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Abstract

This paper presents a comprehensive empirical exploration and evaluation of a diverse range

of data characteristics which influence word sense disambiguation performance. It focuses on

a set of six core supervised algorithms, including three variants of Bayesian classifiers, a cosine

model, non-hierarchical decision lists, and an extension of the transformation-based learning

model. Performance is investigated in detail with respect to the following parameters: (a) target

language (English, Spanish, Swedish and Basque); (b) part of speech; (c) sense granularity;

(d) inclusion and exclusion of major feature classes; (e) variable context width (further

broken down by part-of-speech of keyword); (f) number of training examples; (g) baseline

probability of the most likely sense; (h) sense distributional entropy; (i) number of senses per

keyword; (j) divergence between training and test data; (k) degree of (artificially introduced)

noise in the training data; (l) the effectiveness of an algorithm’s confidence rankings; and

(m) a full keyword breakdown of the performance of each algorithm. The paper concludes

with a brief analysis of similarities, differences, strengths and weaknesses of the algorithms

and a hierarchical clustering of these algorithms based on agreement of sense classification

behavior. Collectively, the paper constitutes the most comprehensive survey of evaluation

measures and tests yet applied to sense disambiguation algorithms. And it does so over a

diverse range of supervised algorithms, languages and parameter spaces in single unified

experimental framework.

1 Prior comparative surveys of sense disambiguation performance

Most previous comparative surveys of sense disambiguation performance have been

limited to a single algorithm, a single language, a single word (or a few words)

or all of the above. For example, Gale, Church and Yarowsky (1992), in one

of the most comprehensive parameter-based studies to-date (including training size,

context width and introduced noise), were limited to a single algorithm (a ratio-based

Bayesian classifier) over binary sense distinctions on 12 English words. Yarowsky

(1993) further detailed the contributions of variable feature types and part-of-speech

sensitivity to context width, but was limited to one algorithm (decision list) and 30

binary homographs. In contrast, Leacock, Towell and Voorhees (1993) compared

three distinct algorithms (a content vector model, a Bayesian classifier, and a single-

layer neural-net) on a more heavily polysemous word (line) but varied only training



294 D. Yarowsky and R. Florian

data size. Mooney (1996) extended the line-based comparative survey to algorithms

including Näıve Bayes, 3-nearest neighbors, perceptron, decision tree, decision list

and PFOIL inductive logic programming variants. However, Mooney restricted

comparisons to training size, training time and testing time. His conclusions that

Näıve Bayes was consistently the top performer in this set of algorithms finds

some support in the results of the current study below. In more recent comparative

surveys, the inclusion of learning curves (based on variable training data size)

have become the standard, but additional new parameters are rarely explored. One

addition includes Ng’s (1997) comparison of performance across different corpora

(Brown Corpus and Wall Street Journal ). Other large-scale comparative studies

include Pedersen (2001), who compared Bayesian and decision-tree algorithms in

detail, and Stevenson and Wilks (2001), who investigated the relative efficacy of such

knowledge sources as LDOCE subject codes and selectional preference over major

parts of speech and sense granularities.

A limiting factor in prior comparative analyses was the lack of a large-scale stand-

ard evaluation set. senseval1 (Kilgarriff and Palmer 2000) dramatically improved

that status quo, and for the first time over 18 sense disambiguation systems were

compared in a common evaluation framework. Kilgariff and Rosenzweig (2000)

rigorously contrasted systems by keyword part-of-speech, presence of supervision,

number of senses and sense entropy. However, because each system was developed

and executed at independent sites, the evaluation process could not modify and

contrast system internal parameters (such as variable context width or inclusion

of feature classes) or even variable properties of data sets (such as training set

size). Furthermore, systems not only used different algorithms but also different

feature representations and feature extraction quality. Thus, it was not possible in

this heterogeneous survey to isolate differences due to algorithm design, feature

space utilized or the parameter settings chosen. While such a multi-site comparative

exercise has been invaluable for exploring unprecedented diversity of methods in

a common test set and standards, there remains a need for single-site comparative

studies more closely able to control and systematically vary internal and external

parameters across algorithms, maintaining other variables such as the utilized feature

space as constant as possible. This paper presents such a survey.

