empty set of root nodes;

• δ : N × Feat→ N a partial next-node function;

• θ : N → Type a type function;

• I : [0 . . . n]→ N0 an index function for n ∈ N.

In the next section we will use MRFSs to define the rules of unification gram-
mars. In this context the index function is best understood as an assignment
of feature structures to constituent positions in a grammar rule (counting from
left to right starting with the left-hand side of the rule). So, the index function
I assigns to each constituent (position) of the rule a root node, i.e. a feature
structure that can be reached from this root. The definition allows positions
to share a root node. The length of an MRFS f , denoted by len(f), is defined
as the largest n ∈ N such that I(n) is defined. Note that different positions

42 CHAPTER 3. UNIFICATION-BASED PARSING

in the rule may point to the same root node. The set of all MRFSs is denoted
by MRFS. Similar to subsumption for ordinary feature structures we define
subsumption for MRFSs.

Definition 3.13 (subsumption of MRFSs)
An MRFS f = (N, N0, δ, θ, I) subsumes another MRFS g = (N ′, N ′

0, δ
′, θ′, I ′),

denoted by f v g, if len(f) = len(g), and there exists a morphism h : N → N ′

such that

(i) for every root n ∈ N0, a root n′ ∈ N ′
0 exists such that h(n) = n′, and an

i ∈ N exists such that I(i) = n and I ′(i) = n′;

(ii) for every node n ∈ N , θ(n) v θ′(h(n));

(iii) for every node n ∈ N and feature f ∈ Feat, if δ(n, f) is defined then
h(δ(n, f)) = δ′(h(n), f).

Note that in the first requirement we say that each root node should be mapped
to a root node in the other MRFS such that they have the same indices.

We define some operations on MRFSs to facilitate the definition of unifi-
cation grammars in the next section. The first new operation is taking the
substructure of an MRFS. A substructure of a MRFS w.r.t. a contiguous range
of indices is that part of the MRFS that can be reached from the root nodes
having these indices. For instance, the substructure fi...j consists of those nodes
and edges of f that can be reached from the nodes I(i) through I(j). In ad-
dition, we require that the index function is adapted such that for each index
k ∈ {i, . . . , j}, Ifi...j (k − i) = If (k); in other words, the substructure is re-
indexed such that root nodes again start at index 0. A substructure w.r.t. an
index i, denoted by fi, is in fact an FS, and may, depending on the context, be
addressed as such. The following substructure operations are of special interest
for the representation of grammar rules as MRFSs:

lhs(f) ≡ f0

rhs(f) ≡ f1... len(f)

The second is the unification of an MRFS and an FS. Given an MRFS f
and an FS g, we write the unification of f and g w.r.t. to root node i of f as
f ti g. The result of such a unification is f with its i-th node unified with g;
note that substructures other that fi may change as well through coreferences
present in f .

The third operation is the concatenation of two MRFSs. The concatenation
of MRFSs f and g, written as f · g is a new MRFS such that substructure
(f ·g)0... len(f) = f and (f ·g)len(f)+1... len(f)+len(g)+1 = g. Note that this requires
the index function of f · g to shift the indices defined in g. Concatenation will
never add new coreferences. It is an associative operation, but not commutative.

3.4. UNIFICATION GRAMMARS 43

3.4 Unification grammars

A unification grammar is a finite set of grammar rules. These grammar rules
can conveniently be represented by multi-rooted feature structures, i.e. feature
structures that may have more than one root node. The description of uni-
fication grammar that we give in this section is inspired by the description of
unification grammars based on abstract multi-rooted feature structures in (Wint-
ner 1997). Also, composite feature structures by Sikkel (1997) are similar to our
multi-rooted feature structures.

A grammar rule is simply defined as an MRFS. The left-hand side of a
rule f is the substructure that can be reached from root node I(0), and the
right-hand side is the substructure that can be reached from the nodes I(1)
through I(len(f)). The definition licenses ε-rules. The grammar does not have
an explicit context-free backbone. It can be defined though by distinguishing a
path of feature labels that points at the type or structure we want to base the
backbone on.

Example 3.14 (rule)
In the example grammar rule below, we have represented the index of the root
nodes by a number in front of each root node.

r =

2
6666666666664

phrase np

0 →
�

np

head : 1

�

1 →
2
4 det

head : 2

�
syn
det : yes

�
3
5

2 →
2
4 noun

head : 1

�
syn

modify : 2

�
3
5

3
7777777777775

In a formalism like PATR II a similar rule (untyped) would be specified by

NP -> DET NOUN
<NP head> == <NOUN head>
<DET head det> == yes
<NOUN head modify> == <DET head>

Basically, a unification grammar is a set of MRFSs.

Definition 3.15 (unification grammar)
A unification grammar G is a triple (P, S, L) where

• P ⊂ MRFS is a finite set of grammar rules;

• S ⊆ P is the set of start productions; each rule in S may be used to start
a derivation;

• L : Words → 2FS the lexicon function that assigns a set of feature struc-
tures to each word.

44 CHAPTER 3. UNIFICATION-BASED PARSING

The lexicon function L corresponds to the set of terminals in CFGs, and the set
of start productions S corresponds to the start symbol.

A derivation w.r.t. a grammar starts with a start production and ends if
no grammar rules can be applied anymore. One MRFS can be derived from
another if a substructure can be rewritten using a grammar rule such that it
equals the other MRFS.

Definition 3.16 (derivation relation)
Given a grammar G = (P, S, L),

• an MRFS g can be derived from an MRFS f , denoted by f → g, if indices
i, j, k exists, and a rule r ∈ P , such that

(i) lhs(r) v fi;

(ii) rhs(r) v gj...k;

(iii) if r′ = rt0fi and f ′ = ftilhs(r), then g = f ′
0...i−1·rhs(r′)·f ′

i+1... len(f).

• a word w ∈ Words can be derived from an FS f , denoted by f → w, if a
feature structure g ∈ L(w) exists such that g v f . An MRFS f derives a
sequence of words w1 . . . wlen(f) if for each i ∈ {0 . . . len(f)− 1} fi derives
wi.

Requirements (i) and (ii) in the first clause of the definition makes sure that
rule r may have been the rule that was used to rewrite f into g. Requirement
(iii) is there to prevent g of being more specific than the rule allows. Also it
expresses how coreferences originally in f are preserved and propagated. If fi is
unified with the LHS of rule r, then information may be propagated to the rest
of f , and to the RHS or r. Replacing fi by the RHS of r while preserving shared
nodes, results in a new f in which the RHS of r may share information with f .
The second clause defines the derivation of words from the substructures of an
MRFS. It says that a word can derived from an FS if it is at least as specific as
one of the FSs that L assigns to the word. As usual →+ denotes the transitive
closure of the derivation relation, and →∗ the reflexive, transitive closure.

Now we can define the language generated by a unification grammar. It is
simply defined as those sentences that can be derived from the grammar starting
with a start production.

Definition 3.17 (language)
The language generated by a unification grammar G = (P, S, L) is defined by
the set

L(G) = {x ∈ Words∗|∃f ∈ S : f →+ x}

3.5 Parsing

A parsing algorithm serves to find the structure of a sentence with respect to a
grammar. In the case of unification grammars this means to find the grammar

3.5. PARSING 45

proc chart-parser(Tschema s)
begin

create initial chart and agenda
while agenda is not empty do

delete current item from agenda
foreach item that can be deduced according to s

from current with other items in chart do
if item is neither in chart nor in agenda

then add item to agenda
fi

od
od

end
.

Figure 3.3: Chart parser in pseudo pascal.

rules that were applied in the derivation(s) of the sentence. In this section we
first define chart parsing abstracted from the form and meaning of the items,
then we present a parsing schema for LC parsing of unification grammar. Our
notion of a parsing schema is from (Sikkel 1997); similar ideas can be found in
(Shieber et al. 1995).

We assume the parsing algorithm to operate on items. An item is a partial
specification of a parse tree, or better, an equivalence class of parse trees that
share some relevant properties. For instance, given a sentence w1 . . . w4, an item
[NP, 2, 4] represents all parse trees that have an NP at the root and that generate
w3...4. The syntax of items is free and can be chosen such that particular sets of
trees can be conveniently represented. A set of items resulting from parsing is a
distributed representation of all possible parses. This means that each possible
parse can be re-constructed from the set. We refer the reader to chapter 4 of
(Sikkel 1997) for a more detailed treatment of the theory of items and item-
based parsing schemata. A parsing schema is a set of deduction rules which
specifies what new items may be derived from old items.

3.5.1 Chart parsing

Given a parsing schema that describes how new items should be created from
old ones, we can easily describe a chart parser. A chart parser is a parser that
maintains two stores for items defined by a parsing schema: an agenda and a
chart. Initially, the agenda contains axiomatic items, i.e. items that can be
deduced without antecedent, in the chart are those items that represent the
words of the sentence. After initialisation of chart and agenda the chart parser

46 CHAPTER 3. UNIFICATION-BASED PARSING

picks an arbitrary item from the agenda, and adds all items not already in chart
or agenda that can be deduced by the deduction rules of the parsing schema.
Then it picks the next item from the agenda, and so forth. In pseudo pascal
the chart parser is given in figure 3.3.

3.5.2 Left-corner parsing

Left-corner parsing was introduced by (Rosenkrantz and Lewis-II 1970) as a
deterministic left-to-right pushdown stack machine. In left-corner parsing the
prediction of local trees is based on the left-corner relation.

Usually the left-corner relation is defined on the nonterminals of the gram-
mar. We define the left-corner relation directly on the MRFSs that make up
the rules of the grammar. The left-corner (LC) of a rule r is the substructure
r1, denoted by lc(r). Since we will define the left-corner on the context-free
backbone of the grammar, we introduce the function cat : FS→ FS that results
in the value (a type or an FS) that should be used in the left-corner relation.

The left-corner relation on grammar rules is defined as follows.

Definition 3.18 (left-corner relation)
Given a unification grammar G = (P, S, L), two rules f, g ∈ P stand in left-
corner relation, denoted by f >l g, if cat(lc(f)) = cat(lhs(g)).

The reflexive, transitive closure is denoted by >∗
l . Note that we defined the left-

corner on the category features of the LHS and the LC. Clearly, we have some
freedom here: the category feature is configurable. Even multiple features can
be defined, or we could relax the LC relation such that the LHS of the second
rule should be more specific a feature structure than the LC of the first rule.
But in general, the left-corner relation is restricted to the context-free backbone
of the grammar.

Before we define the types of items we need for describing the parsing, we
define so-called dotted MRFSs.

Definition 3.19 (DMRFS)
A dotted MRFS (DMRFS) is a six-tuple (N, N0, δ, θ, I, i) where (N, N0, δ, θ, I)
is a MRFS (see definition 3.12), and i ∈ {0, . . . , len(f)}, called the dot of the
DMRFS.

The set of all DMRFSs is denoted by DMRFS. For convenience we define the
following functions on DMRFSs:

• a function dot : DMRFS → N that returns the position of the dot of a
DMRFS;

• a function shift : DMRFS→ DMRFS that takes a DMRFS, and returns it
with the dot shifted one symbol to the right;

• a function compl : DMRFS → {true, false} that returns true if its argu-
ment DMRFS is completely recognised; given DMRFS f , compl(f) returns
true if len(f) = dot(f), and false otherwise.

3.5. PARSING 47

We will employ DMRFSs for the representation of grammar rules of which some
part has been recognised in parsing. Given some rule f ∈ DMRFS, if dot(f) is
0, then this means that nothing of the rule has been recognised, if dot(f) equals
len(f) the complete RHS of the rule has been recognised. In general if dot(f) = i,
then substructure f1...i has been recognised. Given a set of MRFSs P , the set
of possible DMRFSs is given by DMRFS(P).

A parsing schema consists of a definition of the domain of items and a set of
deduction rules specifying what new items may be introduced from old ones. In
the case of unification we need to specify in addition what should happen to the
feature structures of the items. A parsing schema is not a parsing algorithm.
It only defines how items are constructed. In general, a parsing schema is not
deterministic. A parsing algorithm like chart parsing should decide on the order
in which it applies the deductions.

In left-corner parsing three types of items are needed: goal items, left-corner
items, and initial items. Given a grammar G = (P, S, L) and a sentence w =
w1 . . . wn these are defined as follows:

initial items are of the form [α, i, i + 1], 0 ≤ i < n, α ∈ L(wi);

left-corner items are of the form [f ; g, i, j] where f ∈ P, g ∈ DMRFS(P), 0 ≤
i ≤ j ≤ n; [f ; g, i, j]α implies that

• [i, f] is set as a goal;

• f >∗
l g;

• g1...dot(g) →∗ wi . . . wj ;

goal items are of the form [i, f]α, where f ∈ P , and α ∈ MRFS; [i, f]α means
that at position i rule f is expected to derive (part of) the sentence.

Summarising, the items involved in left-corner parsing are given by:

IMRFS-LC = IInit ∪ IPred ∪ ILC(f) ∪ ILC(ε)

where

IInit ={[α, i, i + 1]|∃u ∈Words : α ∈ L(u)},
IPred ={[i, f]|f ∈ DMRFS(P), i ≥ 0},

ILC(f) ={[f ; g, i, j]|f, g ∈ DMRFS(P) : f >∗
l g, len(g) > 0, 0 ≤ i ≤ j},

ILC(ε) ={[f ; g, i, i]|f, g ∈ DMRFS(P) : f >∗
l g, len(g) = 0, i ≥ 0}

To identify uniquely the MRFSs and DMRFSs contained in the items we
have attached subscripts to the items where necessary. For instance, to address
g in the left-corner item [f ; g, i, j]α we say gα. If we want to address the MRFS
of g, we use φ(gα). It is important not to confuse φ(gα) with g itself. MRFS g is
a rule of the grammar. MRFS φ(gα) however, is the feature structure associated
with g for this particular item. It is the result of previous deductions, and can
be propagated to new items to be created. If this item were the result of a

48 CHAPTER 3. UNIFICATION-BASED PARSING

left-corner deduction (see below), then φ(gα) would equal g with its left-corner
unified with the LHS of f .

We have spread the definition of each set of deductions over three lines; on
each first line we have written the actual deduction rule, each second line holds
the conditions w.r.t. the dot of the left-corner items involved (if applicable),
and conditions on the categories of the MRFSs involved; the third line defines
the MRFSs attached to the rules of the items.

Definition 3.20 (left-corner deduction)
Given a unification grammar G = (P, S, L), the left-corner parsing schema is
given by the following deduction rules:

DInit = {` [0, f]|
f ∈ S,
φ(f) = f},

DLC(u) = {[i, f]α, [β, i, i + 1] ` [f ; g, i, i + 1]γ |
dot(g) = 1, cat(β) = cat(lc(g)),
φ(fγ) = φ(fα), φ(g) = g t0 lc(φ(fα)) t1 β},

DLC(g) = {[f ; g, i, j]α ` [f ; h, i, j]β|
compl(g), cat(lhs(g)) = cat(lc(h)), dot(h) = 1,
φ(fβ) = φ(fα), φ(h) = h t1 lhs(φ(g))},

DLC(ε) = {[i, f]α,` [f ; g, i, i]β|
len(g) = 0,
φ(fβ) = φ(fα), φ(gβ) = g t0 lc(φ(fα))},

DPred = {[f ; g, i, j] ` [j, h]|
¬ compl(g), cat(gdot(g)+1) = cat(lhs(h)),
φ(h) = h t0 φ(g)dot(g)+1},

DShift(u) = {[f ; g, i, j]α, [β, j, j + 1] ` [f ; shift(g), i, j + 1]γ |
cat(β) = cat(gdot(g)+1),
φ(fγ) = φ(fα), φ(shift(g)) = φ(g) tdot(g)+1 β},

DShift(g) = {[f ; g, i, j]α, [h; h′, j, k]β ` [f ; shift(g), i, k]γ |
compl(h′), cat(β) = cat(gdot(g)+1),
φ(fγ) = φ(fα), φ(shift(g)) = φ(g) tdot(g)+1 lhs(φ(h′))},

DMRFS-LC = DInit ∪DLC(u) ∪DLC(g) ∪DLC(ε)∪
DPred ∪DShift(u) ∪DShift(g).

Below we give a short explanation of each of these deduction rule sets.

Init These deductions are axiomatic. For each production in S a goal item
may be introduced.

LC We distinguish three left-corner deduction sets, for pairs of goal and initial
items, for completed left-corner items, and for pairs of goal items and
completed left-corner items for ε rules:

3.5. PARSING 49

LC(u) Given a goal item [i, f], and an initial item [u, i, i + 1], a new left-
corner [f ; g, i, i + 1] may be introduced; the goal of the left-corner is
f , and the left-corner g should have a category equal to that of the
initial item. The MRFS of the new f equals that of the old f . The
MRFS of g is g with its LHS unified with the left-corner of f and its
left-corner unified with the FS of the initial item. The unification of
g with the left-corner of f allows constraints on f ’s left-corner to be
applied top-down.

LC(g) Given a completed item [f ; g, i, j] a new left-corner item [f ; h, i, j]
can be introduced. The category of the LHS of g should equal the
left-corner of h. Furthermore the MRFS of the new f equals that of
the old. The MRFS of h is h unified with the LHS of the MRFS of g.
We do not have to unify with the left-corner of f , since we already
establish this connection between the goal and the rule in DLC(u) and
DLC(ε); by unifying with the LHS of g, this connection is propagated.

LC(ε) Given a goal item [i, f], we can derive a new left-corner item
[f ; g, i, i] where g should have len(g) = 0. The MRFS of the new f
equals the MRFS of the old f . The MRFS of the new g is equal to
g unified with the left-corner of the MRFS of f .

Pred Predictive deductions license the introduction of goal items. The premisse
is a left-corner item [f ; g, i, j] that is not complete, the consequent a goal
item [j, h] such that the category of the LHS of h equals the category of
the next to recognise substructure of g. The MRFS of h is h unified with
the MRFS of the next to recognise substructure of g.

Shift We distinguish two shift deduction steps: one shifts over an initial item,
and the other over a completed left-corner item:

Shift(u) Shifting a left-corner item [f ; g, i, j] over an initial item [β, j, j+
1] results in a new left-corner item [f ; g, i, j + 1] which has its dot
one position further to the right. The MRFS of f stays the same.
The MRFS of g is unified with the FS of the recognised initial item.

Shift(g) If a left-corner item [f ; g, i, j] is shifted over a completed left-
corner item [h; h, j, k], the new left-corner item has its dot shifted,
and the MRFS of the item is unified with MRFS of the LHS of h.

The left-corner chart parser for unification grammar can now easily be defined.
The chart should be initialised with the set initial items, and the agenda with
the items that result from DInit.

