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Abstract. This paper describes a supervised algorithm for word sense disambiguation based on
hierarchies of decision lists. This algorithm supports a useful degree of conditional branching while
minimizing the training data fragmentation typical of decision trees. Classifications are based on a
rich set of collocational, morphological and syntactic contextual features, extracted automatically
from training data and weighted sensitive to the nature of the feature and feature class. The algorithm
is evaluated comprehensively in the SENSEVAL framework, achieving the top performance of all
participating supervised systems on the 36 test words where training data is available.
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1. Introduction

Decision lists have been shown to be effective at a wide variety of lexical ambiguity
resolution tasks including word sense disambiguation (Yarowsky, 1994, 1995;
Mooney, 1996; Wilks and Stevenson, 1998), text-to-speech synthesis (Yarowsky,
1997), multilingual accent/diacritic restoration (Yarowsky, 1997), multilingual
accent/diacritic restoration (Yarowsky, 1994), named entity classification (Collins
and Singer, 1999) and spelling correction (Golding, 1995).

One advantage offered by interpolated decision lists (Yarowsky, 1994, 1997) is
that they avoid the training data fragmentation problems observed with decision
trees or traditional non-interpolated decision lists (Rivest, 1987). They also tend to
be effective at modelling a large number of highly non-independent features that
can be problematic to model fully in Bayesian topologies for sense disambiguation
(Gale, Church and Yarowsky, 1992; Bruce and Wiebe, 1994).

This paper presents a new leaning topology for sense disambiguation based
on hierarchical decision lists, adding a useful degree of conditional branching
to the decision list framework. The paper also includes a comprehensive evalu-
ation of this algorithm’s performance on extensive previously unseen test data in
the SENSEVAL framework (Kilgarriff, 1998, Kilgarriff and Palmer, this volume),
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showing its very successful application to the complex and fine-grained HECTOR
sense inventory.

2. System Description

The basic decision-list algorithms used in this system are described in Yarowsky
(1994, 1997), with key details outlined below. Note that part-of speech (POS)
tagging is treated as a disjoint task from sense tagging, and a trigram POS tagger
has been applied to the data first. The POS tagger has not been optimized for
the specific idiosyncrasies of the SENSEVAL words and such optimization would
likely be helpful.

2.1. FEATURE SPACE

The contextual clues driving the decision list algorithm are a cross-product of rich
sets of token types and positions relative to the keyword. The example decision lists
in Table I illustrate a partial set of such features. Positional options include relative
offsets from the keyword (+1,−1, −2), the keyword itself (+0), co-occurrence
within a variableκ-word window (± κ), and larger n-gram patterns (+1+2,−1+1).
Another crucial positional class are the wide range of syntactic relations extracted
from the data using an island-centered finite state parser. The valid patterns differ
depending on keyword part of speech, and for nouns they are V/OBJ – the verb
of which the keyword is an object (e.g.showed very abundant promise), SUBJ/V
– the verb of which the keyword is the subject, and MODNOUN – the optional
headnoun modified by the noun. Each of these patterns help capture and generalize
sets of very predictive longer-distance word associations.

Five major token types are measured in each of the diversity of syntactic/
collocational positions, including W = literal word, L = lemma (win/V=win, wins,
won, winning), P = part-of-speech, C = word class (e.g.countryname) and Q =
question, such as is the word in the given position capitalized? Together this rich
cross-product of word-type and syntactic position offers considerable refinement
over the bag-of-words model.

2.2. FEATURE WEIGHTING AND BASIC DECISION SIST GENERATION

For each word-position featurefi, a smoothed log-likelihood ratioP(fi |sj )
P (fi |¬−si ) is

computed for each sensesj , with smoothing based on an empirically estimated
function of feature type and relative frequency. Candidate features are ordered
by this smoothed ratio (putting the best evidence first), and the remaining proba-
bilities are computed via the interpolation of the global and history-conditional
probabilities.1
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2.3. HIERARCHICAL DECISION LISTS

One limitation of traditional flat decision lists is that they do not support conditional
branching. Yet it is often the case that given some major splitting criterion (such
as whether a keyword is identified as a noun or verb) we would wish to divide the
control flow of the decision procedure into relatively independent paths specialized
for the modelling needs of each side of the splitting partition. Decision trees, which
entail complete path independence aftereverynode split, pay for this power with
wasteful training data fragmentation. Yet a simple forest of uniflow decision lists
fails to capture the common hierarchical structure to many decision problems. This
proposed hybrid supports several major useful decision flow partitions, but largely
retains the uniflow non-data-fragmenting benefits of interpolated decision lists.