2 Experimental framework and utilized algorithms

All the algorithms contrasted in this study are based on a shared, uniform and

rich contextual feature space, including word, part-of-speech and lemma in both

variable-width bag-of-words wide context and in local n-gram collocations. They

also include feature associations in salient syntactic relationships, such as verb-object,

noun-modifier, etc. The feature space is shared with the classifier combination study

in Florian, Cucerzan, Schafer and Yarowsky (this issue) and described more fully

there. The Senseval2 WSD training data (Edmonds and Cotton 2001) are used with

five-fold cross-validation for all evaluation. Details including training data size and

number of senses of all 73 English polysemous keywords, can be found in Table 1

(Appendix).
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Table 1. Keyword-itemized performance on Senseval2 English lexical sample task

Num Num

Model Samples Senses ML Entr FENBayes BayesRatio Cosine DL TBL

begin.v 557 8 59.1% 0.2 79.4% 79.2% 80.3% 81.3% 83.1%

call.v 132 23 25.7% 0.5 43.9% 38.6% 35.6% 39.4% 40.2%

carry.v 132 27 23.5% 0.6 37.9% 43.2% 43.2% 39.4% 40.1%

collaborate.v 57 2 91.2% 0.1 86.1% 94.7% 87.9% 91.2% 94.7%

develop.v 133 15 30.1% 0.5 36.9% 38.4% 41.3% 40.6% 36.0%

draw.v 82 32 8.5% 0.7 30.4% 31.6% 32.9% 35.2% 26.9%

dress.v 119 14 39.3% 0.4 60.5% 59.6% 53.8% 45.4% 56.2%

drift.v 63 9 20.5% 0.5 37.9% 34.6% 28.3% 41.2% 33.3%

drive.v 84 15 32.1% 0.5 60.6% 60.7% 61.8% 54.7% 52.4%

face.v 186 7 83.3% 0.2 80.1% 79.0% 75.3% 85.5% 81.7%

ferret.v 2 1 100.0% 0.0 100.0% 100.0% 100.0% 100.0% 100.0%

find.v 132 17 15.9% 0.6 41.6% 35.6% 35.6% 34.8% 28.7%

keep.v 133 27 36.9% 0.5 35.3% 44.4% 36.9% 52.7% 60.9%

leave.v 132 14 28.9% 0.5 44.8% 43.9% 41.0% 43.3% 39.5%

live.v 129 10 49.6% 0.4 64.2% 62.7% 61.1% 61.9% 62.7%

match.v 86 8 36.1% 0.4 36.0% 30.1% 33.7% 33.5% 45.4%

play.v 129 25 10.8% 0.5 44.9% 40.3% 37.9% 45.7% 44.1%