3.5.3 Head-corner parsing

An interesting generalisation of LC parsing is head-corner parsing. Head-corner
parsing can be described as left-corner parsing with the left-corner relation gen-
eralised to the head-corner relation. Whereas the left-corner relation is based

50 CHAPTER 3. UNIFICATION-BASED PARSING

on the left-corner of grammar rules, the head-corner relation is based on head-
corners. These are distinguished constituents in the RHS of grammar rules that
function as head and are specified by the grammar writer. The idea for head-
corner parsing is generally attributed to Kay (1989). Sikkel and op den Akker
(1993) developed an item-based head-corner chart-parser.

Several implementations of the head-corner parsing algorithm exist to date.
An early implementation was by (Verlinden 1993b; Verlinden 1993a); other
implementations are described in (Veldhuijzen van Zanten and op den Akker
1994) and (Moll 1995). In (van Noord 1997) an efficient implementation in
Prolog of a head-corner parser for unification grammars is described.

3.6 Probabilistic extensions

Often grammars suffer from over-generation. Extending the formalism with
statistics may help to prune parses that are not plausible, and to disambiguate,
i.e. select from alternative parses. A probabilistic extension of unification gram-
mar should result in a probability distribution over derivations of the unification
grammar. We discuss the possibilities we see for such extensions.

rule-based The extension of unification grammar with statistics is not as simple
as it may seem. Of course, attaching a probability to each grammar rule and
saying that the probability of a derivation is the product of the probabilities
of the rules applied in that derivation, is simple enough. But that is only half
the story. The other half should answer the question where these probabilities
come from: the problem of statistical inference. For probabilistic context-free
grammar this is quite trivial, but for unification grammar it is not. Failure of
unification is the source of the problem: the grammar loses probability mass that
cannot be accounted for by rule probabilities based on expected rule frequencies.

parser actions Another possibility is to attach probabilities to the actions of
the parser. To obtain a more fine-grained probabilistic model, actions can be
distinguished by the rules and grammar symbols involved, or some notion of the
state the parser is in. For instance, in (Manning and Carpenter 1997) the current
left-corner and goal symbols are taken into account. A drawback inherent to
these approaches is that the parameters of the probabilistic model are often not
portable to other parsing algorithms.

non-generative By non-generative we mean independent of the generation mech-
anism of the grammar formalism. The probability of a tree or feature structure
is not affected by the rules applied in their generation. This means that the
probability of a derivation tree or a feature structure can be computed from
properties of the feature structures only. If we restrict ourselves to modelling
integer-valued (or discrete) properties of feature structures, we can easily define
a probability distribution on feature structures. In the next chapter we will
show how this can be achieved with maximum entropy modelling.

3.7. SUMMARY 51

3.7 Summary

In this chapter we have given a formal definition of feature structures, and
discussed some algebraic properties of the domain of feature structures. We
defined multi-rooted feature structures, and based a definition of unification
grammars on these. Then we defined left-corner parsing for such unification
grammars by specifying a parsing scheme. Finally we made some remarks on
the possibilities for probabilistic extensions of unification grammars. The point
with probabilistic extensions of formalisms, though it is easy to attach weights
to operations or objects of the formalism, we have to account for the origin of
these weights as well. And concerning parameters of such extensions, we need
to explain how these should be determined from observations.

52 CHAPTER 3. UNIFICATION-BASED PARSING

Chapter 4
Maximum Entropy Modelling

In this chapter we discuss the theory of maximum entropy (MaxEnt) modelling.
We explain how the principles of MaxEnt modelling and maximum likelihood
estimation are related and how their relation can be exploited for the determi-
nation of MaxEnt probability distributions.

In general, finding a probabilistic model of a real-world phenomenon involves
the definition of a sufficiently precise description language (the sample space).
Also a mapping from observations to this language is needed. Furthermore we
need to capture the phenomenon in a finite sample of events that we believe to
be representative. In computational linguistics such a sample is called a corpus.

We assume that our representation language is discrete, and that events are
described by so-called property functions (or properties).1 In MaxEnt modelling
each property has a parameter associated with it. A method for parameter
estimation should find values for these parameters such that certain (later to be
made precise) constraints are met.

In section 4.1 we present some prerequisites from probability theory. In 4.2
we discuss several entropy measures and explain what they measure, and how
they are related; also, we define the likelihood of one distribution w.r.t. another.
In section 4.3 it is assumed that we have estimated or know the expectations of
functions that model interesting properties of the observed events. We define
two sets of probability distributions. In the first set we require the expectations
of these functions to be equal to the observed expectations. It is shown that,
if the distribution we want should have maximum entropy, it necessarily has
an exponential form with one parameter for each function. The second set
contains distributions that have this exponential form. We will see that the
distribution in this set with maximum likelihood coincides with the maximum
entropy distribution in the first set. In section 4.4 we discuss procedures for
finding the parameters of maximum likelihood models contained in the second
set.

1Like Abney (1997) we will not use the term feature to prevent confusion with the features
used in unification grammar.

53

54 CHAPTER 4. MAXIMUM ENTROPY MODELLING

4.1 Some probability theory

Probability theory is a theory of uncertainty that seeks to provide mathematical
models of situations where the outcome is not deterministic, but depends on
uncertain circumstances. The set of all possible outcomes is called the sample
space; it is denoted by Ω. The sample space may be countable (i.e. finite),
countably infinite, or continuous. In our discussion we assume that the sample
space is countable, and that the Kolmogorov axioms hold:

A1 If A and B are events, then so is the intersection A ∩B, the union A ∪B,
and the difference A−B.

A2 The sample space Ω is an event. We call Ω the certain event. The empty
set ∅ is an event. We call ∅ the impossible event.

A3 To each event E is assigned a nonnegative real number P (E) which we call
the probability of event E.

A4 P (Ω) = 1.

A5 If A and B are disjoint, then P (A ∪B) = P (A) + P (B).

A stochastic variable maps an element from the sample space to an aspect we
are interested in. Formally, a stochastic variable X is a function that maps
elements from Ω to a domain X = X(Ω). For a stochastic variable X with
X(Ω) = {x1, x2, . . . , xn} we denote the probability that X takes value xi by

P ({X = xi}) = p(xi) = pi

where {X = xi} is defined as the inverse function X−1(xi) = {ω ∈ Ω|X(ω) =
xi}. We use ∆X , or shorter ∆ if the sample space is clear from the context, to
denote the set of all distributions over Ω:

∆ = {p : X → R|
∑
x∈Ω

p(x) = 1, ∀x ∈ Ω : p(x) ≥ 0}

If we define stochastic variables X and Y by (X, Y) : Ω → X × Y, and
{X = x, Y = y} as the inverse function that gives us {ω ∈ Ω|X(ω) = x, Y (ω) =
y}, then we can define the joint probability of x and y as p(x, y) = P ({X =
x, Y = y}). The conditional probability of event x to occur given that event y
was observed, denoted by p(x|y), is defined as the probability that both events
occur divided by the probability that y occurs:

p(x|y) =
P ({X = x, Y = y})

P ({Y = y}) =
p(x, y)
p(y)

=
p(x, y)∑

x′∈X p(x′, y)

Bayes’ Rule relates the probability of an event x conditional on an event y, i.e.
p(x|y), with the probability of event y conditional on event x, i.e. p(y|x), as
follows:

p(x|y) =
p(x)p(y|x)

p(y)
(4.1)

4.2. ENTROPY MEASURES 55

Bayes’ Rule is useful if p(x|y) cannot easily be determined (or estimated), and
p(y|x) can.

The expectation of a function f : X → R is defined as

E(f(X)) =
∑
ω∈Ω

f(X(ω))P ({ω})

=
∑
x∈X

∑
ω∈Ω:X(ω)=x

f(X(ω))P ({ω})

=
∑
x∈X

f(x)p(x)

If it is clear from the context what stochastic variable is meant we will write
p[f] instead of E(f(X)).

In the rest of the chapter we assume that we have a sample S of |S| points
xi with i = 1, . . . |S|. The estimation p̃ of p is defined as

p̃(x) =
|{i|xi = x}|
|S|

We will call p̃ the reference distribution.

4.2 Entropy measures

In physics, the word entropy has important physical implications as the amount
of “disorder” of a system. In probability theory it gives the/an “amount of un-
certainty” of a probability distribution. The Shannon entropy (Shannon 1948)
of a probability distribution is defined as

Definition 4.1 (Shannon’s entropy)
Shannon’s entropy of a probability distribution pi = P ({X = xi}) is

H(p) = −
∑

i

pi log pi = −p[log p]

To complete our understanding of information entropy, we give some well-known
properties of entropy.

• H is strictly concave down2 on ∆;

• H is continuous;

• H reaches its maximum, log(n), in the uniform distribution p(x) = 1/n;
H reaches its minimum, 0, if one event has probability 1, and the other 0.

2A function f is concave up if f(αx0+(1−α)x1) ≤ αf(x0)+(1−α)f(x1), for all 0 ≤ α ≤ 1.
A function f is concave down if −f is concave up. A necessary condition for f to be concave
up on an interval (a, b): the second derivative f ′′ has f ′′(x) ≥ 0 on the interval. f is concave
down if f ′′(x) ≤ 0 on the interval. Strict concavity turns ≤ in <, and ≥ in >. We prefer the
terms concave up and concave down to convex and concave, resp.

56 CHAPTER 4. MAXIMUM ENTROPY MODELLING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1p

Figure 4.1: Shannon entropy of distribution (p, 1− p).

In figure 4.1 we have depicted the Shannon entropy of the distribution (p, 1−p)
as a function of p. It can be seen that the distribution (0.5, 0.5) has maximum
entropy.

Suppose we want to find a distribution of the stochastic variable X . Often
we think we know something about the distribution of X from observations.
For instance, we have estimated the expectation of some function g on X from
a random sample, and we require the distribution of X to have the expectation
of g equal to the observed estimations. However, this information is not enough
to find one unique distribution.

The Principle of Maximum Entropy (PME) now says that the distribution
to choose is that which maximises entropy, subject to whatever constraints are
imposed on the distributions. This does not mean that the maximum entropy
distribution is the only distribution that meets the constraints; the principle
advises us to take the distribution that has maximum uncertainty subject to
the constraints imposed.

The cross entropy is defined as the expectation of a distribution q with
respect to another distribution p.

Definition 4.2 (cross-entropy)
The cross-entropy Hc(p, q) of a distribution q w.r.t. another distribution p
defined over the same space X is given by

Hc(p, q) = p[− log q] = −
∑
x∈X

p(x) log q(x)

4.2. ENTROPY MEASURES 57

Given a sample S, the Principle of Maximum Likelihood says that we should
take the distribution that maximises the probability of observing S∏

x∈S

p(x)

If we compute this product in X we arrive at∏
x∈X

p(x)c(x)

where c(x) is the number of times x occurs in S. Instead of maximising this
product of probabilities, we may maximise the sum of log-probabilities∑

x∈X
log(p(x)c(x)) =

∑
x∈X

c(x) log(p(x)) = |S|
∑
x∈X

p̃ log(p(x))

which is propertional to −Hc(p̃, p).
The Kullback-Leibler (KL) divergence, or relative entropy measures the dis-

tance between a reference distribution p and another distribution q.

Definition 4.3 (Kullback-Leibler divergence)
The Kullback-Leibler divergence of a distribution q with respect to a reference
distribution p is defined as

D(p‖q) = p[log
p

q
] =

∑
x∈X

p(x) log
p(x)
q(x)

= p[− log q]− p[− log p]

The KL divergence between p and q at point x is the log of the ratio of p to q.
We state some important properties without proof:

• D(p‖q) = Hc(p, q)−H(p) = −L(p, q)−H(p);

• for all p, q ∈ Ω, D(p‖q) ≥ 0, and D(p‖q) = 0 if and only if p = q;

• D(p‖q) is strictly concave up in p and q separately; this property ensures
that a distribution q̂ exists such that D(p‖q̂) is minimal.

Since the KL divergence does not satisfy the triangle inequality and is not
symmetric, it is not a metric3.

Example 4.4 (Tree-banks and PCFGs)
In table 4.1 we have given an sample space ΩT of syntax trees (tree-bank) with
their observed frequencies and reference distribution p̃. It is common practice

3Remember that for a measure m : X ×X → R to be a metric it should have the following
properties:

• m(x, y) ≥ 0, and m(x, y) = 0 ⇔ x = y, for all x, y ∈ X;

• m(x, y) = m(y, x), for all x, y ∈ X;

• m(x, y) ≤ m(x, z) + m(z, y), for all x, y, z ∈ X

58 CHAPTER 4. MAXIMUM ENTROPY MODELLING

ΩT freq. p̃

S(NP(DET N)) 4 1/3
S(VP(WHNP(WH NP(N)) V) PN) 2 1/6
S(PN VP(V NP(DET N))) 2 1/6
S(NP(NUM N) PUNCT) 3 1/4
S(NP(N)) 1 1/12

Table 4.1: A tree-bank.

P freq. p̃′

S(NP) 5 5/12
S(NP PUNCT) 3 1/4
S(VP PN) 2 1/6
S(PN VP) 2 1/6

NP(DET N) 6 1/2
NP(NUM N) 3 1/4
NP(N) 3 1/4

WHNP(WH NP) 2 1

VP(WHNP V) 2 1/2
VP(V NP) 2 1/2

Table 4.2: The rules applied in the tree-bank.

to estimate the parameters of a PCFG using ML Estimation. ML estimation
finds the rule probabilities that maximise the probability of observing the tree-
bank. If NA is the number of times nonterminal A is rewritten and NA→α is
the number of times A is rewritten into α then NA→α/NA is an ML estimator
for the probability of rule A→ α. In table 4.2 we have given the grammar rules
and the ML estimates of their probabilities. It is important to notice that the
distribution that is induced by the PCFG on ΩT is related to p̃ through the
maximalisation of the likelihood L(p̃, p) under the constraint that probabilities
for rules with the same LHS sum to one; it does not maximise entropy. In table
4.3 we have given the probability distribution induced by the PCFG on the tree-
bank. We see that the probabilities p assigned by the PCFG are not equal to
the observed probabilities. Furthermore they do not sum to one over the tree-
bank. This is the general picture of PCFG-induced probability distributions.
They lose probability mass in trees that can be generated by the grammar, but
are not in the tree-bank. Or, formulated differently, PCFGs suffer from their
pre-occupation of summing the probabilities of their trees to one. However, in
the limit of the size of the tree-bank the probability distribution induced by the
PCFG inferred from that tree-bank will converge to the observed distribution.
The likelihood is L(p̃, p) ≈ −2.58, entropy of p̃ is H(p̃) ≈ 1.52, and D(p̃‖p) =
−L(p̃, p) − H(p̃) ≈ 1.06. In example 4.8 where we approximate a different

4.3. THE MAXIMUM ENTROPY METHOD 59

ΩT p̃ p

S(NP(DET N)) 1/3 5/24
S(VP(WHNP(WH NP(N)) V) PN) 1/6 1/48
S(PN VP(V NP(DET N))) 1/6 1/24
S(NP(NUM N) PUNCT) 1/4 1/16
S(NP(N)) 1/12 5/48

Table 4.3: A PCFG induced from the tree-bank.

type of probabilistic model for the tree-bank, we will see that this value for KL
divergence is very large.

4.3 The maximum entropy method

In this section we explain how the principle of maximum entropy can be applied
to find a probabilistic model under circumstances where information is sparse.
We will see that the exponential form of maximum entropy distributions is an
immediate consequence of the introduction of Lagrange multipliers. Further,
we define two sets of probability distributions, one set containing so-called max-
imum entropy distributions, and the other containing distributions that meet
constraints with respect to our observed data. We will see that maximum likeli-
hood optimisation in the former set results in the same distribution as maximum
entropy optimisation in the latter.

Assume we have a sample S of which only know expectations of property
functions, i.e. functions that characterise our data, fi : X → N, i = 1 . . . k. We
denote these expectations by p̃[fi], p̃ where p̃ is the reference distribution of the
sample. If for some reason we want to compute the expectation of some other
function, or want to compute the probability of a member of X , we need to
know p̃. The idea is to find a distribution p that approximates p̃ (has the same
property expectations) and use this distribution merely as a substitute for p̃.
Furthermore we have the constraint

∑
i pi = 1. We now have k + 1 constraints

and n unknown variables. If n is much larger than k, which is often the case,
there are a lot of distributions that will meet the constraints, but if in addition
the PME is applied, we can decide on a particular distribution. The constraints
and the maximisation of entropy can, like Jaynes (1957) does, be formulated
such that Lagrangian multipliers can be introduced. See for instance (Bertsekas
1982) for an explanation of this technique. The explanation below is based on
(Jaynes 1996) (chapter 11).

Take g to be minus the entropy of distribution p = p1 . . . pn:

g(p) = −H(p) =
n∑

i=1

pi log(pi)

60 CHAPTER 4. MAXIMUM ENTROPY MODELLING

and h the following function

h0(p) =
∑

i

pi − 1

h1(p) =
∑

i

pif1(xi)− p̃[f1]

...

hk(p) =
∑

i

pifk(xi)− p̃[fk]

Then, we want to find the minimum of g subject to constraints

h(p) = 0 (4.2)

For every x ∈ Rn that is a local minimum of g, meets constraint 4.2, and has
linearly independent gradient vectors, there exist a λ ∈ Rk such that

Dg(x) + λT Dh(x) = 0T (4.3)

We write out the jacobian matrices of functions g and h:

Dg(p) =
[

∂g

∂p1
. . .

∂g

∂pn

]
= [log(p1) + 1 . . . log(pn) + 1]

Dh(p) =

∂h0
∂p1

. . . ∂h0
∂pn

...
. . .

...
∂hk

∂p1
. . . ∂hk

∂pn

 =

1 . . . 1
f1(x1) . . . f1(xn)

...
. . .

...
fk(x1) . . . fk(xn)

Applying equality 4.3 and introducing multipliers λ0 − 1, λ2, . . . , λk:

[log(p1) + 1 . . . log(pn) + 1] + [λ0 − 1 λ1 . . . λk]

1 . . . 1
f1(x1) . . . f1(xn)

...
. . .

...
fk(x1) . . . fk(xn)

 = 0T

And from this we can see:

log(pi) = −λ0 −
k∑

j=1

λjfj(xi)⇒ (4.4)

pi = exp[−λ0 −
k∑

j=1

λjfj(xi)] (4.5)

4.3. THE MAXIMUM ENTROPY METHOD 61

ΩT S
(
N
P
)

S
(
N
P

P
U
N
C
T
)

S
(
V
P

P
N
)

S
(
P
N

V
P
)

N
P
(
D
E
T

N
)

N
P
(
N
U
M

N
)

N
P
(
N
)

W
H
N
P
(
W
H

N
P
)

V
P
(
W
H
N
P

V
)

V
P
(
V

N
P
)

S(NP(DET N)) 1 0 0 0 1 0 0 0 0 0
S(VP(WHNP(WH NP(N)) V) PN) 0 0 1 0 0 0 1 1 1 0
S(PN VP(V NP(DET N))) 0 0 0 1 1 0 0 0 0 1
S(NP(NUM N) PUNCT) 0 1 0 0 0 1 0 0 0 0
S(NP(N)) 1 0 0 0 0 0 1 0 0 0

Table 4.4: Sample space of the grammar in example 4.5.