The key to the success of this approach is defining a class of such natural major
partitioning questions for the application, and pursuing exhaustive cross-validated
search on whether any candidate partition improves modelling of the training data.2

For the application of sense disambiguation, some natural major decision-flow
partitioning criteria are:

− Split on the part of speech of the keyword. As previously noted, the sense
inventory and natural decision lists for the noun and verb senses of words is
widely divergent, and thus a top-level split in control flow based on keyword
part-of-speech is very natural. The top-level decision list in Table I illustrates
this split into subsequent LN (noun) and LV (verb) decision lists for the word
promise.

− Split on keyword inflection. Similarly, within a major part-of-speech,
different inflectional forms (e.g.promiseandpromises, or scrapandscraps)
often exhibit different sense inventory distributions and different optimal
subsequent modeling. In the mid-level list in Table I,promises(NOUN) sepa-
rately yields a mostly pure sense distribution that effectively excludes senses
5 and 6. In contrast, the singular inflectionpromise(NOUN) retains this ambi-
guity, requiring the subsequent decision list L4 to distinguish senses 4, 5 and
6. While this partition could technically have been done with finer grained
parts of speech at the top-level split, the interaction with other mid-level
questions (see below) makes this two-tiered part-of-speech partition process
worthwhile.

− Split on major idiomatic collocations. Many idiomatic collocations like
keep/break/give/make a promiseor shake up/down/out/offbenefit from a
subsequent specialized decision list to resolve the possible sense differences
for this specific collocation (e.g. L1 or L2), and when corresponding to a
single sense number (e.g.keep a promise→ 4.3) can directly yield a sense-
tag output (as a specialized decision list would have no residual ambiguity
to resolve). Such candidate collocations are extracted from the basic defining
inventorymne-uid.map3 (e.g.promise 538409 keep n promise / / 4.3) and/or
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Table I. Partial decision list hierarchy for the SENSEVAL wordpromise.

Top-level Decision List forpromise

Pattern Next Empirical Sense Distribution
Loc Typ Token List 1 3 4 4.1 4.2 4.3 4.4 5 6

+0 P NOUN→ LN(⇓) 0 0 297 53 5 37 11 22 93
+0 P VERB→ LV 440 115 0 0 0 0 0 0 0

⇓
Mid-level Decision List forpromise.LN (noun)

Pattern Next Empirical Sense Distribution
Loc Typ Token List 4 4.1 4.2 4.3 4.4 5 6

V/obj L keep/V → 4.3 0 0 0 31 0 0 0
V/obj L break/V → 4.4 0 0 0 0 11 0 0
V/obj L make/V → L1 2 44 0 0 0 0 2
V/obj L give/V → L2 0 0 5 1 0 1 2
+0 W promises → L3 115 5 0 0 0 0 1
+0 W promise → L4(⇓) 180 2 0 1 0 21 88

⇓
(Abbreviated) Terminal Decision List forpromise. L4 (promise-noun- singular)

Pattern Output Empirical Sense Distribution
Loc Typ Token Sense LogL 4 4.1 4.2 4.3 4.4 5 6

+ 1 W to → 4 9.51 41 0 0 0 0 0 0
−1 W of → 6 8.16 0 0 0 0 0 0 12
−1 L early/J → 6 7.38 0 0 0 0 0 0 7
V/obj L show/V → 6 7.27 0 0 0 0 0 0 13
+1 W at → 6 6.16 0 0 0 0 0 0 3
−1 L firm/J → 4 5.74 6 0 0 0 0 0 0
+1 L do/V → 4 5.70 3 0 0 0 0 0 0
−1 W such → 6 5.57 0 0 0 0 0 0 2
−1 W much → 6 5.57 0 0 0 0 0 0 2
+1 W when → 6 5.57 0 0 0 0 0 0 2
+1 W on → 6 5.57 0 0 0 0 0 0 2
+1 W as → 6 5.57 0 0 0 0 0 0 2
−1 W your → 4 5.16 2 0 0 0 0 0 0
+1 W during → 4 5.16 2 0 0 0 0 0 0
± κ L free/J → 4 4.74 15 0 0 0 0 0 0
V/obj L trust/V → 4 4.74 3 0 0 0 0 0 0
± κ L support/N → 4 4.64 14 0 0 0 0 0 0
± κ L election/N → 4 4.29 11 0 0 0 0 0 0
subj/V L contain/V → 4 4.18 2 0 0 0 0 0 0
V/obj L win/V → 4 4.16 2 0 0 0 0 0 0
V/obj L repeat/V → 4 4.16 2 0 0 0 0 0 0
V/obj L honour/J → 4 4.16 2 0 0 0 0 0 0
−1 L rhetorical/J → 5 4.09 0 0 0 0 0 0 0
−1 L increase/V → 5 4.09 0 0 0 0 0 0 0
−1 L future/J → 5 4.09 0 0 0 0 0 0 0