pull.v 122 33 22.2% 0.6 48.4% 42.7% 47.7% 44.4% 44.4%

replace.v 86 4 51.2% 0.3 45.4% 45.3% 44.2% 47.7% 61.8%

see.v 131 21 31.3% 0.5 37.4% 36.6% 27.4% 32.1% 32.8%

serve.v 100 12 26.0% 0.5 59.0% 54.0% 53.0% 47.0% 50.0%

strike.v 104 26 9.6% 0.6 43.1% 40.3% 34.5% 40.2% 43.1%

train.v 125 9 23.2% 0.4 55.2% 48.8% 44.0% 56.8% 45.6%

treat.v 88 6 29.5% 0.3 52.4% 53.4% 46.6% 43.2% 55.6%

turn.v 131 43 9.9% 0.7 53.4% 52.7% 54.2% 55.7% 61.0%

use.v 147 7 68.0% 0.2 66.6% 65.9% 51.0% 70.0% 70.0%

wander.v 100 4 83.0% 0.1 78.0% 79.0% 63.0% 81.0% 82.0%

wash.v 25 13 8.0% 0.8 52.0% 52.0% 56.0% 68.0% 40.0%

work.v 119 21 27.6% 0.5 44.6% 46.3% 40.4% 40.5% 39.6%

art.n 196 19 38.2% 0.4 59.7% 65.9% 63.8% 61.7% 67.3%

authority.n 184 11 33.7% 0.3 69.1% 69.0% 64.1% 60.4% 66.4%

bar.n 304 22 41.8% 0.4 71.4% 71.0% 69.4% 63.1% 65.1%

bum.n 92 6 70.6% 0.3 69.5% 70.6% 62.0% 71.8% 73.9%

chair.n 138 8 82.6% 0.2 91.3% 91.3% 88.4% 89.9% 88.4%

channel.n 145 10 40.7% 0.4 60.0% 62.1% 61.4% 49.7% 48.3%

child.n 129 9 60.4% 0.2 68.2% 66.6% 64.3% 72.1% 78.2%

church.n 128 7 56.4% 0.2 75.9% 72.7% 65.6% 62.6% 68.9%

circuit.n 170 16 27.1% 0.5 83.5% 83.5% 71.8% 63.5% 62.4%

day.n 289 18 60.6% 0.3 69.9% 72.7% 67.5% 70.6% 72.3%

detention.n 63 6 72.9% 0.3 96.9% 96.9% 90.4% 96.9% 96.9%

dyke.n 58 4 83.0% 0.3 81.5% 79.8% 71.4% 71.1% 84.7%

facility.n 114 6 53.5% 0.3 77.9% 70.1% 70.2% 72.0% 73.7%

fatigue.n 85 8 71.8% 0.3 87.1% 85.9% 88.2% 84.7% 88.2%

feeling.n 102 5 64.7% 0.2 68.7% 72.6% 69.7% 62.8% 69.7%

grip.n 102 7 53.8% 0.3 69.8% 63.9% 59.9% 58.8% 58.7%

hearth.n 64 5 63.8% 0.3 63.8% 60.8% 62.3% 63.8% 62.3%

holiday.n 62 8 88.8% 0.2 96.9% 96.9% 96.9% 95.3% 95.3%

lady.n 105 10 69.5% 0.3 81.9% 81.9% 79.0% 79.0% 78.1%

material.n 140 17 37.1% 0.4 63.6% 64.3% 61.4% 49.3% 54.3%

mouth.n 119 12 50.4% 0.3 59.7% 60.5% 58.9% 54.7% 63.2%

nation.n 75 5 85.3% 0.2 81.3% 81.3% 74.7% 81.3% 82.7%

nature.n 92 9 48.9% 0.4 60.9% 65.3% 64.2% 65.1% 58.7%
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Table 1. (Cont.)