Using that
∑

i pi = 1, we separate eλ0 as follows:

∑
i

pi =
∑

i

exp[−λ0 −
k∑

j=1

λjfj(xi)]⇒

eλ0 =
∑

i

exp[−
k∑

j=1

λjfj(xi)]

λ0 = log
∑

i

exp[−
k∑

j=1

λjfj(xi)]

λ0 = log Z(λ1, . . . , λk)

where

Z(λ1, . . . , λk) =
∑

i

exp[−
k∑

j=1

λjfj(xi)]

Now we can write pi in 4.5 as

pi =
1

Z(λ1, . . . , λk)
exp[−

k∑
j=1

λjfj(xi)]

Example 4.5 (Maximum entropy model of a tree-bank)
We return to our running example. As opposed to probabilities that depend on
some generation mechanism, the exponential model we described earlier allows
us to choose properties and estimate parameters independent of a generation
mechanism. To illustrate the flexibility we have in choosing properties, we
introduce a property for each context-free rule present in ΩT . For instance, the
property fS(NP) : ΩT → N assigns to each tree the number of times rule S(NP)

62 CHAPTER 4. MAXIMUM ENTROPY MODELLING

is applied to create it. In table 4.4 the properties for each of the event trees are
given. Whereas finding rule probabilities for the classical case is rather simple,
finding the parameters of the exponential model is less trivial.

The principle of maximum entropy states that the distribution we should
use is that which satisfies the constraints in (4.2) and maximises entropy: if we
define P (f) as all those distributions that satisfy the expectation constraints
for properties f = (f1, . . . , fk)

P (f) = {p|p[fj] = p̃[fj], j = {1, . . . , k}} (4.6)

then p∗ is the distribution that the maximum entropy principle advises us to
take

p∗ = arg max
p∈P (f)

H(p)

Now we extend the idea of using properties for defining probability distribu-
tions. With each property fj a parameter λj is associated. We define maximum
entropy probability functions as follows:

p(x) =
1
Z

p̂(x)

where

p̂(x) = exp[
k∑

j=1

λjfj(x)], 0 < λj <∞ (4.7)

Z =
∑
x∈X

p̂(x) (4.8)

We define the set Q(f) of all probability distributions based on k properties and
parameters:

Q(f) = {p|p(x) = Z−1 exp[
k∑

j=1

λjfj(x)], 0 < λj <∞} (4.9)

where f = (f1, . . . , fk) and Z as before.
However, the distribution q ∈ Q(f) with maximum log-likelihood with re-

spect to the reference distribution p̃ is the same distribution as the distribution
p ∈ P (f) that has maximum entropy. This is a result from research on maximum
entropy optimisation.

Theorem 4.6 (duality)
If p∗ ∈ P (f) ∩Q(f), then

p∗ = arg max
p∈P (f)

H(p) = arg max
q∈Q(f)

L(p̃, q)

and p∗ is unique.

4.4. PARAMETER ESTIMATION 63

For a proof we refer to (Darroch and Ratcliff 1972; Della Pietra et al. 1997;
Ratnaparkhi 1997b). This duality states that the optimal distribution p∗ with
respect to maximum likelihood framework fits the data as closely as possible,
whereas p∗ does not assume any information beyond the property expectation
constraints (equation 4.2). Another reason why this duality is interesting to
us is that we can try to find an optimal distribution in either P (f) or Q(f).
Because in Q(f) probability distributions are parameterised according the a set
of properties, optimisation in Q(f) is more feasible for implementation.

4.4 Parameter estimation

Scaling algorithms are iterative procedures that estimate the parameters of ex-
ponential distributions as defined in the previous section. We take a look at
the Generalized Iterative Scaling (GIS) algorithm (Darroch and Ratcliff 1972),
and the Improved Iterative Scaling (IIS) algorithm (Della Pietra et al. 1997),
of which the latter puts less constraints on the sample space.

4.4.1 Generalized Iterative Scaling

The GIS algorithm is an iterative procedure that estimates the weights λ of the
properties f of the unique optimal distribution p∗ ∈ P ∩ Q. It was developed
by Darroch and Ratcliff (1972).

The GIS procedure requires that for each event x ∈ X the number of prop-
erties that are active for x equals some constant value C ∈ N. Ratnaparkhi
(1997b) proposes to introduce a correction property to achieve this.

∀x ∈ X : f#(x) = C (4.10)

where f#(x) =
∑k

j=1 fj(x). If this is not the case a correction property fk+1

has to be added such that

∀x ∈ X : fk+1(x) = M −
k∑

j=1

fj(x)

where M is defined as

M = max
x∈X

f#(x)

Note that when the correction property is added, the sum of the total number
of properties that are active for each event satisfies (4.10). Property fk+1 may
be non-binary. Another requirement for the GIS procedure to work is that each
event x ∈ X has at least one property active:

∀x ∈ X : f#(x) > 0

64 CHAPTER 4. MAXIMUM ENTROPY MODELLING

Initially the parameters λ are set to 1, the iterative step is given by

λ(n+1) = λ(n) +
1
C

log
(

p̃[f]
p(n)[f]

)
(4.11)

where p(n) is given by

p(n)(x) =
1
Z

p̂(n)(x)

p̂(n)(x) = exp[
k+1∑
j=1

λ
(n)
j fj(x)]

Z =
∑
x∈X

p̂(n)(x)

In practice, the iteration can be stopped if the gain in likelihood becomes smaller
than some ε ∈ R.

Computation

In each iteration of the GIS procedure we need p̃[fj] and p(n)[fj]. The computa-
tion of the former is straightforward and has to performed only once. Suppose
we have a sample S = {x1, x2, . . . , xN}, then we can compute:

p̃[fj] =
N∑

i=1

p̃(xi)fj(xi) =
1
N

N∑
i=1

fj(xi)

The computation of p(n)[fj] involves the complete X :

p(n)[fj] =
∑
x∈X

p(n)(x)fj(x)

Given k properties, in the worst case X has 2k distinct elements. For large sets
of properties the computation of p(n)[fj] may become in-tractable. Therefore,
we show an approximation given in (Lau et al. 1993). It assumes that the
sample space is a subset of the cartesian product of two sets, a set of contexts
X and a set of classes Y: X ⊆ X × Y.

p(n)[fj] =
∑

(x,y)∈X×Y
p(n)(x, y)fj(x, y) (4.12)

=
∑
y∈Y

p(y)
∑
x∈X

p(n)(y|x)fj(x, y) (4.13)

≈
∑
y∈Y

p̃(y)
∑
x∈X

p(n)(y|x)fj(x, y) (4.14)

Note that in rewriting (4.12) into (4.13) Bayes’ rule was used (see section 4.1).

4.4. PARAMETER ESTIMATION 65

4.4.2 Improved Iterative Scaling

The Improved Iterative Scaling algorithm was introduced in (Della Pietra et al.
1997). It improves the GIS procedure in that it does not require every event to
have the same number of properties; the correction property is now obsolete.

We denote the set of maximum likelihood distributions as usual by P (f) (see
(4.6)), and the set of exponential distributions by Q(f).

The IIS procedure is based on an iterative re-estimation of the parameters
λ by γ such that the likelihood is increased: L(λ.γ) − L(λ) > 0. Because
L(λ.γ)− L(λ) > 0 is not a concave function, an auxiliary function A(γ, λ) that
is a lower bound on this function, is concave, and hence can be maximised.

A(γ, λ) = 1 + γp̃[f]−
∑
ω

p(ω)
∑

i

fi(ω)
f#(ω)

exp[γif#(ω)]

Initially the parameters λ are initialised randomly, the iterative step is given
by

λ(n+1) = λ(n) + γ

where γ is the solution of

∂A(γ, λ)
∂γ

= p(n)[f exp[γf#]]− p̃[f] = 0 (4.15)

In fact, we still have a correction property f# that compensates for the
possibility of different number of properties that are active.

The following theorem states the convergence of the IIS procedure. For a
proof we refer the reader to (Della Pietra et al. 1997).

Theorem 4.7 (Della Pietra et al.)
Suppose p(n) is the sequence of distributions in ∆ determined by the IIS algo-
rithm. Then D(p̃‖p(n)) decreases monotonically to D(p̃‖p∗) and p(n) converges
to

p∗ = arg min
q∈Q(f)

D(p̃‖q) = arg min
q∈P (f)

D(p‖p(0))

Computation

Equation (4.15) can be transformed into the following polynomial equation.

M∑
m=0

a
(n)
j,m exp[λ(n)

j m] = 0 (4.16)

where M is defined as the maximum number of properties an arbitrary event
x ∈ X may have (see also equation (4.4.1)). The a

(n)
j,m are defined as

a
(n)
j,m =

{
p(n)[fjδ(m, f#)] m > 0
−p̃[fj] m = 0

(4.17)

66 CHAPTER 4. MAXIMUM ENTROPY MODELLING

where the Kronecker δ is defined as usual and where

p(n)[fjδ(m, f#)] =
∑
x∈X

p(n)(x)fj(x)δ(m, f#(x))

If we look a bit closer at (4.17), then we see that a
(n)
m,j is the expected number

of times that property fj appears in an event for which a total number of m
properties are active. We show that (4.16) is equivalent with (4.15):

M∑
m=0

a
(n)
j,m exp[λ(n)

j m] = 0

M∑
m=1

p(n)[fjδ(m, f#)] exp[λ(n)
j m] = p̃[fj]

M∑
m=1

∑
f#(x)=m

p(n)(x)fj(x) exp[λ(n)
j m] = p̃[fj]

∑
x∈X

∑
m∈{1..M}:m=f#(x)

p(n)(x)fj(x) exp[λ(n)
j m] = p̃[fj]

∑
x∈X

p(n)(x)fj(x) exp[λ(n)f#(x)
j] = p̃[fj]

p(n)
[
fj exp[λ(n)

j f#]
]

= p̃[fj]

Equation (4.16) has no solution if and only if a
(n)
m,j = 0 for m > 0. This the case

there is no event that has property fj. Newton’s method can be used to solve
equation 4.16 iteratively.4

Example 4.8
We return to the tree-bank we presented earlier. Applying the IIS algorithm to
the sample space defined by the reference distribution and the properties defined
in example 4.5, we find the parameters displayed in table 4.5. By theorem 4.7
we know that the distribution we have found minimises KL divergence w.r.t.
to the tree-bank (this particular distribution has KL divergence in the order of
1e− 16.), and therefore that it maximises the likelihood of observing the tree-
bank and that it is a maximum entropy distribution. Further, the parameters
give us an indication of how important they are for inducing a distribution close
to the observed one. There is no relation whatsoever to the rule probabilities of
the PCFG we inferred in example 4.4. Although both the parameters given in

4Newton’s method is an iterative procedure for approximating the roots of any function f
that is differentiable in its domain. The procedure is as follows:

1. x(0) = x0; goto step 2;

2. x(n+1) = x(n) − f(x(n))

f ′(x(n))
; increase n by 1 and goto step 2;

x0 should be chosen such that f ′(x0) 6= 0.

4.4. PARAMETER ESTIMATION 67

property parameter
S(NP) 1.75212242386314
NP(DET N) 1.6085311929592
NP(NUM N) 1.53648579804034
S(NP PUNCT) 1.53648579804034
VP(WHNP V) 0.815089768059743
WHNP(WH NP) 0.815089768059743
S(VP PN) 0.815089768059743
VP(V NP) 0.529487658184614
S(PN VP) 0.529487658184614
NP(N) 0.222237152300274

Table 4.5: Parameters of the MaxEnt CFG.

the above table and the rule probabilities of the PCFG are maximum likelihood
estimates, they are inferred under different constraints and therefore incompara-
ble. The parameters of the maximum entropy model meet the extra constraint
that they induce a maximum entropy distribution. This is captured by the KL
divergence very elegantly: in minimising the KL divergence a maximum likeli-
hood distribution is induced that has maximum entropy. The rule probabilities
meet the constraint that probabilities for rules that rewrite the same nonter-
minal sum to one; a grammar that meets this constraint is sometimes called
proper. So ML estimation for PCFGs and ML estimation for maximum entropy
model maximise likelihood in different domains of probability distributions.

An interesting consequence of this fact is that the probability distribution
induced by a PCFG, in general, has a smaller likelihood than a maximum en-
tropy model. The PCFG ‘loses’ probability mass in trees that are not in the
tree-bank; alternatively, we can say that the PCFG tries to sum the probabili-
ties of any tree it can derive to one, whereas a maximum entropy model tries to
induce a distribution that sums the probabilities of the observed trees to one.

At this point we have to say something about generalisation of the two ap-
proaches. Whereas PCFG is a valid probability distribution over its language,
we cannot say the same thing of our maximum entropy model. Insofar the
tree-bank was representative and large enough for the language of the gram-
mar we induce, we have nothing to worry about. However, if the tree-bank is
small when compared to the language of the grammar (think of recursion), we
have to re-estimate the parameters of our model. According to Abney such a
re-estimation can be done by sampling from the grammar using the PCFG prob-
abilities. The sample of the grammar is then considered as a new sample space,
and re-estimation can be done by starting a scaling algorithm with parameters
initialised at the already found values.

68 CHAPTER 4. MAXIMUM ENTROPY MODELLING

4.5 Monte Carlo Sampling

For the computation of expectations p(n)[fj] for the GIS procedure (see equation
4.11), or the am,j for the IIS algorithm (equation 4.15), the complete sample
space Ω should be taken into account. For large k that is computationally not
feasible. Instead, we have two alternatives. We can assume that the original
sample (from p̃) is large enough to compute the am,j from. In general, this is
a dangerous assumption, because it may result in overlearning, i.e. the model
will not generalise very well to ‘unseen’ events. The probability distribution
that results from scaling will fit the original sample very well in terms of KL
divergence, but property expectations may be all wrong for other samples.

The other solution for computing am,j for large sample spaces, is using Monte
Carlo sampling to find a representative subset of the sample space. Monte Carlo
algorithms enable the simulation of processes that involve random factors such
that properties of these processes (like function expectations) can be estimated,
or states of the process can be collected. See (Sobol’ 1994) for an introduction
to the Monte Carlo method.

We consider one particular Monte Carlo algorithm, the Metropolis algorithm,
because of its suitability for high-dimensional event spaces. Our presentation is
based on (Neal 1993). To explain the Metropolis algorithm, we assume that all
properties f1, . . . , fk are binary and we consider the sample space as a set of
bit vectors: X = {0, 1}k. The algorithm ‘walks’ through X state by state, and
subsequent states differ one bit at most. The acceptation or rejection of a state
for the sample that is being produced, depends on the distribution p defined on
X .

Algorithm 4.9 (Metropolis)
The input is a density h on X and an integer N . The output is a sample
x0, . . . , xN .

1. select a start state x0; set k = 0 and n = 0;

2. x is xn with bit i flipped;

3. compute R = h(x)/h(xn);

4. sample y from the uniform distribution on [0, 1], and set the new state
xn+1 as follows

xn+1 =
{

x, if y < R
xn, otherwise

now increase n, increase i module k, and if n < N goto step 2.

It can be shown that for N → ∞ the sequence x0, x1, . . . , xN . If the value of
bit i is sampled from a proposal distribution q.

4.6. PREDICTIVE MAXIMUM ENTROPY MODELS 69

4.6 Predictive maximum entropy models

In this section we will slightly reformulate maximum entropy models such that
they are suitable for predictive application. Like in section 4.4.1 we assume that
we have (X, Y) : Ω → X × Y. The probability distribution that we want to
induce, has the form

p(y|x) =
1

Z(x)
exp[

k∑
i=1

λifi(x, y)]

where

Z(x) =
∑
y∈Y

exp[
k∑

i=1

λifi(x, y)]

The parameters of such a conditional model can be approximated using one of
the scaling algorithms. Alternatively we could apply Berger’s version of the IIS
algorithm that is adapted for approximating conditional models (Berger 1997);
it differs from the version we gave previously in that γi is the solution of

∑
x∈X

p̃(x)
∑
y∈Y

p(n)(y|x)fi(x, y) exp[γif#(x, y)] = p̃[fj]

Although a bit pre-occupied with machine translation, (Berger et al. 1996) is a
good introduction to the use of such conditional maximum entropy models for
classification problems in natural language processing.

4.7 Summary

Constrained optimisation of entropy measures seems a promising paradigm in
statistical NLP. We think there are a number of reasons for their growing pop-
ularity among computational linguists. The general applicability of maximum
entropy modelling is the most important one: entropy models can be applied
to events of any structure; the properties take care of the “internal” structure
of the events. Another reason is that properties may overlap; the scaling algo-
rithms do not make any assumptions about the dependence or independence of
properties.

In this chapter we defined exponential property-based probability distribu-
tions and explained how constrained maximum entropy optimisation coincides
with maximum likelihood estimation. We discussed two iterative scaling algo-
rithms to determine the optimal parameters of a set of properties. We summarise
the most important points here:

properties The sample space and therefore the observed data S is charac-
terised by so-called property functions f1, . . . , fk where fi : X → N; the
observed expectation of property fi is denoted by p̃[fi].

70 CHAPTER 4. MAXIMUM ENTROPY MODELLING

constraints We want a probability distribution p such that p[fi] = p̃[fi], i =
1 . . . k.

principle If there are multiple distributions that meet the expectation con-
straints, then we select the one with maximum entropy.

Lagrange It can be shown by the introduction of Lagrangian multipliers that
the distribution p that meets the expectation constraints and has maxi-
mum entropy is of the form:

p(x) =
1
Z

exp[
k∑

i=1

λifi(x)]

classification Often the sample space is defined as a cartesian product of con-
texts X and classes Y; conditional maximum entropy distributions have
the form

p(y|x) =
1

Z(y)
exp[

k∑
i=1

λifi(x, y)]

where

Z(y) =
∑
x∈B

exp[
k∑

i=1

λifi(x, y)]

Part II

Application

71

Chapter 5
The Grammar Inference Engine

We believe that a corpus-based approach is the best guarantee for obtaining a
language model that covers most of the syntactic constructions that are used in
a particular domain. Therefore we decided to annotate the SCHISMA Wizard
of Oz corpus and automatically generate grammars from the annotated corpus.
In this chapter we explain the annotation scheme that we developed for the
SCHISMA Treebank, and we present an engine for the inference of grammars
from the tree-bank.

In the next section we give an introduction to the Standard Generalized
Markup Language (SGML), which is the language we used for the definition
of the annotation scheme. Section 5.2 presents the annotation scheme itself.
In section 5.3 we compare our annotation scheme to some other well-known
schemes. In section 5.4 we discuss the generation of context-free grammars from
the tree-bank, and in 5.5 we explain the generation of unification constraints.
In section 5.6 we give some facts and figures of the tree-bank.