partition (5.1/5.2/5.3/6.1/6.2) was generally pursued on the SENSEVAL data. Recent
results indicate that an even more effective compromise in this case is to utilize a deeply
hierarchical approach where probabilities are interpolated across sibling subtrees.
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from collocations that are found to be tightly correlated with specialized sense
numbers in the training data. The decision to split out any such collocation is
based on an empirical test of the global efficacy of doing so.4

− Split on syntactic features. In many cases it is also useful to allow mid-level
splits on syntactic questions such as whether a keyword noun premodifies
another noun (e.g. the standard syntactic feature MODNOUN ! = NULL).
Such a split is not useful topromise, but is widely applicable to the HECTOR
inventory given its tendency to make an NMOD subsense distinction.

− Partition subsenses hierarchically. When a sense inventory has a deep
sense/subsense structure, it may be useful to have third-level decision
lists focus on major sense partitions (e.g. 4/5/6) and when appropriate
yield pointers to a finer-grained subsense-resolving decision list (e.g. L5
= 5.1/5.2/5.3). This multi-level subsense resolution is most effective when
the subsenses are tightly related to each other and quite different from the
other major senses. For performance reasons, however, a flat direct subsense
partition (5.1/5.2/5.3/6.1/6.2) was generally pursued on the SENSEVAL data.
Recent results indicate that an even more effective compromise in this case is
to utilize a deeply hierarchical approach where probabilities are interpolated
across sibling subtrees.

3. Evaluation and Conclusion

Table II details the performance of the JHU hierarchical decision list system in the
1998 SENSEVAL evaluation. To help put the performance figures in perspective,
the average precision for all supervised systems is given, as is the precision for
the best performing system of any type. All data to the left of the vertical line are
based on the July 98 bakeoff. Here the JHU system achieved the highest average
overall precision on the 36 “trainable” words (for which tagged training data was
available).

Due to the haste under which the primary evaluation was conducted, and the
inability to manually check the output, for three words (bet/Noun, floating/Adj
and seize/Verb) the JHU system had errors in mapping from its internal sense
number representations (a contiguous sequence 0,1,2,3,. . . ) to the standard output
sense IDs (538411, 537573, 537626, etc.). This resulted in significantly lower
scores for these three words. Thus for the 2nd round October 98 evaluations, these
simple mapping errors were corrected and nothing else was changed. Corrected
performance figures are given to the right of the vertical line.

The additional evaluation area consisted of the 5 words for which no annotated
training data was available. As a demonstration of robustness, the JHUsupervised
tagger was applied to these words as well, trained only on their dictionary defi-
nitions. Precision for these words was measured at deaf = 94.3, disability = 90.0,
hurdle = 69.0, rabbit= 76.5 and steering = 95.0, with an overall average precision
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Table II. Performance of the JHU system on the 36 trainable words.

Avg. Initial Best JHU JHU Final New
Syst JHU Syst Rank % of JHU JHU

Word POS Prec. Prec. Prec. of 21 Best Prec Rank

All Trainable a 72.7 77.8 77.8 1 100.0 77.3 1
All Trainable n 81.7 84.7 87.0 3 97.4 87.0 2
All Trainable p 73.7 78.1 78.1 1 100.0 78.1 1
All Trainable v 66.4 73.4 73.4 1 100.0 74.3 1
All Trainable all 73.40 78.4 78.4 1 100.00 78.9 1