Num Num

Model Samples Senses ML Entr FENBayes BayesRatio Cosine DL TBL

post.n 157 15 40.8% 0.4 69.4% 73.3% 72.0% 64.3% 70.1%

restraint.n 91 9 35.1% 0.4 69.3% 75.8% 67.0% 57.2% 61.6%

sense.n 107 9 35.7% 0.4 68.3% 71.9% 72.7% 66.5% 77.5%

spade.n 65 8 67.7% 0.3 83.1% 84.6% 81.5% 76.9% 81.5%

stress.n 79 7 57.0% 0.3 63.3% 67.2% 73.5% 63.3% 67.1%

yew.n 57 4 85.9% 0.2 94.5% 90.9% 94.5% 92.7% 91.1%

blind.a 108 9 62.9% 0.3 74.2% 71.5% 70.5% 72.3% 72.2%

colourless.a 68 3 77.9% 0.2 80.9% 82.4% 82.3% 77.8% 81.0%

cool.a 106 8 50.0% 0.4 70.7% 59.4% 52.9% 66.1% 56.6%

faithful.a 47 3 72.2% 0.2 65.6% 67.8% 59.6% 74.2% 70.0%

fine.a 142 13 40.7% 0.4 58.4% 64.1% 64.1% 55.7% 61.9%

fit.a 57 4 63.3% 0.2 83.9% 91.1% 76.8% 89.1% 91.1%

free.a 165 19 49.7% 0.3 71.5% 67.9% 68.5% 70.3% 70.3%

graceful.a 56 2 85.6% 0.1 83.8% 85.6% 85.6% 82.3% 87.4%

green.a 190 19 75.8% 0.3 84.7% 82.1% 74.2% 80.5% 83.2%

local.a 75 3 68.0% 0.2 72.0% 90.7% 78.7% 89.3% 89.3%

natural.a 206 25 31.0% 0.5 62.6% 63.1% 56.3% 52.9% 51.4%

oblique.a 57 4 57.6% 0.3 70.3% 72.3% 73.9% 77.0% 73.6%

simple.a 130 6 50.0% 0.3 45.4% 49.2% 50.0% 54.6% 52.3%

solemn.a 52 2 90.5% 0.1 88.5% 88.5% 78.5% 90.5% 88.5%

vital.a 74 8 86.5% 0.2 86.4% 89.1% 86.4% 89.1% 90.6%

Overall Mean 167.2 13.4 48.3% 0.4 65.2% 65.2% 62.2% 63.0% 64.5%

No times was Max 5 25 21 7 13 20

The algorithm set investigated here includes a standard cosine vector model,

non-hierarchical decision lists (DL; as described in Yarowsky (1996)), and a variant

of Transformation-Based Learning (TBL) optimized for word-sense disambiguation

(Florian et al ., this issue). It also includes the Näıve Bayes model and a variant

BayesRatio (BR) model, using the P (s|d)
P (¬s|d) likelihood ratio model described in

Gale et al. (1992). All of these algorithms utilize the same rich feature space to

facilitate direct comparison.1 The selective inclusion and omission of these features

is systematically explored in section 3.2. As an additional benchmark, the traditional

Näıve Bayes using only unordered bag-of-words features is directly compared in

certain experiments as a stand-alone algorithm. Thus for clarity, the näıve Bayes

model with its feature space significantly augmented with this study’s full set of

position-sensitive, syntactic and local collocation features, is henceforth referred to

as FENBayes (Feature-Enhanced Näıve Bayes).

Finally, based both on similarities in algorithm design and empirical behavior

detailed in section 3.7, we will classify these algorithms as one of two major types:

1 Positionally sensitive features are easily added to the traditional bag-of-words models such
as cosine by simply subscripting vector tokens with their feature class. This distinguishes
the keyword-adjacent high L church from an unsubscripted high in position-independent
bag-of-words context.
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Fig. 1. Performance based on language, sense granularity and part-of-speech.

discriminative (DL and TBL) or aggregative (cosine, FENBayes and BR). The

aggregative models integrate all available evidence in favor of a sense and then

select the sense with the maximum cumulative support, while the discriminative

models tend to rely on one or a few features in any given context that most

efficiently partition or discriminate the candidate sense space.

3 Comparative study of algorithms and diverse parameter spaces

The following seven subsections provide a comprehensive and systematic study of

the effects of parameter-space variation over the six focus algorithms outlined in

section 2. Performance on the 73 English keywords is further detailed in Table 1.

3.1 Performance sensitivity to language and part-of-speech

Figure 1 compares performance of the algorithms by language and part-of-speech.

FENBayes and BayesRatio are consistently the top performing methods. One

exception is the Decision List classifier, which achieves second place on Basque.
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Local Collocations Only −18.4 −11.5 −6.1 −1.5 −3.3

Syntactic Features Only −28.1 −14.9 −5.4 −5.4 −4.8

Fig. 2. English performance based on variable exclusion and inclusion of feature types.

Cosine is on average weakest, especially on English and Basque. Also, on Spanish

and Swedish the best aggregative models perform significantly2 better a (p ≤ 10−4)

than the discriminative ones, perhaps due to the less-frequent majority sense baseline

observed in these languages.

Decision lists and TBL perform significantly lower on nouns (p ≤ .01) than the

best aggregative models, consistent with the observation that will be detailed in

Section 3.3 that they are less effective in modeling multiple features in wide context.

In contrast, their accuracy is closely competitive on verbs and adjectives, where

single features tend to be independently predictive.

3.2 Performance sensitivity to feature type

This section explores both the relative contributions of individual feature types and

the relative effectiveness of different algorithms in exploiting the individual feature

types. Henceforth all results will be based on Senseval2 English data.

Figure 2 illustrates the performance differences between aggregative and discrim-

inative models based on available feature type. Figure 2(a) shows the performance

2 All significance tests in this article were performed using the paired McNemar test.
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of individual models when only provided with features of three types.3 Figure 2(b)

details the observed loss in performance when either only using one of the positional

feature classes or excluding one of the positional feature classes relative to the

algorithm’s full performance using all available feature types.