5.1 A short introduction to SGML

We used the Standard Generalized Markup Language (SGML) for the anno-
tation of the SCHISMA corpus. SGML is a metalanguage for the definition
of grammars that describe markup languages. Hypertext Markup Language
(HTML), the language for creating documents for the World Wide Web, is an
example of a markup language that is defined by an SGML grammar. We refer
to (Goldfarb 1990) for the definition of the SGML standard. (Wood 1995) is an
investigation into some theoretical and philosophical aspects of SGML.

An SGML document is simply a piece of text with SGML tags in it. An
SGML tag is either an opening tag or a closing tag. Opening tags are of the
form

<tagname>

or, if it carries attributes, of the form

<tagname attr1=value1 attr2=value2 ...>

Closing tags are of the form

73

74 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

</tagname>

Closing tags cannot carry attributes. An opening tag and a closing tag with
the same name may enclose a piece of text data. Suppose we have the following
piece of text

SGML is a metalanguage

and we want to annotate that metalanguage is a noun, and that a is a deter-
miner then, we can introduce a tags named noun and det as follows:

SGML is <det>a</det> <noun>metalanguage</noun>

Introducing the np for noun phrases we arrive at:

SGML is <np><det>a</det> <noun>metalanguage</noun></np>

We make a distinction between tags that annotate text data directly, like det
and noun, and tags that should entail further tags, like np. We will call the
former tags PoS tags, and the latter nonterminal tags.

If we want to annotate that SGML is a proper name, and that is is a finite
verb, then we can introduce the tags name and verb, and associate an attribute
with verb to say that it is finite:

<name>SGML</name>
<verb form=fin>is</verb>
<np><det>a</det> <noun>metalanguage</noun></np>

Several types of attributes exist in SGML. For our purposes we distinguish three
types of attributes:

• identifier attributes : an identifier attribute is an attribute that has a value
(a number or a string) that is unique throughout the document. It can be
referred to with a referring attribute. We will name identifier attributes
id.

• referring attributes: a referring attribute refers to an identifier attribute.

• ordinary attributes: the value is a string or a number. In the example
above the attribute form is an ordinary attribute.

Returning to our example, we introduce a tag for verb phrases vp, and we say
that the proper name SGML is a noun phrase:

<np><name>SGML</name></np>
<vp>
<verb form=fin>is</verb>
<np><det>a</det> <noun>metalanguage</noun></np>

</vp>

5.1. A SHORT INTRODUCTION TO SGML 75

If we want to annotate that SGML is the subject of the verb phrase, then we
can give the noun phrase SGML an identifier attribute id, and the verb phrase a
referrring attribute subj, and make the verb phrase refer to the noun phrase as
follows:

<sent>
<np id="some_id"><name>SGML</name></np>
<vp subj="some_id">

<verb form=fin>is</verb>
<np><det>a</det> <noun>metalanguage</noun></np>

</vp>
</sent>

Note that we added sent tags. We have used the same example sentence as in
example 2.1, and we annotated the same syntactic structure as the sentence has
w.r.t. the example grammar.

Each SGML marked up document should contain or refer to a Document
Type Definition (DTD). A DTD specifies (among other things) the markup tags
that may be used in the document, the attributes they may have, the types of
the attributes, and the context-free nestings they are allowed to have. So, a
DTD describes the language of allowed annotations. A DTD for the running
example can be defined as follows:

<!ELEMENT sent - - (np,vp)>
<!ELEMENT np - - (name|(det,noun))>
<!ATTLIST np

id ID #IMPLIED>
<!ELEMENT vp - - (verb,np)>
<!ATTLIST vp

subj IDREF #IMPLIED>
<!ELEMENT name - - (#PCDATA)>
<!ELEMENT det - - (#PCDATA)>
<!ELEMENT noun - - (#PCDATA)>
<!ELEMENT verb - - (#PCDATA)>
<!ATTLIST verb

form (fin
|inf
|par) fin>

The statements that start with ELEMENT define tags, those starting with ATTLIST
define the attributes of a tag. The definition of the np tag says that it should
entail either a name tag or a det tag followed by a noun tag. The dashes -
- mean that both the closing and opening tags are required. The attribute
specified for np is id; it is defined as an identifier attribute (ID). #IMPLIED
means that not every np tag is required to have an id attribute.

76 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

tag description
name proper names
noun nouns
verb verbs
adj adjectives
adv adverbia
pn pronoun (except interrogative)
wh interrogative pronouns (WH words)
prep prepositions
det determiners
number numbers
ordinal ordinals
yn yes/no words
conj connectives
sep separated words (mostly prepositions,

discontinuity)
iject interjections
punct punctuation
misc rest group

Table 5.1: Overview of PoS tags.

5.2 Annotation scheme

We applied a rather flat syntactic structure. The sentences contained in the
corpus generally are of such a simple syntactic structure, that a more detailed
syntactic annotation cannot be justified by the data we have. Only syntactic
properties and relations were annotated. First we will give an overview of the
tagset, then in section 5.2.2 we will explain what relational information we
included in the attributes of the tags. Section 5.2.3 discusses the rest of the
attributes. In appendix A the DTD of the annotation scheme can be found.

5.2.1 Tagset

Now we will discuss the syntactic structure we assigned to the utterances in the
corpus by explaining what SGML tags we applied and what they mean. We
divide the tags we used in our annotation in nonterminal and Part-of-Speech
PoS tags. PoS tags do not entail any other tags, in grammatical terms they
denote lexical categories. Nonterminal tags never contain data directly, they
should entail nested tags only. Nonterminal tags correspond to nonterminals in
a formal grammar.

Tables 5.1 and 5.2 give an overview of the tagset with a short description of

5.2. ANNOTATION SCHEME 77

tag description
utt utterances (existing of connectives,

punctuation, and sentences)
sent sentences
emb sub-ordinate or co-ordinate clauses
whnp WH word followed by a noun

phrase
np noun phrases
pp prepositional phrases
cn compound noun

Table 5.2: Overview of nonterminal tags.

each tag. Most tags have self-explanatory names.

5.2.2 Syntactic relations

Syntactic relations are modelled using identifier and referring attributes. Most
of the syntactic relations we distinguished are associated with verbs. Some rela-
tions apply to finite verbs only, others put other restrictions on them. A special
relation is the one for representing discontinuity. Below we have explained each
of the syntactic attributes accompanied by an example. For each example we
provide a literal translation, and if necessary a free translation.

Main verb

Finite auxiliary verbs may have the attribute main that refers to the main
verb (if present). In the following example wil is the finite auxiliary verb, and
reserveren is the main verb. The value of the attribute main of the verb wil
refers to the value of the attribute id of the verb reserveren.

<adv>Dan</adv>
<verb main="mu161s1">wil</verb>
<pn>ik</pn>
<adv>graag</adv>
<np><number>twee</number><noun>kaartjes</noun></np>
<verb id="mu161s1">reserveren</verb>

Below is a literal translation and a free translation:

Dan wil ik graag twee kaartjes reserveren
Then would I like two tickets to book
Then I’d like to book two tickets

78 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

Subject

A finite verb may have a reference to its subject through the attribute subj. In
the following example the attribute subj of the verb heeft refers to the noun
phrase het stuk.

<verb subj="su501s1">heeft</verb>
<np id="su501s1"><det>het</det><noun>stuk</noun></np>
<np><adj>goede</adj><noun>recenties</noun></np>
<punct>?</punct>

Translation:

heeft het stuk goede recenties?
has the play good reviews?
does the play have good reviews?

Copulae

Copulae may have a complement. In the following example the complement of
the verb is is the adjective beperkt.

<np><det>de</det><noun>reductie</noun></np>
<verb nwg="nu2200s1">is</verb>
<adj id="nu2200s1>beperkt</adj>

Translation:

de reductie is beperkt
The reduction is limited

Direct object

Through the attribute dirobj a verb may refer to a direct object. In the example
below the transitive verb ophalen refers to the noun phrase de kaartjes:

<wh>Wanneer</wh>
<verb>kan</verb>
<pn>ik</pn>
<np id="du881s1"><det>de</det><noun>kaartjes</noun></np>
<verb dirobj="du881s1">ophalen</verb>
<punct>?</punct>

Translation:

Wanneer kan ik de kaartjes ophalen?
When can I the tickets pick up?
When can I pick up the tickets?

5.2. ANNOTATION SCHEME 79

Indirect object

In the following example my is the indirect object of the verb schikt.

<pn>Dat</pn>
<verb indobj="iu1724s1">schikt</verb>
<pn id="iu1724s1">mij</pn> <adv>wel</adv>

Translation:

Dat schikt mij wel
That suits me fine

Discontinuity

Verbs, adverbs, and WH words may be discontinuous. The words separated
from them are annotated with the PoS tag sep, and have an attribute prev
that refers to the main part of the word. In case of discontinuous verbs the
main part is the part that can function as a verb in itself. In case of WH words
and adverbs the main part is the first part of the complete word. In the following
example the word over is separated from waar, and its attribute prev refers to
the main part waar.

<wh id="wu1952s1">waar</wh>
<verb>gaan</verb>
<np><pn>deze</pn><noun>opera’s</noun></np>
<sep prev="wu1952s1">over</sep>

Translation:

Waar gaan deze opera’s over
What are these operas about

5.2.3 Other attributes

Now we discuss the most important non-relational attributes. One of the most
prominent is the type attribute for sentences and clauses. For pronouns, verbs
and nouns, some attributes will be discussed as well.

Sentence types

The type attribute of sentences and clauses sets the type of sentence or clause
we have. First we take a look at the values for type that imply the presence of
a verb:

• decl: the sentence is a statement.

• declinv: the sentence is a statement with inverted subject and finite verb.
In the example below wil is the finite verb and ik the pronoun.

80 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

<sent type=declinv>
Dan wil ik graag twee kaartjes
voor dat stuk met Hajo reserveren.

</sent>

Translation:

Dan wil ik graag twee kaartjes voor dat stuk met Hajo reserveren.
Then I’d like two tickets for that play with Hajo to book.

• yndecl: the sentence is a statement meant as a question. Example:

<sent type=yndecl>
Dat is dus met korting ?

</sent>

Translation:

Dat is dus met korting ?
That is so with reduction ?
So that includes reduction ?

• ynq: the sentence puts a yes/no question. The finite verb appears before
the subject. Example:

<sent type=ynq>
Is dat met korting ?

</sent>

Translation:

Is dat met korting ?
Is that with reduction ?
Does that include reduction ?

• whq: the sentence is a question starting with a WH word.

• imp: imperative sentence.

• rel: the sentence is a subordinate clause starting with a pronoun.

Further possible values for for the type attribute correspond to each of the PoS
and nonterminal tags. For instance, a sentence type of np is used for a sentence
that consists of a noun phrase only.

5.2. ANNOTATION SCHEME 81

Pronoun types

Pronouns have a type attribute as well. It states what kind of pronoun it is. It
may have the following values:

• wd: reflexive pronoun; example: zich (himself/herself);

• demo: demonstrative pronoun; example: dat, deze;

• ob: indefinite pronoun; example: enige (some), alle (all);

• wg: reciprocal pronoun; example: elkaar (each other);

• rel: relative pronoun; example: die, dat (that);

• pers: personal pronoun; possessive pronouns were given the pers type as
well; they have for their case attribute C2;

Obviously we miss out the interrogative pronouns (WH words). We gave them
their own PoS tag wh, because they play such an important role in syntactic
structure of questions. For personal pronouns the case attribute is important:
it may have value C1 to C4 indicating nominative, genitive, dative and accusative
cases, respectively.

Verb attributes

In addition to the several syntactic relations the verb takes part in, we annotated
several other syntactic features of which the most important are:

• pass: values pn, py; states whether the verb is in the passive form; if not
specified it defaults to pn

• per: values p1, p2, p3, pernil; the person of the verb (finite verbs only);
the default is pernil;

• num: values u, p, s, numnil; the number of the verb (finite verbs only);
the default is numnil; u is used for the polite form (as in u wilt);

• type: values aux, main; whether the verb is used as a main verb or as an
auxiliary verb; defaults to main;

• form: values fin, inf, part, imp; the form of the verb: finite, infinitive,
participle, or imperative, resp.; defaults to fin;

Noun attributes

A noun has two possible attributes. The num attribute for the representation of
the number. Its possible values are s and p. If it is not specified num defaults
to s.

The other attributes is gen for gender. The possible values are m, f, mf (male
or female, don’t care) and n. If not specified the attribute defaults to mf.

82 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

Tagset PoS NT #Words
Susanne 352 31 128k
PTB I 36(48) 15 1,600k
PTB II 36(48) 26 1,000k
C1 119(132)
C2 154(166) 16
C5(BNC) 62(73) 100,000k
C7(BNC) 160+ 2,000k
WoZ 16(17) 8 4747

Table 5.3: Comparison of tagsets.

5.3 Annotation scheme comparison

Compared to other annotation schemes we applied a fairly small set of tags.
For instance the Susanne corpus was tagged with 352 different PoS tags, and
31 nonterminal tags (Sampson 1994). In the second version of the Penn Tree-
bank (PTB II) 36 PoS tags are applied (Santorini 1995), and 26 nonterminal tags
(Bies, Ferguson, Katz, and MacIntyre 1995). Penn Treebank I (PTB I) has only
15 nonterminal tags (Santorini 1991). The C1 to C7 figure are CLAWS (Con-
stituent Likelihood Automatic Word-tagging System) tagsets (CLAWS 1998).
C5 was applied for the British National Corpus (BNC 1997), C7 for a core cor-
pus of the BNC. The numbers in between braces include tags for punctuation.
See table 5.3 for an overview.

Our tagset may seem small, but has a lot of descriptive power if attributes
are taken into account and applied in grammar generation. The large number
of PoS tags used in the Susanne corpus is a consequence of coding all much
information into tags. Interestingly, besides the BNC, none of the other corpora
is annotated using SGML.

Although our annotation scheme is purely syntactic, it has some domain
dependent aspects. The tagging of proper names is an example. Proper names
are of central importance in the SCHISMA domain, as dialogues should provide
the user with information on performances, and the artists involved in them.
Another domain dependence is in the superficial syntactic structure we chose
to annotate. As we stated at the beginning of this section the structure of the
language used in the WoZ corpus is rather simple. Sentences are very short, 190
out of a total of 873 sentences have length 1, and the average length is 5.4 words
(including punctuation). We put most of the hierarchical structure into noun
phrases and prepositional phrases, clearly the most important constituents in
an information domain like SCHISMA.

5.4. GRAMMAR INFERENCE 83

annotated
data

DTD
SGML

compiler

translation
specification

inference
engine

lexicon
grammar

Element Structure
Information Set

Figure 5.1: Grammar inference schema

5.4 Grammar inference

By tagging the SCHISMA corpus we assigned a syntactic structure to the sen-
tences contained in it. It is quite straightforward to derive a context-free gram-
mar from the annotated corpus. Moreover, as we included several kinds of
syntactic relations like subject-verb, direct object, and indirect object, we can
attach unification constraints to these rules as well. We developed a grammar
inference engine that understands the output of the SGML compiler, takes a
translation specification as input, and outputs a unification grammar according
to the specification. The specification consists of a translation of SGML tags
into grammar symbols, and a set of meta-constraints. For the generation of
useful unification constraints we applied an interesting technique based on tag
pattern matching. See figure 5.1 for an outline of the procedure.

The grammar inference engine we developed is independent of our annota-
tion scheme. If we decide to change the annotation, or to process a corpus that
is annotated completely different, we only have to change the translation speci-
fication that determine how tags are translated into grammar symbols, and how
and when unification constraints are generated.

In order to generate a context-free grammar from the annotated data, we
parse it with an SGML compiler. The compiler outputs the SGML annotated

84 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

PoS category
name PNAME
noun N
verb V
adj ADJ
adv ADV
pn PN
wh WH
prep PREP
det DET
number NUM
ordinal ORD
yn YN
conj CONJ
sep SEP
iject IJECT
punct PUNCT
misc UNKNOWN

Table 5.4: Translation of PoS tags to lexical categories (terminals).

data as an Element Structure Information Set which is a standardised ASCII
representation consisting of commands with their parameters. The grammar
inference engine interprets these commands. The most important commands
with their parameters are as follows:

• open tag; its parameters are the name of the tag that was opened and the
attributes with their values;

• data; the only parameter is the data found in between some tags;

• close tag; has as parameter the name of the tag that is closed.

In order to keep track of the structure the open tags induce, the generator
applies a stack of grammar rules. If an open tag X occurs and the stack is not
empty, it is attached to the RHS of the rule on top of the stack. Then, if the
tag is not a PoS tag, a new rule with X as LHS is pushed on the stack. For each
(partial) rule on the stack additional administration is kept for the (attribute,
value) pairs that were specified with the open tags. This information is used for
generating unification constraints, as we will see in the next section. If a close
tag occurs, and the stack is not empty, we know we have completed a rule. The
rule is popped off the stack, and its unification constraints are generated using
the (attribute, value) pairs we administered. Note that syntactic relations only

5.5. UNIFICATION CONSTRAINTS 85

tag nonterminal
utt Z
sent S
emb EMB
whnp WHNP
np NP
pp PP
cn CN

Table 5.5: Translation of nonterminal tags to nonterminals.

make sense if they are specified within the same ‘tag level’, or, in grammatical
terms, within the same RHS. In generating the grammar rule with its constraints
the SGML tags are translated into terminal and nonterminal symbols as given
in the tables 5.4 and 5.5.

5.5 Unification constraints

As we saw in the previous section, we annotated several syntactic relations.
Syntactic relations can be used to generate unification constraints. In order to
flexibly specify the generation of unification constraints from these syntactic re-
lations, i.e. from tags and their attributes, we applied meta-constraints that pair
SGML tag patterns with unification constraints. In fact the meta-constraints in
such a specification are if-then rules that specify what a constraint should look
like if its tag pattern is matched. The meta-constraints may contain variables for
the left-hand side nonterminal, nonterminals matched by the meta-constraint,
and nonterminals referred to by referential attributes. Meta-constraints come
in five flavours:

1. lexical constraints specify what features to attach to lexical categories;

2. RHS nonterminal constraints state constraints for (tag, attribute, value)
triples;

3. identifier constraints specify the identifier attributes for the SGML tags
that may have one; no constraints can be specified;

4. referring attribute constraints tell the system what attributes are reference
attributes and what constraints should be generated for them; and

5. general constraints give constraints for patterns of two RHS nonterminal
in sequence and a LHS nonterminal.

86 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

In the subsections that follow we will discuss these five kinds of meta-constraints
in detail. Appendix B contains the full meta-constraint specification as applied
in our experiments.

5.5.1 Lexical constraints

A lexical constraints consists of three parts: an SGML tag, an attribute, and
a (possibly empty) list of constraints. In these constraints the value of the
attribute is available in the variable $val. Every time the system finds a lexical
entry that matches one of the lexical meta-constraints, it will generate and
output a constraint by outputting the string in the third column.