accident n 92.3 95.6 95.7 2 99.9
amaze v 94.6 100.0 100.0 1 100.0
band p 87.5 90.6 90.6 1 100.0
behaviour n 87.5 96.1 69.4 + 99.7
bet n 60.8 52.2 75.7 − 69.7 78.8 1
bet v 55.5 69.8 78.6 3 88.8
bitter p 63.8 64.9 73.4 + 88.4
bother v 75.3 80.2 86.5 2 92.7
brilliant a 56.1 59.5 61.4 3 96.9
bury v 47.8 46.2 57.3 + 80.6
calculate v 87.9 92.2 92.2 1 100.0
consume v 52.1 53.0 58.5 + 90.6
derive v 59.5 66.4 67.1 2 99.0
excess n 83.5 87.8 90.0 2 97.6
float n 65.1 82.2 82.2 1 100.0
float v 47.1 54.0 61.4 2 87.9
floating a 57.2 0.0 80.9 − 0.0 63.6 +
generous a 53.7 59.5 61.2 2 97.2
giant a 84.1 99.1 99.5 3 99.6
giant n 83.6 85.8 91.0 + 94.3
invade v 56.5 54.6 63.4 − 86.1
knee n 81.5 84.6 87.1 2 97.1
modest a 68.2 71.8 72.9 + 98.5
onion n 86.7 92.1 92.5 2 99.6
promise n 84.4 88.6 88.6 1 100.0
promise v 69.8 90.9 91.3 2 99.6
sack n 76.9 87.8 87.8 1 100.0
sack v 83.1 97.8 97.8 1 100.0
sanction p 76.9 86.5 86.5 1 100.0
scrap n 64.2 75.1 79.5 2 94.5
scrap v 78.7 94.9 95.1 2 99.8
seize v 64.2 65.3 68.4 2 95.5 73.5 1
shake p 68.6 70.9 76.5 3 92.7
shirt n 90.8 92.6 97.8 3 94.7
slight a 92.0 96.3 96.3 1 100.0
wooden a 95.8 97.4 98.0 3 99.4

Rank/best for all systems+ = above median rank Average precision for supervised
systems− = below median rank
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of 81.7%, the 2nd-highest untrainable-word score among all participants, including
those systems specialized for unsupervised and dictionary-based training.

Finally, the comparative advantage of hierarchical decision lists relative to
flat lists was investigated. Using the most fine-grained inventory scoring and 5-
fold cross validation on the training corpus for these additional studies, average
accuracy on the 36 test words dropped by 7.3% when the full 3-level lists were
replaced by a single 2-level list splitting only on the part of speech of the keyword.
A further 1% drop in average accuracy was observed on the ‘p’ words (bitter,
sanction, etc.) when their top-level POS split was merged as well.5 Taken together
these results indicate that optionally splitting dataflow on keyword inflections,
major syntactic features, idiomatic collocations and subsenses and treating these
in separate data partitions can improve performance while retaining the general
dataflow benefits of decision lists.

One natural next step in this research is to evaluate the minimally supervised
bootstrapping algorithm from Yarowsky (1995) on this data. Results on the word
rabbit show a 24% increase in performance using bootstrapping on unannotated
rabbit data over the supervised baseline. The major impediment to this work is
the lack of discourse IDs in the data (or at least a matrix indicating those test
sentences co-occurring in the same discourse). This information is crucial to the
co-training of the one-sense-per-collocation and one-sense-per-discourse tenden-
cies that enables the bootstrapping algorithm to gain new beachheads and robustly
correct acquired errors or over-generalizations. Thus acquisition of some type of
discourse or document IDs for the HECTOR sentences would potentially be a very
rewarding investment.

Notes
1 The history-conditional probabilities are based on the residual data for which one earlier pattern
in the decision list matches. While clearly more relevant, they are often much more poorly estimated
because the size of the residual training data shrinks at each line of the decision list. A reasonable
compromise is to interpolate between two conditional probabilities for any given featurefi at line i
of the list,βiP (sj |fi ) + (1− βi ) P (sj |¬f1 ∧ ..∧ ¬fi−1), whereβi = 0 corresponds to the original
Rivest (1987) decision list formulation.
2 Training time for a single linear decision list is typically under 2 seconds total elapsed clock time
on a SPARC Ultra-2. Because there is often a natural hierarchical sequence of split question types,
and because many combinations are unnecessary to consider (e.g.nmodand noun inflectional cases
under the top-level LV=verb split), the total space of tested split combinations is typically (much)
less than 1000, and hence very computationally tractable.
3 http://www.itri.bton.ac.uk/events/senseval/mne-uid.map
4 Note that small numbers of themake/give/break a promisesenses 4.1, 4.2 and 4.3 are not caught by
the specialized patterns in the mid-level decision list. There are several reasons for this. A majority
of these few misses are due to parsing errors that failed to recognize the correct headword given
unusually convoluted syntax. In some cases, there may be genuine ambiguity, as in sentence 800848
“that thepromisesgiven to him be kept”, which is recognized as4.2 = give a promisebut was human
labelled as4.3 = keep a promise.
5 On explanation for this smaller drop is that the feature spaces for different parts of speech are
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somewhat orthogonal, making it relatively less costly to accommodate their separate decision threads
in the same list.
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