Figure 2(b) shows that the discriminative algorithms (TBL, DL) are generally

effective at modeling each of these three positional feature types in isolation. As they

tend to base their classifications on the single most reliable contextual feature (for

DL) or few features (for TBL), restriction to the most information-bearing syntactic

positions or local collocations does not greatly impoverish the feature space relative

to the one they would utilize without restriction. In particular, decision lists tend to

be most balanced in the relative contribution of individual feature classes; exclusion

of any one feature type drops overall performance by a fairly uniform 2.3–4.5%,

while performance using each feature class in isolation is nearly identical. The

divergence is somewhat greater for TBL, which depends most heavily upon local

context (2.9% loss when excluded and only 1.5% loss when used in isolation) and

derives relatively little contribution from wider-context bag-of-words (only 0.5%

drop when used in isolation, 6% drop when used exclusively).

In striking contrast, the aggregative models (Cosine and Bayes variants) depend

heavily on the multiple reinforcing feature clues obtainable from wide context, and

are severely hobbled by restriction to the few instantiated local features despite

their relatively greater information content per feature. Excluding wide-context

bag-of-words features drops Bayes and Cosine performance by 15% and 8%,

respectively, while using local context in isolation leads to a 18% and 11% drop,

exactly the converse of TBL’s behavior. This complementarity of expertise provides

strong motivation for the productive classifier combination of these model variants

described in Florian et al . (this issue).

Overall, the marginal performance improvement due to local-context collocational

features is on average 3.3% (4.5% for decision lists). Syntactic positional features on

average offer a weaker average marginal performance improvement of 1.4% (2.3%

for decision lists), perhaps due to their sparser instantiation rate (29.4%) and the

greater noise in syntactic dependency detection.

Figure 3 further details the contribution of syntactic features by part of speech

and argument type. Nouns derive relatively little marginal benefit from syntactic

features over simple local collocations (such as the words to their right and left) and

wide context, while verbs (and to a lesser extent adjectives) derive greater marginal

benefit from a more precise extraction of their syntactic arguments. As would be

3 These feature types contrasted in Figure 2 are: (a) BagOfWords Context only (context
modeled as a bag of contextual features undifferentiated by position) although utilizing
variable context widths optimized on a held-out development data, and including all
feature types (such as lemmas) not just raw words, (b) Local Context only, which
includes only features in bigrams and trigrams immediately adjacent to the keyword, and
(c) Syntactic Features Only, which includes those features in specific syntactic relationships
to the keyword such as VerbObject and NounModifier. The latter suffer from sparse or
incomplete data problems because many of these syntactic relationships do not apply to
individual keywords contexts, and those that do (such as the verb in a subject-predicate
relationship) might have been unreliably identified due to syntactic ambiguity.
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Fig. 3. The contributions of various types of syntactic features as measured by the relative

system accuracy loss on their omission.

expected, verbs derive the greatest marginal benefit from extracting their object,

although the discriminative models (DL and TBL) are also effective at utilizing

any preposition or object-of-preposition arguments when present. Decision lists also

benefit strongly from more precise isolation of an adjective’s dominating noun, such

as in a copular relationship distinct from simple adjacent collocation. These results

may be specific to English, however, and one would expect a greater contribution

of syntactic analysis to languages where the key arguments appear with freer word

order or in less typically adjacent positions than in English.

3.3 Performance sensitivity to context window size

There are striking differences in model performance based on utilized wide-context

window size. Figure 4(a) further substantiates that TBL and decision lists are the

most effective at exploiting narrow context window sizes, while the performance

of the aggregative models continues to grow as more potential reinforcing features
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Fig. 4. Classification accuracy based on variable context width.

are made available to them. Interestingly, TBL’s performance actually decreases

as available context width grows, indicating that spurious associations from wide

context may be overwhelming local contextual signal. This motivates the selection

of a relatively narrow ±10 word maximum context window for TBL based on

held-out development data parameter estimation. Decision lists, which base their

classifications on the single most confident feature and smooth feature ratios sensitive

to context distance, are not similarly distracted by the competing attraction of

weaker, often spurious, features from wide context. But they do not benefit from

greater context either, with performance growth nearly flat with increasing context

width.