TAG ATTR ...$val...

Given the lexical constraint

NOUN NUM num$val

and annotated data (tickets)

<noun num=p>kaartjes</noun>

we obtain lexical entry (in the record format for PC-PATR lexicons; see (Mc-
Connel 1995))

\w kaartjes
\c N
\g
\f nump

This lexical meta-constraint tells the system to add to each lexical entry for
noun a feature of the form num$val; for instance, if the value of the attribute
num is p (plural), the feature output is nump.

5.5.2 RHS nonterminal constraints

These meta-constraints consist of a (tag, attribute, value) triple optionally fol-
lowed by constraints; the value may be a wild card *;

TAG ATTR VAL ...$val...$lhs...$0...

Variable translation:

• $val: the value of attribute ATTR

• $0: nonterminal for TAG

• $lhs: LHS nonterminal

Consider the following nonterminal constraints

PN TYPE * <$0 head type>=$val

5.5. UNIFICATION CONSTRAINTS 87

The star * matches any attribute value. If we observe the following annotated
data (That is fun):

<sent>
<pn type=demo>dat</pn>
<verb>is</verb>
<adj>leuk</adj>

</sent>

then the following unification constraint is output (the grammar rule given for
clarity):

rule S -> PN V ADJ
<PN head type>=typeDEMO

5.5.3 Identifier attribute constraints

Identifier meta-constraints state the identifier attributes reference attributes (see
hereafter) may refer to. They are simply (tag, attribute) pairs.

TAG ATTR

An example of an identifier attribute specification is

PN ID

It states that the attribute id is an identifier attribute of SGML tag verb. No
constraints are generated directly; a look-up table is build up for looking up the
right nonterminal given a referring identifier. The following pattern matches
the specified tag-attribute pair above.

<pn id="u161s1">ik</pn>

5.5.4 Referring attribute constraints

Referring attributes are (tag,attribute) pairs, optionally followed by constraints:

TAG ATTR ...$0...$1...$lhs...

We have one new variable here $1 which is replaced by the nonterminal that is
generated for the SGML tag referred to. Variable translation:

• $0: nonterminal for TAG

• $1: nonterminal referred to

• $lhs: LHS nonterminal

Here is a referring attribute constraint. It matches subject reference specified
with verbs:

88 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

position wild card meaning
1 * matches any tag as LHS
2 * TAG3 is the last in the RHS
3 * TAG2 is the first in the RHS
2,3 * matches any rule with LHS TAG1
1,2,3 * matches anything
2 + TAG3 is the last tag in RHS, |RHS| > 1
3 + TAG2 is the last tag in RHS, |RHS| > 1
2 > TAG3 is the last tag of its type in RHS
2 < TAG3 is the first of its type in RHS

Table 5.6: Meaning of the wild cards. |RHS| denotes the number of nonterminals
in the RHS of the rule.

V SUBJ <$lhs pred subj>=<$1 head>
<$lhs head>=<$0 head>
<$0 head agr>=<$1 head agr>

The following data will match the above meta-constraint (Then I’d like ...):

<sent>
<adv>dan</adv>
<verb subj="su161s1">wil</verb>
<pn id="su161s1">ik</pn>
<adv>graag</graag>
...

</sent>

The following rule and constraints will be derived:

rule S -> ADV_1 V PN ADV_2 ...
<S pred subj>=<PN head>
<S head>=<V head>
<V head agr>=<PN head agr>

Intuitively, the meta-constraint states that the head of a sentence is the head of
the finite verb (detected by the presence of a subject reference); an agreement
constraint is specified, and the subject is identified.

5.6. FACTS AND FIGURES 89

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000
#words

Figure 5.2: Size of the grammar as a function of the number of words.

5.5.5 General constraints

General meta-constraints come in several flavours; they consist of a three-tuple
(lhs, rhs1, rhs2), optionally followed unification constraints. As usual constraints
may contain variables for matched tags.

TAG1 TAG2 TAG3 ...$0...$1...$lhs...

We added one more powerful feature for generation constraints: instead of tags
wild cards may be specified. In table 5.6 the meaning of the wild cards *, +, <,
and > is given. Variable translation is as follows:

• $0: nonterminal for TAG2

• $1: nonterminal for TAG3

• $lhs: nonterminal for TAG1

Here is an example of a general constraint:

NP > NOUN <$lhs head>=<$1 head>

It states that the last noun in the RHS of an NP rule is the head of the NP. If
the following annotated data occurs (two tickets):

<np>
<number>twee</number><noun>kaartjes</noun>

</np>

The following constraint will be generated:

rule NP -> NUM N
<NP head>=<N head>

90 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

LHS # % |RHS|
S 386 72.8 4.1

NP 86 16.2 2.8
EMB 26 4.9 4
Z 17 3.2 4.7

PP 10 1.9 2
WHNP 3 0.6 2.3
CN 2 0.4 2

Table 5.7: Percentages of rules per nonterminal, average length of the RHSs of
the grammar rules.

5.6 Facts and figures

The unification grammar we obtain from the annotated corpus has 530 rules,
the lexicon has 800 entries. If we disable the generation of unification constraint
we obtain 462 grammar rules and 731 lexical entries. We have 7 nonterminals,
and 17 lexical categories, which means that every PoS and nonterminal tags
is mapped to a unique grammar symbol. Given the size of the corpus of 873
utterances the number of rules is large. If we study the growth of the grammar
during generation (see figure 5.2), we see that it tends to stabilise at a constant
growth. We think the corpus is too small to extrapolate the graph, but probably
new rules will be added at a constant rate in case of more annotated data.
Gaizauskas (1995) reports similar results for the PTB II grammar and gives
possible explanations. We refer to (Herdan 1966) for a more detailed treatment
of the relation between text length and the frequency of lexical and grammatical
phenomena.

Another issue we have to consider here, is that we have very little data to
compute our probabilities from. For instance, 307 out of 386 S-rules (80%) are
found only once in the corpus; for NP-rules this figure is 53%. Overall 72% of the
rules have frequency 1. However, the experiments that we report on in chapter
6 will show that probabilistic grammars with rule probabilities computed from
these frequencies improve the performance of the parser. Charniak (1996) re-
ports that 57% (9168 out of 15953) of the grammar rules he obtained from the
Penn Treebank II corpus occurred only once. Charniak presents experiments in
which he removed from the grammar the rules that have frequency 1, and still
obtained good performance. We believe this approach cannot be fruitful in our
case, as our grammar would become too small. It would not cover enough of
the syntactic structure present in the SCHISMA Treebank.

5.7. SUMMARY 91

5.7 Summary

In this chapter we presented our annotation scheme in detail. First we treated
the different PoS and nonterminal tags and their syntactic meaning. Then we
continued with defining several syntactic relations, and explained how they are
represented in SGML using identifier and referring attributes. We discussed
the most important non-relational attributes. We compared our tagset to some
other tagsets, and saw that other tagsets tend to have large numbers of tags
whereas we have a small number of tags with more detail in the attributes of the
tags. We explained how we generate unification grammars from the annotated
data. Special attention was given to the derivation of unification constraints.

92 CHAPTER 5. THE GRAMMAR INFERENCE ENGINE

Chapter 6
Experimental Results

In this chapter we present experiments with probabilistic grammars inferred
from the SCHISMA Treebank. First, we will derive unification grammars and
context-free grammars from the tree-bank and compare their performance on
unseen data. Then we will define a probabilistic extension of context-free gram-
mar based on the MaxEnt method, and compare its performance to the perfor-
mance of plain context-free grammar and PCFG. Finally, we define a MaxEnt
extension of PATR II, and compare it to plain PATR II and a probabilistic ex-
tension of PATR II based on a probabilistic extension of its context-free back-
bone.

This chapter is organised as follows. In section 6.1 we explain what parser we
used and why. Also we discuss features we added for robustness and probabilistic
parsing. Section 6.2 discusses parameter estimation for both PCFGs and Max-
Ent grammars. In section 6.3 we explain the bracket precision, bracket recall,
and crossing brackets measures that we applied for the evaluation of the tree-
bank grammars. In section 6.4 we present an experiment which compares the
performance of unification grammars and context-free grammars derived from
the SCHISMA Treebank. Section 6.5 presents experiments with plain CFG,
PCFG and MaxEnt models of CFG. In section 6.6 we discuss experiments with
probabilistic models of unification grammar. In section 6.7 we discuss the value
of our experiments, and of the parsing system we developed.

6.1 The parsing system

We decided to use the PATR II unification grammar formalism, as it is well
understood, widely used, and it has proven its merits for natural language pars-
ing (Shieber 1986). The parser we used for our experiments is PC-PATR of
the Summer Institute of Linguistics (McConnel 1995). It is a left-corner chart
parser for PATR II style unification grammars. We adapted it such that it sup-
ports probabilistic parsing, and ranks alternative parses by probability. These
and other features were added to increase the robustness of the parser.

When do we consider a parsing system robust? If it finds for every possible
utterance exactly one parse: the right one! That would make a robust parser,
but is unrealistic at the same time, as we cannot model all knowledge the parser

93

94 CHAPTER 6. EXPERIMENTAL RESULTS

would need to always produce the right parse. Even we ourselves cannot al-
ways decide on the right interpretation of an utterance, if it is structurally or
semantically ambiguous. But we don’t need to, we can ask for explanation, and
so can a dialogue system. It’s all right if the parser returns several alternative
parses. It passes its results to some semantic/pragmatic interpreter which tries
to understand the utterance in the context of the dialogue. We simply require a
robust parser to always produce a parse, and, if it finds more alternative parses,
to rank them. Below we discuss some features of our parsing system.

6.1.1 Unknown words and parsing failure

We built in a feature for handling unknown words, i.e. words not in the lexi-
con. If the parser finds a word not in the lexicon, it hypothesises four possible
categories: noun, verb, adjective, or adverb. Features are left unspecified. We
took these four as hypothetical categories, as we are almost sure that we have all
function words in the lexicon. A drawback of this approach is that the number of
possible category assignments for the words of a sentences grows exponentially
with the number of unknown words.

Another important feature of PC-PATR with respect to robustness, is the
graceful degradation it exhibits if it cannot construct a parse. The first thing
it does is turn off unification. If that helps, it returns the parses it found with
feature structures in which unification failures have been indicated. If disabling
unification is not successful, it turns of top-down filtering, and builds a parse
bush. A parse bush is built by finding the longest component beginning at
the left side of the sentence and making it the leftmost branch of a bush. The
parser then goes to the place where that component ends and picks a new longest
component adding it as the next branch of the bush, etc., until the complete
sentence is covered. Finally, a dummy top node is added. If parse ranking
is enabled, it selects, in case of alternative partial parses of the same length,
the one with the highest probability. This feature combined with the Unknown
words feature gives PC-PATR 100% coverage, independent of the grammar and
lexicon.

6.1.2 Probabilistic parsing

Adapting PC-PATR for parsing with PCFGs was quite simple. At two moments
during parsing probabilities have to be set and/or computed. At the moment
of building the initial chart, initial items (or edges) receive a probability 1. The
other moment is when an active edge is extended by a passive (completed) edge:
the probability of the active edge becomes the product of its original probability
and the probability of the passive edge. Optionally, logarithmic probabilities can
be used; in that case probabilities are added.

PC-PATR understands disjunctive feature structures and disjunctive con-
straints. Disjunctive feature structure are converted to Disjunctive Normal
Form (DNF). Disjunctive constraints are also converted to DNF thereby in-
troducing new grammar rules. Below is an example of a probabilistic grammar

6.1. THE PARSING SYSTEM 95

rule with disjunctive constraints:

rule {probnp1} (0.6) NP -> {0.7 ADJ /0.3 PN} N
<NP head> = <N head>
<N head modify adj>=<ADJ head>
<N head agr>=<ADJ head agr>
<N head modify pn>=<PN head>
{0.4
<PN head type>=Poss

/0.6
<PN head type>=Demo

}

The parser expands this rule into 4 standard ones without optional/alternative
constituents, and without disjunctive constraints; one of the rules is (the prob-
ability is given by 0.6× 0.3× 0.4)

rule {probnp_exp1} (0.072) NP -> PN N
<NP head> = <N head>
...
<PN head type>=Poss

For the implementation of the property functions necessary for parsing with
probabilistic grammars based on the MaxEnt method, we exploited the fact that
properties are binary functions. In addition, we assumed that partial parses
cannot lose a property if they are combined with other partial parses. Further,
we assumed that properties are introduced by grammar rules, and cannot be lost
once they have become active. The following example illustrates how properties
are integrated into the PATR II language

rule {me_np1} (3,4,5,6) NP -> ADJ N
<NP head> = <N head>
<N head modify adj>=<ADJ head>
<N head agr>=<ADJ head agr>

This rule introduces 4 properties numbered 3,4,5, and 6. The administration of
the description of the properties is kept outside from the parser. The properties
of the ADJ and N constituents are propagated to the LHS constituent by set
union with the properties introduced by the rule. In addition to a rule-wise
specification of new properties, the parser needs a specification of the parameters
of the properties used for computing the probability of a feature structure. In
section 6.6 we will see how this simple extension of PATR II can be applied
effectively for the probabilistic extension of unification grammar.

For more detailed information on PC-PATR, the extensions, and its user-
interface we refer to (McConnel 1995; ter Doest 1998c).

96 CHAPTER 6. EXPERIMENTAL RESULTS

6.2 Parameter estimation

The parameters of the PCFGs are estimated by determining normalised rule
frequencies. Given a tree-bank, the probability of a rule A → α is the number
of times the rule is applied in the observed data divided by the number of times
a rule is applied to rewrite an A. Formally:

p(A→ α) =
N(A→ α)

N(A)

where N(A → α) denotes the number of times A → α is observed, and N(A)
the number of times A is observed.

For parameter estimation of the maximum entropy models we applied the
Improved Iterative Scaling algorithm (Della Pietra et al. 1997). For the ex-
tension of context-free grammar, the event space consists of the trees of the
grammar, and for unification grammar the event space is the set of feature
structures. For simplicity, we did not apply sampling, and assumed the tree-
bank to be representative for the language of the grammar. A description of
the software for parameter estimation of MaxEnt models can be found in (ter
Doest 1998b).

6.3 Parser evaluation

We evaluated the grammars we obtained according to bracket precision, bracket
recall, and crossing bracket measures, also called the Grammar Evaluation In-
terest Group (GEIG) scheme (Grishman et al. 1992). The idea of the evaluation
is to feed the parser a set of sentences (not annotated!), and compare the deriva-
tion trees it assigns to these sentences to the previously annotated ones in terms
of bracketings (to be defined next). In most cases a parser will assign more than
one tree to each sentence. We assume that the parser selects one for evalua-
tion. Our probabilistic parsers select the tree with the highest probability, and
non-probabilistic parsers select an arbitrary one.

A bracketing b of a sentence of length n is defined as a tuple (i, j), where
0 ≤ i < j ≤ n. A labelled bracketing is defined as a triple (X, i, j) where i
and j as before, and X is a bracketing label, which is a nonterminal or lexical
category.

A derivation tree (as well as an annotated sentence) can conveniently be
represented by a set of bracketings. If we consider the parsing process as an
information retrieval procedure, namely the retrieval of the right set of brack-
etings, it is a small step to the idea of applying precision and recall measures
to evaluate the parsing process. To explain this idea further we introduce the
following figures:

Nc The number of bracketings correctly found by the parser.

Nt The number of bracketings in the annotated test data.

6.3. PARSER EVALUATION 97

Np The number of bracketings found by the parser.

Ncross The number of bracketings found by the parser which cross a bracketing
in the test data.

Given the above absolute figures, we define the precision, recall and crossing
bracketing measures as follows.

precision The ratio of the bracketings appearing in the most higly ranked
parses also appearing in the corresponding parse in the testing data:

P =
Nc

Np

Labelled precision, denoted by P ′, means that nonterminals are taken into
account while comparing bracketings.

recall The ratio of the bracketings in the annotated corpus also appearing in
the most highly ranked parse:

R =
Nc

Nt

Labelled recall, denoted by R′, is defined similar to labelled precision.

crossing brackets The ratio of bracketings in the most highly ranked parses
crossing over bracketings in the corpus.

C =
Ncross

Np

Developing a parser that optimises the recall measure is a trivial exercise: the
set of all possible bracketings results in a recall of 1. Of course, we would get a
very poor performance on the bracket precision and crossing brackets measures.
Parsing, if considered a bracketing process and well-described in terms of the
bracketing measures, is a balancing act between precision and recall. Precision
measures to what extent the parser filters out wrong bracketings, recall measures
the ratio of right bracketings. The crossing brackets measure gives an indication
of how consistent parses were with the corpus analyses.

An advantage of evaluating parsers according to this scheme is that it less
restrictive than counting the parses that are fully identical to those in the corpus.
Parses that are only partially correct may still be of value for further processing
(semantic interpretation, for instance). On the other hand, a ‘flat’ annotation
like ours easily results in a low crossing brackets score. For a more detailed
discussion of these problems with the GEIG scheme we refer to (Carroll and
Briscoe 1998).

98 CHAPTER 6. EXPERIMENTAL RESULTS

measure (2)CFG (1)UG
R 92.2[1.27e-1] 93.5[5.57e-2]

R′ 82.3[3.58e-1] 84.6[1.97e-1]

P 93.9[1.00e-1] 94.6[6.08e-2]

P ′ 87.2[1.96e-1] 89.0[1.42e-1]

C 4.48[1.26e-1] 3.58[1.13e-1]

P ′

R′

80 85 90 95

80

85

90

95

2
1

Table 6.1: Bracketing scores context-free grammar versus unification grammar.
Values in between square bracketings are the score variances. The numbers (1)
and (2) before the names CFG and UG correspond to the numbers in the graph
to the right.

6.4 Experiment 1

In this section we describe an experiment to investigate the difference in perfor-
mance between context-free grammars and unification grammars derived from
the SCHISMA Treebank. We split the corpus randomly in a train and test set
of 85% and 15% resp.; this corresponds to 743 utterances training data and 130
sentences testing data. Then we derived both a context-free grammar and a
unification grammar from the train set, and tested it on the test set. We re-
peated this 10 times to compensate for the small size of the tree-bank. In table
6.1 the average bracketing scores of these 10 experiments are given. We see that
unification grammar scores considerably better than context-free grammar. The
variances of the experiments confirm that the improvement is not accidental or
due to a fortunate choice of train and test data.

6.5 Experiment 2

Again we split the tree-bank randomly in a train and test set (85% and 15%),
and did 10 train/test iterations. This time we compare three grammar for-
malisms: plain CFG, PCFG, and a MaxEnt model of probabilistic CFG For the
maximum entropy model, we defined a binary property function for each rule
of the grammar like we did for the example of the tree-bank in chapter 4.

The table shows that the results we obtained using the IIS algorithm are
as good (or as bad) as those obtained by the classical approach; they are not
better, but this is no surprise! The properties that define the maximum entropy
distribution are less informative than rule frequencies (probabilities): properties
detect the use of a rule in a tree, but do not say how often it is applied, whereas
rule probabilities carry information on the frequency with which they are applied
(globally).

The most important advantage of the statistical technique for inducing a

6.6. EXPERIMENT 3 99

MaxEnt
measure (3)CFG (1)PCFG (2)CFG
R 92.6[8.47e-2] 94.9[3.69e-2] 93.2[2.56e-2]

R′ 83.8[2.88e-1] 90.8[7.58e-2] 87.5[9.52e-2]

P 94.0[1.03e-1] 96.2[3.01e-2] 95.7[2.64e-2]

P ′ 88.5[2.46e-1] 92.7[7.25e-2] 91.0[9.80e-2]

C 4.30[3.64e-2] 2.68[2.08e-2] 3.75[3.02e-2]

P ′

R′

80 85 90 95

80

85

90

95

3
2

1

Table 6.2: Bracketing scores PCFG versus MaxEnt CFG.

probabilistic grammar should not be measured by the results of such a rather
small set of experiments only. We are confident that the method will show
favourable on most real data because of the fact that it does not assume any
property of the grammar that is not supported by the data; the method uses all
and only the information expressed by the constraints on the property expecta-
tions. Moreover the method is a very general one: the features can represent any
property of sentences in the corpus; not only the properties that are related to
the use of a grammar rule in the syntax tree of a sentences, but also properties
that are beyond those expressible in a pure context-free grammar model. The
experiment in the next section shows a glimpse of this potential expressiveness.

6.6 Experiment 3

In this section we present an experimental comparison of two probabilistic ex-
tensions of unification grammar. One extension, called Probabilistic Unification
Grammar (PUG), is based on the probabilistic extension of the context-free
backbone. The other extension, MaxEnt UG, is based on the MaxEnt method.
In this case, the event space is the set of feature structures that can be generated
by the grammar we inferred from the SCHISMA Treebank. This means that
we have to define properties of feature structures that characterise the feature
structures that can be generated by the grammars that we infer from the tree-
bank. The context-free grammar rules and the unification constraints inferred
from the tree-bank entail the tree-bank feature structures. Although proper-
ties may detect any structure within feature structures, for practical reasons
we restrict properties to unification constraints. Each unification constraint is
a property to be included in the probabilistic model. As a consequence, two
types of properties can be distinguished: coreference properties and constant
properties. An example of a constant property:

<N head agr num> = pl

and an example of a coreference property is

100 CHAPTER 6. EXPERIMENTAL RESULTS

MaxEnt
measure (3)UG (1)PUG (2)UG
R 92.7[4.80e-2] 94.9[6.69e-2] 92.9[5.96e-2]

R′ 83.4[1.93e-1] 89.6[19.3e-1] 84.2[1.11e-1]

P 94.3[1.15e-2] 96.2[2.30e-2] 93.8[5.43e-2]

P ′ 88.0[1.29e-1] 91.1[1.94e-1] 88.0[1.11e-2]

C 3.83[4.88e-2] 2.31[3.71e-2] 3.96[3.50e-2]

P ′

R′

80 85 90 95

80

85

90

95

32

1

Table 6.3: Bracketing scores PUG versus MaxEnt UG.

<NP head agr> = <VP head agr>

A nice thing about selecting properties according to this scheme, is that each
grammar rule that is applied adds some properties to the feature structure,
and that these properties depend on the constraints of the rule directly. In
practice, for each partial parse a set of properties is kept. Each application
of a rule is expressed in terms of properties by set union. As can be seen in
table 6.3 we obtain superior performance for the PCFG model of unification
grammar. Although theoretically wrong, the PCFG extension of unification
shows a considerable performance improvement over plain unification grammar,
and over MaxEnt unification grammar. An explanation of these good results
for a wrong model might be that unification failure does not harm the expected
frequency with which a rule will be applied too much.

If we look a bit closer we see that MaxEnt UG has a slightly increased recall
rate, but that it has to pay for that with a worse performance on precision. It
is extremely difficult to improve recall and precision rates that are already very
high. Each bracketing that is added due to a changed behaviour of the parser,
may improve recall. If it improves recall, that is good. However, if the added
bracketing is wrong, it will decrease the precision rate, and possibly increase the
number of crossing brackets. This is probably what happens in the case of the
MaxEnt model of unification grammar.

We believe a bad choice of properties is the main reason for this behaviour.
The properties we have chosen have difficulties capturing context-sensitive phe-
nomena: they are local to the grammar rules, and as we did not express poten-
tially context-sensitive information in the constraints, the probabilistic model
cannot exploit any context-sensitive properties. Unfortunately, we currently
do not dispose of software to test this hypothesis empirically. We defer this
to future research. For one thing, the experiments should not be taken as a
motivation for abandoning the MaxEnt approach.

6.7. DISCUSSION 101

6.7 Discussion

To interpret the results of our experiments we have to keep the following in
mind: the task of parsing sentences from the Wizard of Oz corpus is a peculiar
one for a number of reasons:

• We used a rather small domain-dependent tree-bank for our experiments.
We think we have to be careful with generalisations and comparisons to
other parsing tasks, specifically parsing tasks in other domains.

• The average length of the sentences is approximately 5.4 which is rather
short.

• The annotation, and therefore the grammars that we derive is flat; this,
together with the length of the sentences, explain partly the high precision
and recall scores.

• The property functions of the MaxEnt model that we have chosen do not
exploit the full potential.

To value the parsing system we developed we have to remember the original goal
of developing a robust parsing system for integration in the SCHISMA dialogue
system. Assuming that our annotation scheme is rich enough for the SCHISMA
domain, taking into account the results presented in the previous sections, we
can conclude that we managed to develop such a system.

A comparison of our experimental results to related work is a bit difficult.
As far as we know, experimental evaluation of probabilistic extensions of unifi-
cation grammar based on MaxEnt models has not been performed. In chapter
2 we have seen some related probabilistic extensions of unification grammar.
We mention here probabilistic feature grammar, probabilistic LR parsing with
unification grammars, probabilistic CUF, and probabilistic ALE. Moreover our
application domain and the tree-bank are too specialised to compare our results
to that of experiments with tree-banks like the Lancaster Treebank or the Penn
Treebank.

6.8 Summary

In this chapter we have presented our probabilistic parsing system, and experi-
ments with grammars generated from the SCHISMA Treebank. We saw that:

• plain context-free grammars perform better than plain unification gram-
mars;

• probabilistic context-free grammars perform better than plain context-free
grammars and better than probabilistic context-free grammars based on
the MaxEnt method;

• the probabilistic extension of unification grammars based on rule frequen-
cies performs better than the extension based on the MaxEnt method;

102 CHAPTER 6. EXPERIMENTAL RESULTS

Summarising the results of our experiments, we conclude that probabilistic ex-
tensions of grammars obtained from the SCHISMA Treebank perform better
than their non-probabilistic versions.

Part III

Epilogue

103

Chapter 7
Conclusions

The main conclusion of this thesis is that the extension of context-free grammars
and unification grammars with probabilistic information, even if this informa-
tion is based on little data, can improve the performance of a syntactic parser
in a domain like that of SCHISMA. The probabilistic extensions based on rule
probabilities has shown to perform better than the extensions based on the
maximum entropy method.

We have specified a scheme for the annotation of user utterances in the
SCHISMA domain, and have annotated a collection of user utterances. We have
presented a grammar inference engine that, given a translation specification,
generates grammars from language data that is annotated using SGML. For the
generation of unification constraints we developed a method based on pattern
matching of SGML tags and their attributes.

Parse ranking and statistics in general are not a definitive solution to am-
biguity resolution and overgeneration. It helps to make the problem tractable
and force interpretation decisions in case of overgeneration. Further it enables
a modular architecture of dialogue systems as we proposed in the introduction.
The extra-syntactical knowledge otherwise received from the other modules can
be captured by statistics.

7.1 Towards integration in a SCHISMA prototype

In our experiments we applied a minimal lexicon managed by the parser itself.
In practical applications like SCHISMA we need a wide coverage lexicon like
CELEX (Burnage 1990). For an experimental evaluation of our parsing system
with a large lexicon it is necessary to work with a pre-processor that performs
part-of-speech tagging for the parser, like we proposed in section 1.3 on the
architecture of SCHISMA.

For PCFG models finding the most probable parse can be done efficiently by
Viterbi search (Viterbi 1967). For MaxEnt models this is less straightforward.
The probability of a partial parse tree or a partial feature structure is not
guaranteed to be greater than the probability of the final structure; properties
may both increase and decrease the probability. It is necessary to find out
how the most probable parse can be found in the MaxEnt case. Riezler (1998a)

105

106 CHAPTER 7. CONCLUSIONS

presents a heuristic approach to the related problem of finding the most probable
proof of a query given a constraint logic program.

A more efficient representation of disjunctive feature structures will result
in a less memory consuming parser. It may become slower because disjunctive
unification has a non-polynomial time complexity (Kasper and Rounds 1986).
An approach based on term unification can be found in (Nakano 1993); a graph-
based approach using contexted descriptions as developed in (Eisele and Dörre
1990) can be found in (Matiasek 1993).

In chapter 6 we applied recall and precision measures to determine the per-
formance of our parsing system. Although performance on the syntactic level
is important, it would have been interesting to see the parsing system’s influ-
ence on the performance of a dialogue system as a whole. Also, it would be
interesting to see how the parsing system performs in a more realistic setting.

7.2 Recommendations for future research

Although we consider the performance of our parsing system satisfactory, we
believe that more annotated data will improve the performance. We saw in sec-
tion 5.6 that the percentage of rules that appeared only once in the tree-bank is
72%. More data should bring down this percentage, and as a consequence result
in a more accurate probability distribution over the language of the grammar.

The induction of relevant properties is important for the inference of good
distributions. The experiments with MaxEnt models that we presented in the
previous chapter were done with a fixed set of properties. It would be interesting
to see whether experiments with property induction results in a set of properties
that results in a better performance.

Part IV

Appendices

107

Appendix A
SCHISMA Treebank DTD

Below is the DTD that defines the structure of the SCHISMA Treebank.

<!ELEMENT corpus - - (utt)+>

<!ATTLIST corpus

nr NUMBER #REQUIRED>

<!ELEMENT utt - - (sent |

punct |

conj)+>

<!ATTLIST utt

nr NUMBER #REQUIRED

index NUMBER #REQUIRED>

<!ELEMENT (sent |

emb) - - (np |

pp |

verb |

punct |

conj |

det |

whnp |

emb |

adv |

adj |

name |

number |

ordinal |

wh |

yn |

misc |

iject |

pn |

abbrev |

prep)+ +(typo)>

<!ATTLIST (sent | emb)

type (rel |

whq |

109

110 APPENDIX A. SCHISMA TREEBANK DTD

pn |

np |

pp |

number |

ordinal |

wh |

ynq |

misc |

yndecl |

decl |

iject |

yn |

adj |

adv |

declinv |

num |

ord |

imp) #REQUIRED>

<!ELEMENT (np |

whnp) - - (det |

noun |

np |

pp |

conj |

adv |

iject |

misc |

name |

number |

pn |

cn |

adj |

punct |

ordinal |

wh |

emb)+ +(typo)>

<!ATTLIST (np |

whnp)

id ID #IMPLIED

share IDREF #IMPLIED

det (y |

n) n

wh (nil |

wat |

wie |

waar |

watvoor |

welke |

wanneer |

111

hoelaat |

hoeveel |

hoe |

waarvoor |

waarom |

waarover) nil

number CDATA #IMPLIED>

<!ELEMENT cn - - ((noun | name), noun)>

<!ELEMENT pp - - (prep, ((wh,adj?) |

np |

verb |

pn |

whnp)?)>

<!ATTLIST pp

id ID #IMPLIED

prep (door |

other) other>

<!ELEMENT noun - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST noun

num (s |

p) s

gen (m |

f |

n |

mf) mf>

<!ELEMENT prep - - (#PCDATA) +(typo | abbrev)>

<!--

ref is voor typen wederkerend, wederkerig, demo

discont is voor discontinue aanwijzende voornaamwoorden

-->

<!ELEMENT pn - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST pn

id ID #IMPLIED

case (c1 |

c2 |

c3 |

c4) c1

type (wd |

demo |

ob |

wg |

rel |

pers) pers

ref IDREF #IMPLIED

prev IDREF #IMPLIED

112 APPENDIX A. SCHISMA TREEBANK DTD

discont (n |

1 |

2) n>

<!ELEMENT adj - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST adj

id ID #IMPLIED>

<!ELEMENT adv - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST adv

id ID #IMPLIED

prev IDREF #IMPLIED

discont (n |

1 |

2) n>

<!ELEMENT det - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST det

id ID #IMPLIED>

<!ELEMENT number - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST number

id ID #IMPLIED

type (an |

alpha |

num) #REQUIRED>

<!ELEMENT ordinal - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST ordinal

type (an |

alpha |

num) #REQUIRED>

<!ELEMENT name - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST name

quote (qs |

qd |

qn) qn

caps (cy |

cn) cn

part (py |

pn) pn>

<!ELEMENT wh - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST wh

id ID #IMPLIED

prev IDREF #IMPLIED

type (wat |

wie |

113

waar |

watvoor |

welke |

wanneer |

hoelaat |

hoeveel |

hoe |

waarvoor |

waarom |

waarover) #IMPLIED

discont (n | 1 | 2) n>

<!ELEMENT verb - - (#PCDATA) +(typo | abbrev)>

<!--

subj: echte onderwerp

lsubj: loos onderwerp: [het] is een voorstelling die ..

psubj: plaatsonderwerp: [er] is een plaats vrij voor ...

indobj: indirect object, meewerkend voorwerp

dirobj: direct object, lijdend voorwerp

-->

<!ATTLIST verb

subj IDREF #IMPLIED

psubj IDREF #IMPLIED

lsubj IDREF #IMPLIED

dirobj IDREF #IMPLIED

indobj IDREF #IMPLIED

nwg IDREF #IMPLIED

id ID #IMPLIED

prev IDREF #IMPLIED

main IDREF #IMPLIED

pass (py |

pn) pn

discont (n |

1 |

2) n

per (p1 |

p2 |

p3 |

pernil) pernil

num (u |

p |

s |

numnil) numnil

type (aux |

main) main

form (fin |

inf |

part |

imp) fin>

114 APPENDIX A. SCHISMA TREEBANK DTD

<!ELEMENT conj - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST conj

type (co |

sub) sub>

<!ELEMENT punct - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST punct

id ID #IMPLIED

prev IDREF #IMPLIED

discont (n |

1 |

2) n>

<!ELEMENT yn - - (#PCDATA) +(typo | abbrev)>

<!ELEMENT iject - - (#PCDATA) +(typo | abbrev)>

<!ATTLIST iject

type (thanx |

greet) greet>

<!ELEMENT misc - - (#PCDATA) +(typo | abbrev)>

<!ELEMENT typo - - (#PCDATA) +(noun | number | verb |

np | det)>

<!ATTLIST typo

type (del |

subst |

flip |

ins |

unknown) unknown>

Appendix B
Meta-constraints

In this appendix we give the specification of the meta-constraints we used for
inferring unification grammars from the SCHISMA Treebank. It has five sec-
tions, each section conforms to a meta-constraint type as defined in chapter 5.
Comments start with a #.

Lexical constraints

<lexlex>

PUNCT DISCONT discont$val

VERB FORM form$val

VERB DISCONT discont$val

VERB PASS passive$val

ADV DISCONT discont$val

WH DISCONT discont$val

PN DISCONT discont$val

PN CASE case$val

PN TYPE type$val

NOUN NUM num$val

NOUN GEN gen$val

VERB NUM num$val

VERB GEN gen$val

VERB TYPE type$val

</lexlex>

RHS nonterminal constraints

<lexgram>

PUNCT DISCONT * <$0 head discont>=$val

VERB TYPE MAIN <$0 head vtype>=$val

<$lhs pred name>=<$0 head gloss>

VERB TYPE AUX <$0 head vtype>=$val

VERB PASS PY <$0 head passive>=$val

<$lhs pred AGENT>=<$lhs pred doorobj>

<$lhs pred dirobj>=<$lhs pred subj>

VERB PASS PN <$0 head passive>=$val

VERB DISCONT * <$0 head discont>=$val

VERB FORM * <$0 head form>=$val

ADV DISCONT * <$0 head discont>=$val

WH DISCONT * <$0 head discont>=$val

115

116 APPENDIX B. META-CONSTRAINTS

PN DISCONT * <$0 head discont>=$val

PN CASE * <$0 head agr case>=$val

PN TYPE * <$0 head type>=$val

CONJ TYPE * <$0 head type>=$val

PP PREP DOOR <$lhs pred doorobj>=<$0 head>

</lexgram>

Identifier attributes

<id>

WHNP ID

NUMBER ID

PUNCT ID

WH ID

NP ID

PP ID

ADV ID

ADJ ID

VERB ID

PN ID

DET ID

</id>

Referring attributes

<idref>

PUNCT PREV <$0 head gloss>=<$1 head gloss>

WH PREV <$0 head gloss>=<$1 head gloss>

VERB PREV <$0 head gloss>=<$1 head gloss>

ADV PREV <$0 head gloss>=<$1 head gloss>

PN PREV <$0 head gloss>=<$1 head gloss>

VERB SUBJ <$lhs pred subj>=<$1 head>

<$lhs head>=<$0 head>

<$0 head agr>=<$1 head agr>

VERB PSUBJ <$lhs pred psubj>=<$1 head>

<$1 head gloss>=er

VERB LSUBJ <$lhs pred lsubj>=<$1 head>

VERB NWG <$lhs pred nwg>=<$1 head>

<$0 head cop>=+

<$1 head agr>=<$lhs pred subj agr>

VERB DIROBJ <$lhs pred dirobj>=<$1 head>

VERB INDOBJ <$lhs pred indobj>=<$1 head>

</idref>

General constraints

<propagation>

* ADJ NOUN <$0 head agr>=<$1 head agr>

<$1 head modify adj>=<$0 head>

* NUMBER NOUN <$0 head agr>=<$1 head agr>

<$1 head modify num>=<$0 head>

* ADJ ADJ <$0 head agr>=<$1 head agr>

<$1 head modify adj>=<$0 head>

117

* DET NOUN <$0 head agr>=<$1 head agr>

<$1 head modify det>=<$0 head>

* WH NOUN <$0 head agr>=<$1 head agr>

<$1 head modify wh>=<$0 head>

* WH ADJ <$0 head agr>=<$1 head agr>

<$1 head modify wh>=<$0 head>

* DET ADJ <$0 head agr>=<$1 head agr>

<$1 head modify det>=<$0 head>

<$0 head det>=<$1 head e>

* NUMBER ADJ <$1 head modify number>=<$0 head>

<$1 head modify e>=+

* ADV ADJ <$1 head modify adv>=<$0 head>

NP * WEEKDAY <$lhs head>=<$1 head>

NP * MONTH <$lhs head>=<$1 head>

NP * NAME <$lhs head>=<$1 head>

NP > NOUN <$lhs head>=<$1 head>

NP * CN <$lhs head>=<$1 head>

NP * NP <$lhs head>=<$1 head>

PP PREP NP <$lhs head>=<$1 head>

<$1 head modify prep>=<$0 head>

PP PREP VERB <$lhs head>=<$1 head>

<$1 head modify prep>=<$0 head>

PP PREP WHNP <$lhs head>=<$1 head>

<$1 head modify prep>=<$0 head>

PP PREP WH <$lhs head>=<$1 head>

<$1 head modify prep>=<$0 head>

WHNP WH NP <$lhs head>=<$1 head>

<$1 head wh>=<$0 head>

CN NAME NOUN <$lhs head>=<$1 head>

<$1 head modify noun>=<$0 head>

CN NOUN NOUN <$lhs head>=<$1 head>

<$1 head modify noun>=<$0 head>

* NOUN PP <$0 head modify pp>=<$1 head>

SENT * * <$lhs head type>=$lhs$TYPE

* SENT SENT <$1 head left>=<$0 head>

UTT > SENT <$lhs head>=<$1>

* SENT PUNCT <$1 head left>=<$0 head>

* PUNCT SENT <$1 head left>=<$0 head>

* SENT CONJ <$1 head left>=<$0 head>

* CONJ SENT <$1 head left>=<$0 head>

</propagation>

118 APPENDIX B. META-CONSTRAINTS

Appendix C
Samenvatting

Dit proefschrift gaat over het ontleden van natuurlijke taal en in het bijzonder
over probabilistische uitbreidingen van corpus-gebaseerde grammatica’s ten be-
hoeve van syntactische ontleding. Het onderzoek is uitgevoerd in de context van
het SCHISMA-project, een project waarin een dialoogsysteem wordt ontwikkeld
dat gebruikers de mogelijkheid biedt dialogen aan te gaan in het Nederlands om
informatie te verkrijgen over schouwburgvoorstellingen en om plaatskaarten te
reserveren.