Further insight may be gained by examining context-window sensitivity based

on the part-of-speech of the keyword. As also observed by Yarowsky (1993), the

marginally useful context width for nouns is quite large, plateauing here at ±150
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words for the Bayesian model family. Likewise, the marginally useful context width

for adjectives is quite narrow, showing negligible contribution beyond the initial

±5 context window. Interestingly, however, for verbs the marginally useful context

width plateaus at an unexpectedly wide ±60–80 words. This would suggest that

the verbs in the English Senseval2 inventory exhibit a substantial mass of sense

ambiguities sensitive to broad topic as well as argument-based selectional preferences,

which one would expect to have limited occurrences beyond a − 5 to + 10 word

context window. This observation is further supported by the continued increase

in performance when widening context beyond ±25 words for decision lists, which

base classifications on only the single most reliable contextual feature. Examples of

individual Senseval2 verbs which benefit most from the use of wide topic context

include to collaborate (e.g. traitorous vs. ordinary cooperation) and to train (e.g.

exercise, instruct, etc.).

3.4 Performance sensitivity to size of training data

Learning curves relative to size of training data are a longstanding foundation of

machine learning evaluations. Figure 5 shows the performance obtained by each

classifier on randomly selected variable-size subsets of the training data, including a

minimum of one example per sense.4 From the six classifiers, FENBayes exhibits the

largest relative drop in performance on small training sizes. The baseline performance

using the most likely sense is not flat here because the choice of the most likely

sense was made on training data rather than test data. As training sizes increase,

the accuracy of correctly identifying the most likely sense also increases. Cosine and

Näıve Bayes still underperform this conservative lower-bound at small data sizes,

while the discriminative models (TBL and DL) perform relatively well on small

training data.

When replotting Figure 5(a) on a log-log scale (using error rate rather than

accuracy) in Figure 5(b), a clear log-linear reduction in error rate emerges across an

eight-fold increase in training data size. This shows that the performance difference

between the best and worst-performing algorithm is comparable to that achieved

by an approximately three-fold increase in training data at any point. While the

relative cost-efficiency of additional training annotation versus comparable effort

in algorithm development are open to debate and highly sensitive to one’s relative

cost models (Ngai and Yarowsky 2000), these curves at least show the potential for

brute-force reduction of error rate through additional annotation. Unfortunately,

assuming continued log-linear extrapolation, one would expect to require a 100-fold

increase in training data for a brute-force performance increase to 80% accuracy (for

the English lexical choice task), and a 5000-fold increase in training data for a brute-

force increase to 90% mean accuracy. However, such long-range extrapolations can

4 Note that the largest measured size here is 80% of the original training set, given that 20%
of data was set aside as devtest in five-fold cross validation, leaving the final Senseval2 test
data untouched in these experiments to avoid the possibility of even indirect optimization
of parameters and methods on this easy-to-overuse resource.



Evaluating sense disambiguation across diverse parameter spaces 303

Percent of Total (Available) Training Data

TBL
DL

Cosine

NaiveBayes

66

64

62

60

58

56

54

52

50

48
30 40 50 60 70 8010 20 90

S
en

se
 C

la
ss

if
ic

at
io

n

Majority Sense Classifier

A
cc

u
ra

cy
BayesRatio

FENBayes

32

34

36

38

40

42

44

46

48

50

52

TBL
DL

Cosine

NaiveBayes

Percent of Total (Available) Training Data
20 30 40 60 70 10010 50 80

Majority Sense Classifier

BayesRatio

FENBayesS
en

se
 C

la
ss

if
ic

at
io

n
E

rr
or

Fig. 5. Performance based on training data size.

be highly unreliable, and even a small log-slope change can substantially affect the

anticipated performance increase from additional data.

3.5 Performance sensitivity to task difficulty

Algorithm performance also shows sensitivity to various measures of task difficulty,

such as sense entropy and number of senses per keyword. Rather than alter the data

artificially to create the desired change in target parameters, which might distort

other data characteristics in unpredictable ways, Figures 6(a)–8(a) are based on the

unaltered data set sorted into 15 equal-token-size bins by the focus parameter (with

an average of five polysemous words and 573 tokens in each bin).
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Fig. 6. Performance based on the probability of the majority sense and sense entropy.