Het uiteindelijke doel van het onderzoek is de ontwikkeling van een efficiënte
en effectieve syntactische ontleder voor het SCHISMA taakdomein. Daartoe
hebben wij ons beziggehouden met de acquisitie van grammatica’s uit een cor-
pus van geannoteerde taaluitingen. We hebben een methode ontwikkeld voor
de afleiding van unificatie-grammatica’s in het PATR II formalisme, en voor
het uitbreiden van deze grammatica’s met probabilistische informatie. De be-
langrijkste bijdrage van dit onderzoek aan de computationele lingüıstiek is het
empirisch verkregen resultaat dat de uitbreiding van contextvrije grammatica’s
en unificatie-grammatica’s met probabilistische informatie, zelfs als deze geba-
seerd is op een kleine hoeveelheid gegevens, de prestaties van een ontleder in
een taakdomein als SCHISMA aanzienlijk kan verbeteren.

Om tot dit resultaat te komen, hebben we allereerst een corpus van taaluitin-
gen geannoteerd met de juiste syntactische structuur door gebruik te maken van
de Standard Generalized Markup Language (SGML). Een essentieel onderdeel
van annotie met behulp van SGML is de formele specificatie van het annotatie-
schema in een Document Type Definition (DTD). Zo’n specificatie is nodig voor
de validatie van de geannoteerde data, maar speelt ook een belangrijke rol bij
het vertalen van de geannoteerde data naar lexicons en grammatica’s.

Vervolgens hebben we een methode ontwikkeld voor de automatische ge-
neratie van grammatica’s uit de geannoteerde data. Deze is gebaseerd op de
herkenning van patronen van SGML-markeringen en hun attributen. Patronen
en de daarvoor te genereren productie-regels en unificatie-constraints kunnen
worden gespecificeerd in een flexibele specificatietaal.

Contextvrije grammatica’s kunnen eenvoudig worden uitgebreid door waar-
schijnlijkheden toe te kennen aan de regels van de grammatica (het ‘klassieke
model’). Unificatie-grammatica’s kunnen op dezelfde manier worden uitgebreid
door aan hun contextvrije regels waarschijnlijkheden toe te kennen. Echter,

119

120 APPENDIX C. SAMENVATTING

omdat unificatie-operatie kunnen mislukken, is de kansverdeling die zo’n pro-
babilistische unificatie-grammatica definieert op de taal die zij genereert niet
correct. Daarom hebben we een probabilistische uitbreiding gedefinieerd met
behulp van de maximum-entropie-methode.

We hebben experimenten uitgevoerd waarbij de geannoteerde data wordt
gesplitst in een ‘train set’ en ‘test set’. De grammatica en de eventuele para-
meters van een probabilistische uitbreiding worden afgeleid uit de train set en
getest op de test set. We hebben klassieke uitbreidingen van zowel contextvrije
grammatica’s als unificatie-grammatica’s vergeleken met door ons gedefinieerde
uitbreidingen die gebaseerd zijn op de maximum-entropie-methode. Daarbij
laten de klassieke uitbreidingen betere resultaten zien, ook al is de klassieke
uitbreiding van unificatie-grammatica niet correct. In het algemeen presteren
probabilistisch uitgebreide grammatica’s beter dan niet-probabilistische.

References

Abney, S. (1996). Statistical methods and linguistics. In J. Klavans and
P. Resnik (Eds.), The Balancing Act. Cambridge, Massachussetts: The
MIT Press.

Abney, S. (1997). Stochastic attribute-value grammars. Computational Lin-
guistics 23 (4), 597–618.

op den Akker, R. (1988). Parsing attribute grammars. Ph. D. thesis, Depart-
ment of Computer Science, University of Twente, Enschede, The Nether-
lands.

op den Akker, R. and H. ter Doest (1994). Weakly restricted stochastic gram-
mars. In Proceedings of the 15th International Conference on Computa-
tional Linguistics, pp. 927–934.

op den Akker, R., H. ter Doest, M. Moll, and A. Nijholt (1995). Parsing
in dialogue systems using typed feature structures. In Proceedings of the
Fourth International Workshop on Parsing Technologies, Prague/Karlovy
Vary, Czech Republic, pp. 10–11.

Alshawi, H. (Ed.) (1992). The Core Language Engine. Cambridge, Massachus-
setts: The MIT Press.

Andernach, T. (1996). A machine learning approach to the classification and
prediction of dialogue utterances. In Proceedings of the Second Interna-
tional Conference on New Methods in Language Processing, pp. 98–109.

Andernach, T. and M. van Steenbergen (1994). Domain and dialogue knowl-
edge in a natural language information system. Memoranda Informatica
94-05, Department of Computer Science, University of Twente, Enschede,
The Netherlands.

Androutsopoulos, I., G. Ritchie, and P. Thanisch (1995). Natural language
interfaces to databases - an introduction. Journal of Natural Language
Engineering 1 (1), 29–81.

Baum, L. E. (1972). An inequality and associated maximization technique
in statistical estimation of probabilistic functions of a markov process.
Inequalities 3, 1–8.

Berger, A. (1997). The Improved Iterative Scaling algorithm: a gentle intro-
duction. URL: http://www.cs.cmu.edu/~aberger/maxent.html.

121

122 REFERENCES

Berger, A., V. Della Pietra, and S. Della Pietra (1996). A maximum en-
tropy approach to natural language processing. Computational Linguis-
tics 22 (1), 39–71.

Bertsekas, D. (1982). Constrained optimization and lagrange multiplier meth-
ods. Computer Science and Applied Mathematics. New York: Academic
Press.

Bies, A., M. Ferguson, K. Katz, and R. MacIntyre (1995). Bracketing guide-
lines for Treebank II style Penn Treebank Project. Technical report, Uni-
versity of Pennsylvania. URL: http://www.cis.upenn.edu/~treebank/.

Black, E., F. Jelinek, J. Lafferty, and D. M. Magerman (1992). Towards
history-based grammars: Using richer models for probabilistic parsing. In
Proceedings of the DARPA Speech and Natural Language Workshop, 1992,
pp. 31–37.

BNC (1997). British National Corpus. Technical report, Oxford University.
URL: http://info.ox.ac.uk/bnc/.

Bod, R. (1996). Efficient algorithms for parsing the DOP model? A reply to
Joshua Goodman. http://xxx.lanl.gov/abs/cmp-lg/9605031.

Bod, R. (1998). Beyond grammar. An experience-based theory of language.
CSLI Publications. Cambridge, New York: Cambridge University Press.

Bod, R. and R. Scha (1997). Data-Oriented Language Processing. In S. Young
and G. Bloothooft (Eds.), Corpus-based methods in language and speech
processing, Volume 2 of Text, Speech and Language Technology, pp. 137–
173. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Booth, T. and R. Thompson (1973). Applying probability measures to ab-
stract languages. IEEE Transactions on Computers C-22 (5), 442–450.

Bradley, N. (1998). XML Complete. Reading, MA: Addison-Wesley.

Brew, C. (1995). Stochastic HPSG. In 7th European Chapter of the Associa-
tion for Computational Linguistics, pp. 83–89.

Brill, D. (1993). LOOM reference manual version 2.0. Technical report, Uni-
versity of Southern California.

Briscoe, T. and J. Carroll (1993). Generalized probabilistic LR parsing of nat-
ural language (corpora) with unification-based grammars. Computational
Linguistics 19 (1), 25–59.

Briscoe, T. and N. Waegner (1992). Robust stochastic parsing using the
inside-outside algorithm. In Proceedings AAAI Workshop on Statistically-
based NLP Techniques, San Jose, CA.

Burnage, G. (1990). CELEX: A guide for users. CELEX - Centre for Lexical
Information, University of Nijmegen.

Carpenter, B. (1992). The Logic of Typed Feature Structures. Number 32 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press.

REFERENCES 123

Carpenter, B. and G. Penn (1994). Ale 2.0 user’s guide. Technical report,
Carnegie Mellon University Laboratory for Computational Linguistics,
Pittsburgh, PA.

Carroll, J. and T. Briscoe (1992). Probabilistic normalisation and unpacking
of packed parse forests for unification-based grammars. In Proceedings of
the AAAI Fall Symposium on Probabilistic Approaches to Natural Lan-
guage, Cambridge, MA, pp. 33–38.

Carroll, J. and T. Briscoe (1998). A survey of parser evaluation methods. In
Proceedings The Evaluation of Parsing Systems, Workshop at the 1st In-
ternational Conference on Language Resources and Evaluation, Granada,
Spain.

Charniak, E. (1993). Statistical Language Learning. Cambridge, Massachus-
setts: The MIT Press.

Charniak, E. (1996). Tree-bank grammars. In Proceedings of the 14th National
Conference on Artificial Intelligence, Volume 2, pp. 1031–1036.

Chomsky, N. (1959). On certain formal properties of grammars. Information
and Control 2, 137–167.

CLAWS (1998). Corpus annotation. Technical report, University Cen-
tre for Computer Corpus Research on Language (UCREL), Lan-
caster University, Lancaster, UK. URL: http://www.comp.lancs.ac.uk/
computing/research/ucrel/.

Darroch, J. and D. Ratcliff (1972). Generalised Iterative Scaling for log-linear
models. The Annals of Statistics 43 (5), 1470–1480.

Davey, B. and H. Priestley (1990). Introduction to lattices and order. Cam-
bridge, New York: Cambridge University Press.

Della Pietra, S., V. Della Pietra, and J. Lafferty (1997). Inducing features
of random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence 19 (4), 380–393.

ter Doest, H. (1994). Stochastic grammars: Consistency and inference. Mas-
ter’s thesis, Department of Computer Science, University of Twente, En-
schede, The Netherlands.

ter Doest, H. (1998a). A corpus-based probabilistic unification grammar. See
Keller (1998), pp. 25–32. ESSLLI98 workshop.

ter Doest, H. (1998b). Statistics::MaxEntropy, a Perl5 module for Maxi-
mum Entropy Modeling. Enschede, The Netherlands: Department of Com-
puter Science, University of Twente. Comprehensive Perl Archive Network
(CPAN).

ter Doest, H. (1998c). Xpatr - reference manual. Enschede, The Netherlands:
Department of Computer Science, University of Twente.

ter Doest, H., M. Moll, R. Bos, S. van de Burgt, and A. Nijholt (1996).
Language engineering in dialogue systems. In Energy Week Conference &
Exhibition, Energy Week Information Management, Volume 1, pp. 68–79.

124 REFERENCES

Dörre, J. and M. Dorna (1993). CUF, a formalism for linguistic knowledge
representation. In J. Dörre (Ed.), Computational Aspects of Constraint-
Based Linguistic Description I, pp. 3–22. DYANA-2 deliverable R1.2.A.

Dörre, J., M. Dorna, and J. Junger (1994, july). The CUF User’s Man-
ual (1.6 ed.). Stuttgart, Germany: Institut für maschinelle Sprachverar-
beitung (IMS), Universität Stuttgart, Germany.

Eisele, A. (1994). Towards probabilistic extensions of constraint-based gram-
mars. In J. Dörre (Ed.), Computational Aspects of Constraint-Based Lin-
guistic Description II, pp. 3–21. DYANA-2 Deliverable R1.2.B.

Eisele, A. and J. Dörre (1990). Feature logic with disjunctive unification.
In Proceedings of the 13th International Conference on Computational
Linguistics, Helsinki, pp. 100–105.

van der Ende, D. (1995). Robust parsing: An overview. Memoranda Infor-
matica 95-03, Department of Computer Science, University of Twente,
Enschede, The Netherlands.

Fu, K.-S. and T. Booth (1975). Grammatical inference: Introduction and sur-
vey, part 2. IEEE Transactions on Systems, Man, and Cybernetics 5 (4),
409–423.

Gaizauskas, R. (1995). Investigations into the grammar underlying the Penn
Treebank II. Technical Report CS-95-25, Dept. of Comp. Sc., The Uni-
versity of Sheffield, UK.

Genesereth, M. R. (1998). Knowledge interchange format, draft proposed
American National Standard. Technical Report NCITS.T2/98-004, Logic
Group, Stanford University.

Ginsburg, S. (1966). The Mathemetical Theory of Context-Free Languages.
McGraw-Hill.

Goldfarb, C. F. (1990). The SGML handbook. Oxford: Clarendon Press.

Goodman, J. (1996). Efficient algorithms for parsing the DOP model. In Pro-
ceedings Empirical Methods in Natural Language Processing, Philadelphia.

Goodman, J. (1997). Probabilistic feature grammars. In Proceedings of the
Fifth International Workshop on Parsing Technologies, pp. 89–100.

Grenander, U. (1967). Syntax-controlled probabilities. Technical report, Di-
vision of Applied Mathematics, Brown University, Providence, Rhode Is-
land.

Grice, H. (1975). Logic and conversation. In Syntax and Semantics, Volume
3: Speech Acts, pp. 41–58. New York: Academic Press.

Grishman, R., C. MacLeod, and J. Sterling (1992). Evaluating parsing strate-
gies using standardized parse files. In Proceedings of the 3rd ACL Confer-
ence on Applied Natural Language Processing, Trento, Italy, pp. 156–161.

Herdan, G. (1966). The advanced theory of language as choice and chance.
Number 4 in Kommunikation und Kybernetik in Einzeldarstellungen.
Berlin; Heidelberg; New York: Springer.

REFERENCES 125

van der Hoeven, G., T. Andernach, S. van de Burgt, G. Kruijff, A. Nijholt,
A. Schaake, and F. de Jong (1994). SCHISMA: A natural language ac-
cessible theatre information and booking system. In Speech and Language
Engineering, Proceedings of the Twente Workshop on Language Technol-
ogy 8, pp. 137–149.

Hogenhout, W. R. and Y. Matsumoto (1998). A fast method for statistical
grammar induction. Journal of Natural Language Engineering 4 (3), 191–
209.

Hoppe, T., C. Kindermann, and J. J. Quantz (1993). BACK V5: tutorial and
manual. Technical Report KIT-report 100, Technische Universität Berlin,
Berlin, Deutschland.

Hulstijn, J. (1997). Structured information states - raising and resolving is-
sues. In Proceedings Munich Workshop on Formal Semantics and Prag-
matics of Dialogue (MUNDIAL), Munich, Germany, pp. 99–117.

Hulstijn, J., R. Steetskamp, H. ter Doest, S. van de Burgt, and A. Nijholt
(1996). Topics in SCHISMA dialogues. In Dialogue Management in Natu-
ral Language Systems, Proceedings of the Twente Workshop on Language
Technology 11, pp. 89–99.

Inui, K., V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga (1997). A new
formalization of Probabilistic GLR parsing. In Proceedings of the Fifth
International Workshop on Parsing Technologies, pp. 123–134.

Jaynes, E. (1957). Information theory and statistical mechanics I. Physical
Review 106, 620–630.

Jaynes, E. (1996). Probability theory: the logic of science. Unpublished
manuscript, URL: http://bayes.wustl.edu/.

Joshi, A. K. (1987). An introduction to tree adjoining grammars. In Manaster-
Ramer (Ed.), Mathematics of Language. Amsterdam: John Benjamins.

Joshi, A. K. and Y. Schabes (1992). Tree-adjoining grammars and lexicalised
grammar. In M. Nivat and A. Podelski (Eds.), Tree Automata and Lan-
guages, pp. 409–431. New York: Elsevier.

Kasper, R. T. and W. C. Rounds (1986). A logical semantics for feature
structures. In Proceedings of the 24th Annual Meeting of the ACL, pp.
257–266.

Kay, M. (1989). Head-driven parsing. In Proceedings of the First International
Workshop on Parsing Technologies, pp. 52–62.

Keller, B. (Ed.) (1998). Automated Acquisition of syntax and parsing. ESS-
LLI98 workshop.

Komen, E. (1995). Evaluation of Natural Languagetm for the SCHISMA do-
main. Memoranda Informatica 95-14, Department of Computer Science,
University of Twente, Enschede, The Netherlands.

126 REFERENCES

Kupiec, J. (1992). An algorithm for estimating the parameters of unrestricted
hidden stochastic context-free grammars. In Proceedings of the 14th In-
ternational Conference on Computational Linguistics, pp. 387–393.

Labrou, Y. and T. Finin (1997). A proposal for a new KQML specification.
Technical Report TR CS-97-03, Computer Science and Electrical Engi-
neering Department, University of Maryland, Baltimore County, Balti-
more.

Lari, K. and S. Young (1990). The estimation of stochastic context-free
grammars using the Inside-Outside algorithm. Computer Speech and Lan-
guage 4, 35–56.

Lau, R., R. Rosenfeld, and S. Roukos (1993). Adaptive language modeling
using the maximum entropy principle. In Proceedings of Human Language
Technology Workshop, pp. 108–113.

Lee, E. and L. Zadeh (1969). Note on fuzzy languages. Information Sciences 1,
421–434.