Probability of the majority sense: Figure 6(a) shows the relative performance of

algorithms given the probability of the majority sense in the training data. When

the probability of the majority sense exceeds 80%, it appears difficult for any

tested algorithm to exceed the performance of a baseline algorithm which always

assigns the majority sense observed in the training data. In fact, cosine substantially

underperforms this baseline in this range, suggesting that it insufficiently weights

the sense prior. The discriminative models tend to do relatively well when the

majority sense percentage is high (TBL significantly outperforms FENBayes on

data where the majority sense exceeds 80% (p ≤ 0.05), and does significantly worse

than FENBayes when the majority sense is less than 40% (p ≤ 0.01)).

Sense entropy: Figure 6(b) measures algorithm performance given the entropy

of a keyword’s sense distribution as a fraction of the total possible entropy
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Fig. 7. Performance based on number of examples per sense and senses per keyword.

(Hr(p) = H(p)
log2(#senses)

.5 The performance of all algorithms degrades substantially with

higher sense entropy, although the discriminative models perform relatively well on

lower entropy data (TBL significantly outperforms FENBayes when relative entropy

<0.60 (p ≤ 0.05), and significantly underperforms it when relative entropy >0.75

(p ≤ 0.001)).

Mean number of training examples per sense: Figure 7(a) shows that all algorithms

perform substantially better on data sets with with a greater mean number of

training examples per sense. The discriminative models do relatively well when

this number is high, with TBL significantly outperforming all aggregative models

5 For example, an 8-sense keyword with an entropy of 1.5 would be divided by its maximum
possible entropy (log2(8) = 3), for a ratio of 0.5. This helps to focus the measure on high
ambiguity of distribution over the possible senses, in contrast to simple entropy which
largely tends to mirror the number of possible senses.
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Fig. 8. Performance based on train/test divergence and noise in the training data.

when the number of training examples per sense is greater than 15 (p ≤ 0.01),

and significantly underperforming the Bayesian models when the mean number of

training examples per sense is less than 12 (p ≤ 0.01).

Number of senses: 7(b) shows algorithm performance on keyword data sorted

by their number of senses. Consistent with trends illustrated in previous figures,

TBL significantly outperforms the best aggregative algorithms (FENBayes and

BayesRatio) on keywords with fewer than 8 senses (p ≤ 0.05) and significantly

underperforms these same algorithms when a keyword’s number of senses is greater

than 15 (p ≤ 0.05).

Training/test divergence: Figure 8(a) shows that the performance of all algorithms

degrades substantially when the divergence between the sense probability distribution

in training and test data is high, as measured by Kullback-Leibler (KL) divergence.

Performance degrades when senses expected to be rare based on training data are

more common in test data, and vice-versa. This suggests a high reliance on prior

probabilities in selecting senses, especially in ambiguous contexts. The discriminative

models tend to do relatively well in cases of large training-test divergence; TBL
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significantly outperforms the best aggregative model (FENBayes) when divergence

exceeds 1.5 (p ≤ 0.05), and significantly underperforms it when divergence is less

than 1.0 (p ≤ 0.05).

Noise in training data: Figure 8(b) shows the relative tolerance of classification

algorithms to training data noise, in terms of the percentage of randomly introduced

changes to the training sense classifications (the altered senses are generated with a

probability following the original sense distribution). Decision lists are particularly

sensitive to training noise, given their dependence on single high-confidence features,

which are weighted by their training data sense purity.

3.6 Performance sensitivity to sample coverage and system confidence

For many applications it may be preferable to achieve more accurate partial results

at the expense of reduced coverage. Figure 9 shows the accuracy of each algorithm

as a function of data coverage, when their classifications are considered in decreasing

order of algorithm confidence (which was measured as the probability of the most

likely sense on a test instance under the specified model).