Lie, D., J. Hulstijn, R. op den Akker, and A. Nijholt (1998). A transforma-
tional approach to natural language understanding in dialogue systems.
In Proceedings Natural Language Processing and Industrial Applications
(NLP+IA’98), Volume II, pp. 163–168.

Magerman, D. M. (1994). Natural language parsing as statistical pattern recog-
nition. Ph. D. thesis, Dept. of Computer Science, Stanford University.

Manning, C. D. and B. Carpenter (1997). Probabilistic parsing using left cor-
ner language models. In Proceedings of the Fifth International Workshop
on Parsing Technologies, pp. 147–158.

Mark, K., M. Miller, U. Grenander, and S. Abney (1991). Parameter estima-
tion for constrained context-free language models. In Proceedings of the
DARPA Speech and Natural Language Workshop, 1991, San Mateo, CA,
pp. 146–149. Morgan Kaufmann.

Matiasek, J. (1993). Structure sharing unification of disjunctive feature de-
scriptions. In H. Trost (Ed.), Feature formalisms and linguistic ambiguity,
Chapter 6, pp. 93–102. New York: Ellis Horwood.

McConnel, S. (1995). PC-PATR reference manual. Dallas, Texas, USA: Sum-
mer Institute of Linguistics. URL: http://www.sil.org/ftp/software/.

Moll, M. (1995). Head-corner parsing using typed feature structures. Master’s
thesis, Department of Computer Science, University of Twente, Enschede,
The Netherlands.

Nakano, M. (1993). Constraint projection for efficient unification-based pars-
ing. In H. Trost (Ed.), Feature formalisms and linguistic ambiguity, Chap-
ter 7, pp. 103–122. New York: Ellis Horwood.

Neal, R. M. (1993). Probabilistic inference using Markov Chain Monte Carlo
methods. Technical Report CRG-TR-93-1, Dept. of Comp. Science, Univ.
of Toronto. URL: www.cs.utoronto.ca/~radford.

REFERENCES 127

Nederhof, M. (1994). Linguistic parsing and program transformations. Ph. D.
thesis, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands.

Nijholt, A. (1988). Computers and languages, theory and practice, Volume 4
of Studies in Computer Science and Artificial Intelligence. Amsterdam;
New York: North-Holland.

Nijholt, A., A. van Hessen, and J. Hulstijn (1998). Speech and language
interaction in a (virtual) cultural theatre. In Proceedings Natural Language
Processing and Industrial Applications (NLP+IA’98), Volume II, pp. 176–
182.

van Noord, G. (1997). An efficient implementation of the head-corner parser.
Computational Linguistics 23 (3), 425–456.

Pereira, F. and Y. Schabes (1992). Inside-outside reestimation from partially
bracketed corpora. In Proceedings of the 30th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 122–127.

Pereira, F. C. N. and D. H. D. Warren (1980). Definite clause grammars
for language analysis - a survey of the formalism and a comparison with
augmented transition networks. Artificial Intelligence 13, 231–278.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tag-
ging. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing.

Ratnaparkhi, A. (1997a). A linear observed time statistical parser based on
maximum entropy models. In Proceedings of the Second Conference on
Empirical Methods in Natural Language Processing.

Ratnaparkhi, A. (1997b). A simple introduction to maximum entropy models
for natural language processing. Technical Report IRCS Report 97-08,
University of Pennsylvania, Philadelphia.

Ratnaparkhi, A. (1998). Maximum entropy models for natural language am-
biguity resolution. Ph. D. thesis, University of Pennsylvania.

Resnik, P. (1992). Probabilistic Tree-Adjoining Grammar as a framework for
statistical natural language processing. In Proceedings of the 14th Inter-
national Conference on Computational Linguistics, pp. 418–424.

Reynar, J. and A. Ratnaparkhi (1997). A maximum entropy approach to iden-
tifying sentence boundaries. In Proceedings Fifth Conference on Applied
Natural Language Processing, pp. 16–19.

Riezler, S. (1996). Quantitative constraint logic programming for weighted
grammar applications. In C. Retor (Ed.), Logical Aspects of Computa-
tional Linguistics (LACL ’ 96), Number 1328 in Lecture Notes in Com-
puter Science, pp. 346–365.

Riezler, S. (1998a). Probabilistic Constraint Logic Programming, formal foun-
dations of quantitative and statistical inference in constraint-based natural
language processing. Ph. D. thesis, Seminar für Sprachwissenschaft, Uni-
versität Tübingen.

128 REFERENCES

Riezler, S. (1998b). Statistical inference and probabilistic modeling for
constraint-based nlp. In B. Schröder, W. Lenders, W. Hess, and T. Portele
(Eds.), Computers, Linguistics, and Phonetics between Language and
Speech. Proceedings of the 4th Conference on Natural Language Processing
(KONVENS98), pp. 111–124.

Riezler, S. (1998c). Statistical inference for probabilistic constraint logic pro-
gramming. In H. Wiklicky and A. di Pierro (Eds.), Probabilistic logic and
randomised computation, pp. 1–10. ESSLLI98 workshop.

Rosenfeld, R. (1994). Adaptive statistical language modeling. Ph. D. thesis,
Carnegie Mellon University, School of Computer Science, Pittburgh, PA.

Rosenkrantz, D. and P. Lewis-II (1970). Deterministic left corner parsing.
In IEEE Conference of the 11th Annual Symposium on Switching and
Automata Theory, pp. 139–152.

Salomaa, A. (1969). Probabilistic and weighted grammars. Information and
Control 15, 529–544.

Sampson, G. (1994). SUSANNE: A domesday book of English grammar. In
N. Oostdijk and P. de Haan (Eds.), Corpus-based research into language:
in honour of Jan Aarts, Chapter 11, pp. 169–187. Amsterdam: Rodopi.

Santorini, B. (1991). Bracketing guidelines for the Penn Treebank
Project. Technical report, University of Pennsylvania. URL:
http://www.cis.upenn.edu/~treebank/.

Santorini, B. (1995). Part-of-Speech tagging guidelines. Technical report, Uni-
versity of Pennsylvania. URL: http://www.cis.upenn.edu/~treebank/.

Schabes, Y. (1992). stochastic lexicalized tree-adjoining grammars. In Pro-
ceedings of the 14th International Conference on Computational Linguis-
tics, pp. 426–432.

Schabes, Y. and R. C. Waters (1993). Stochastic lexicalized tree-insertion
grammar. In Proceedings of the Third International Workshop on Parsing
Technologies, pp. 257–265.

Schabes, Y. and R. C. Waters (1994). Tree-insertion grammar: a cubic-time
parsable formalism that lexicalizes context-free grammar without chang-
ing the trees produced. Technical Report 94-13, Mitsubishi Electric Re-
search Labs, Cambridge MA.

See-Kiong and M. Tomita (1991). Probabilistic LR parsing for general
context-free grammars. In Proceedings of the Second International Work-
shop on Parsing Technologies, Cancun, pp. 154–163.

Shannon, C. (1948). A mathematical theory of communication. Bell Systems
Technical Journal 27, 379–423.

Shieber, S. M. (1986). An Introduction to Unification-Based Approaches to
Grammar. Stanford, CA: Center for the Study of Language and Informa-
tion, Stanford University.

REFERENCES 129

Shieber, S. M. (1992). Constraint-Based Grammar Formalisms : Parsing and
Type Inference for Natural and Computer Languages. Cambridge, MA:
MIT Press.

Shieber, S. M., Y. Schabes, and F. C. N. Pereira (1995). Principles and imple-
mentation of deductive parsing. Journal of Logic Programming 24 (1–2),
3–36.

Sikkel, K. (1997). Parsing Schemata. A framework for specification and anal-
ysis of parsing algorithms. Texts in Theoretical Computer Science. An
EATCS Series. Berlin; Heidelberg; New York: Springer.

Sikkel, K. and R. op den Akker (1993). Predictive head-corner chart parsing.
In Proceedings of the Third International Workshop on Parsing Technolo-
gies, Tilburg (The Netherlands), Durbuy (Belgium), pp. 267–275.

Skut, W. and T. Brants (1998). A maximum-entropy partial parser for unre-
stricted text. In Proceedings of the Sixth Workshop on Very Large Corpora.

Sobol’, I. M. (1994). A primer for the Monte Carlo Method. London: CRC
Press.

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind
and Machine. The Systems Programming Series. Reading, MA: Addison-
Wesley.

Suppes, P. (1972). Probabilistic grammars for natural languages. In Seman-
tics for Natural Language, pp. 741–762. Dordracht-Holland: D. Reidel
Publishing Company.

Veldhuijzen van Zanten, G. and R. op den Akker (1994). Developing natural
language interfaces: a test case. In L. Boves and A. Nijholt (Eds.), Twente
Workshop on Language Technology 8: Speech and Language Engineering,
pp. 121–135.

Verlinden, M. (1993a). Head-corner parsing of unification grammars: a case
study. In Twente Workshop on Language Technology 8: Speech and Lan-
guage Engineering, pp. 71–84.

Verlinden, M. (1993b). Ontwerp en implementatie van een head-corner on-
tleder voor grammatica’s met feature structures. Master’s thesis, Depart-
ment of Computer Science, University of Twente, Enschede, The Nether-
lands. In Dutch.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymtot-
ically optimum decoding algorithm. IEEE Transactions on Information
Theory 13, 260–267.

Wechler, W. (1992). Universal algebra for computer scientists, Volume 25 of
EATCS Monographs on Theoretical Computer Science. Berlin; Heidelberg;
New York: Springer.

Wetherell, C. (1980). Probabilistic languages: A review and some open ques-
tions. ACM Computing Surveys 12 (4), 361–379.

130 REFERENCES

Winkler, G. (1995). Image analysis, random fields and dynamic Monte Carlo
methods, a mathematical introduction. Number 27 in Applications of
Mathematics. Berlin; Heidelberg; New York: Springer.

Wintner, S. (1997). An abstract machine for unification grammar; with appli-
cations to an HPSG grammar for Hebrew. Ph. D. thesis, Technion, Israel
Institute of Technology.

Wood, D. (1995). Standard Generalized Markup Language: Mathematical
and philosophical issues. Lecture Notes in Computer Science 1000, 344–
365.

Woods, W. and J. Schmolze (1992). The KL-ONE family. Computers and
Mathematics with Applications, Special Issue on Semantic Networks in
Artificial Intelligence, Part 1 23 (2–5), 133–178.

Wright, J. and E. Wrigley (1991). GLR parsing with probability. In M. Tomita
(Ed.), Generalised LR Parsing, Chapter 8, pp. 113–128. Dordrecht, The
Netherlands: Kluwer Academic Publishers.

Zadeh, L. (1965). Fuzzy sets. Information and Control 8, 338–353.

Index

annotation scheme, 76–81
Attribute Logic Engine (ALE), 27
attribute value matrix, see feature

structure

constraint logic, 30
probabilistic -, 32
weighted -, 31

context-free grammar, 15–16
language of -, 15
probabilistic -, 17–20

data-oriented parsing, 25
derivation

leftmost -, 15
relation, 15, 44
tree, 16

dialogue system, 3–4
distribution

reference -, 57
DMRFS, 46
Document Type Definition (DTD),

75

entropy, 55–57
cross -, 56
principle of maximum -, 55
relative -, see Kullback-Leibler

divergence
Shannon’s -, 55

Extensible Markup Language (XML),
9

Feat, 36
feature structure

multi-rooted -
subsumption, 42

feature structure
multi-rooted -

substructure, 42
feature structure

attribute value matrix, 37
multi-rooted -, 41

dotted -, 46
unification, 42

typed -, 36
feature graph morphism, 38
greatest lower bound, 40
least upper bound, 40
substructure, 38
subsumption, 38
unification, 40

FS, 36

Generalized Iterative Scaling (GIS),
63–64

computation, 64

history-based grammar, 21

Improved Iterative Scaling (IIS), 65–
66

computation, 65
inside-outside algorithm, 18–19
item, 45
Iterative Maximization (IM), 32

Knowledge Interchange Format, 9
Knowledge Query and Manipulation

Language, 9
Kullback-Leibler divergence, 57

likelihood
principle of maximum -, 57

Monte Carlo sampling, 68
MRFS, 42

131

132 INDEX

overgeneration, 2

parsing
chart -, 45–46
head-corner -, 49–50
left-corner -, 46–49

probabilistic -, 23
probabilistic GLR -, 22

probabilistic feature grammar, 29
property, 59–62

correction -, 63

SCHISMA, 2–3
Standard Generalized Markup Lan-

guage, 73–75
Standard Generalized Markup Lan-

guage (SGML), 9
stochastic tree substitution grammar,

25
stochastic variable, 54

expectation, 55
subsumption

multi-rooted feature structure,
42

typed feature structure, 38
types, 36

THIS, 3
tree adjoining grammar, 24

stochastic lexicalised -, 24
tree insertion grammar, 25

stochastic lexicalised -, 25
Type, 36
type hierarchy, 36

unification
feature structure, 40
multi-rooted feature structure,

42
unification grammar, 43

language of -, 44
probabilistic -, 27
probabilistic-, 50
rule, 43

weakly restricted stochastic gram-
mar, 20

Abbreviations

ALE Attribute Logic Engine
AVG attribute-value grammar
AVM attribute-value matrix
CFG context-free grammar
CG conceptual graph
CLP constraint logic program(ming)
CNF Chomsky Normal Form
CUF Comprehensive Unification Formalism
CYK Cocke Younger Kasami
DAG directed acyclic graph
DCG definite clause grammar
DMRFS dotted multi-rooted feature structure
DNF disjunctive normal form
DOP data-oriented parsing
DTD Document Type Definition
ERF expected rule frequency
FS feature structure
GIS Generalized Iterative Scaling
glb greatest lower bound
GLR Generalised LR
GPSG Generalised Phrase Structure Grammar
HC head-corner
HBG history-based grammar
HPSG Head-driven Phrase Structure Grammar
HTML Hypertext Markup Language
ID/LP Immediate Dominance/Linear Precedence
IIS Improved Iterative Scaling
IM Iterative Maximization
KIF Knowledge Interchange Format
KL Kullback-Leibler
KQML Knowledge Query and Manipulation Language
LALR look ahead LR

133

134 ABBREVIATIONS

LC left-corner
LHS left-hand side
LIG linear indexed grammar
LTIG lexicalised tree insertion grammar
lub least upper bound
MaxEnt Maximum Entropy
MRFS multi-rooted feature structure
NLP natural language processing
NLU natural language understanding
PCFG probabilistic context-free grammar
PFG probabilistic feature grammar
PME principle of maximum entropy
PoS part-of-speech
PP prepositional phrase
PUG probabilistic unification grammar
QLF Quasi-Logical Form
RHS right-hand side
SAVG stochastic attribute-value grammar
SCSG stochastic context-free grammar
SGML Standard Generalized Markup Language
SLIG stochastic linear indexed grammar
SLR simple LR
SLTAG stochastic lexicalised tree-adjoining grammar
SLTIG stochastic lexicalised tree-insertion grammar
STSG stochastic tree-substitution grammar
TAG tree-adjoining grammar
THIS Theatre Information System
UG unification grammar
WRSG weakly restricted stochastic grammar
XML Extensible Markup Language

Titles in the IPA Dissertation Series

The State Operator in Process Algebra
J. O. Blanco
Faculty of Mathematics and Computing Science, TUE, 1996-1

Transformational Development of Data-Parallel Algorithms
A. M. Geerling
Faculty of Mathematics and Computer Science, KUN, 1996-2

Interactive Functional Programs: Models, Methods, and Implementation
P. M. Achten
Faculty of Mathematics and Computer Science, KUN, 1996-3

Parallel Local Search
M. G. A. Verhoeven
Faculty of Mathematics and Computing Science, TUE, 1996-4

The Implementation of Functional Languages on Parallel Machines with Distrib.
Memory
M. H. G. K. Kesseler
Faculty of Mathematics and Computer Science, KUN, 1996-5

Distributed Algorithms for Hard Real-Time Systems
D. Alstein
Faculty of Mathematics and Computing Science, TUE, 1996-6

Communication, Synchronization, and Fault-Tolerance
J. H. Hoepman
Faculty of Mathematics and Computer Science, UvA, 1996-7

Reductivity Arguments and Program Construction
H. Doornbos
Faculty of Mathematics and Computing Science, TUE, 1996-8

Functorial Operational Semantics and its Denotational Dual
D. Turi
Faculty of Mathematics and Computer Science, VUA, 1996-9

Single-Rail Handshake Circuits
A. M. G. Peeters
Faculty of Mathematics and Computing Science, TUE, 1996-10

A Systems Engineering Specification Formalism
N. W. A. Arends
Faculty of Mechanical Engineering, TUE, 1996-11

Normalisation in Lambda Calculus and its Relation to Type Inference
P. Severi de Santiago
Faculty of Mathematics and Computing Science, TUE, 1996-12

Abstract Interpretation and Partition Refinement for Model Checking
D. R. Dams
Faculty of Mathematics and Computing Science, TUE, 1996-13

Topological Dualities in Semantics
M. M. Bonsangue
Faculty of Mathematics and Computer Science, VUA, 1996-14

Algorithms for Graphs of Small Treewidth
B. L. E. de Fluiter
Faculty of Mathematics and Computer Science, UU, 1997-01

Process-algebraic Transformations in Context
W. T. M. Kars
Faculty of Computer Science, UT, 1997-02

A Generic Theory of Data Types
P. F. Hoogendijk
Faculty of Mathematics and Computing Science, TUE, 1997-03

The Evolution of Type Theory in Logic and Mathematics
T. D. L. Laan
Faculty of Mathematics and Computing Science, TUE, 1997-04

Preservation of Termination for Explicit Substitution
C. J. Bloo
Faculty of Mathematics and Computing Science, TUE, 1997-05

Discrete-Time Process Algebra
J. J. Vereijken
Faculty of Mathematics and Computing Science, TUE, 1997-06

A Functional Approach to Syntax and Typing
F. A. M. van den Beuken
Faculty of Mathematics and Informatics, KUN, 1997-07

Ins and Outs in Refusal Testing
A.W. Heerink
Faculty of Computer Science, UT, 1998-01

A Discrete-Event Simulator for Systems Engineering
G. Naumoski and W. Alberts
Faculty of Mechanical Engineering, TUE, 1998-02

Scheduling with Communication for Multiprocessor Computation
J. Verriet
Faculty of Mathematics and Computer Science, UU, 1998-03

An Asynchronous Low-Power 80C51 Microcontroller
J. S. H. van Gageldonk
Faculty of Mathematics and Computing Science, TUE, 1998-04

In Terms of Nets: System Design with Petri Nets and Process Algebra
A. A. Basten
Faculty of Mathematics and Computing Science, TUE, 1998-05

Inductive Datatypes with Laws and Subtyping – A Relational Model
E. Voermans
Faculty of Mathematics and Computing Science, TUE, 1999-01