One striking outcome is that Decision Lists are best able to identify their most

accurate output. In the roughly 20% of test data where decision lists are internally

most confident, their accuracy ranged from 92–97% and achieved a 40% lower error

rate relative to other algorithms’ most confident 20% of their output. This ability to

more successfully identify their most accurate output makes decision lists particularly

useful for techniques in unsupervised and minimally supervised learning (such as co-

training) where the ability to anchor a bootstrapping procedure with high-confidence

initial seed sets is useful (Yarowsky 1995). This property is also helpful in variable-

weight classifier combination based on confidence. Accurately estimating the test

samples where an algorithm is likely correct (or not) is important to successfully

boosting or downweighting an algorithm’s vote relative to an undifferentiated

baseline voting weight.



308 D. Yarowsky and R. Florian

0.0 0.2 0.4 0.6 0.8 1.0

NaiveBayes

Cosine

BayesRatio

FENBayes

DL

TBL

No Extended

Aggregative

Discriminative

With Extended
Features

Features

Algorithm Similarity

Fig. 10. Induced algorithm clustering.

TBL notably underperforms here, but this is a property of its pylon-like decision

topology not being conducive to differential probability estimation. Traditional TBL

(Brill 1995) was limited to a single probability output per output label. The TBL

model used here incorporates Florian, Henderson and Ngai’s (2000) algorithm for

history-based probability estimation, which dramatically improves upon the TBL

baseline but is still hindered by the constraints of the pylon classification topology,

which merges diverse predicate histories to minimize training data fragmentation.

3.7 Analysis of patterns in algorithm performance

Throughout this paper, empirical differences in behavior have been noted between

the class of aggregative algorithms (FENBayes, BayesRatio, Cosine) and discrimin-

ative algorithms (DL and TBL). This section will provide additional empirical and

functional motivations for this algorithm classification typology.

Figure 10 shows a dendogram automatically generated by maximal-linkage hier-

archical agglomerative clustering of these algorithms, where the similarity between

two classifiers is measured by their pairwise agreement rate on the English

Senseval2 data. Interestingly, the observed top-level split is between those five

algorithms which share the enhanced feature space (sensitive to relative position

and syntactic relationship), and the traditional Näıve Bayes algorithm using only

bag-of-words features. This indicates that major differences in the utilized feature

space are more dominant factors in algorithm performance than differences in

algorithm architecture. As illustrated in Figure 1, the 5–12% absolute difference

in performance between Näıve Bayes and FENBayes (which differ only in their

utilized feature space) significantly exceeds the mean cross-algorithm performance

differences of all algorithm pairs on all four languages when using the same feature

space (p ≤ 0.01, with the exception of cosine on Basque). Furthermore, as illustrated

in Figure 2, the cost of omitting any major feature type is a significant performance

loss for all algorithms (p ≤ 0.05), often exceeding cross-algorithm performance

differences. These observations imply that the highest priority in algorithm design

should be to enrich and improve the supporting feature space as much as possible.
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However, when the available feature space is held constant, the discriminative

algorithms (DL and TBL) and the aggregative algorithms (FENBayes, BayesRatio,

Cosine) form natural subclusters in Figure 10 as hypothesized.

A brief comparison of functional algorithm behavior motivates this clustering.

One of the most salient differences between the discriminative and aggregative

algorithms is their exploitation of the feature space. As previously noted, decision

lists base their classification on only the single most confident feature present in a

test context. TBL also typically bases its classification on a relatively small set of

the most incrementally informative contextual features in greedy, error-minimizing

training. In contrast, the methods in the aggregative cluster (FENBayes, BayesRatio

and Cosine) integrate all the observed contextual features into one consensus score.

Thus the aggregative models should be more effective on contexts where several

weak clues contribute towards a more confident aggregate classification. In addition,

one would expect that the discriminative models should be relatively more capable

in contexts where a single feature (in the case of DL) or limited combination of

features (for TBL) is decisive.

The findings in sections 3.1–3.3 support these analyses. The discriminative models

have significantly weaker performance on nouns relative to other classifiers, but

perform competitively on adjectives and verbs (where very limited syntactic rela-

tionships are typically decisive). They are significantly less impaired by the restriction

to local or syntactic features. They also perform significantly better when context

width is restricted. Furthermore, section 3.5 shows that the discriminative models

perform significantly better on lower entropy, fewer-sense-per-keyword data, and on

data where the prior probability of the majority sense is high, while the aggregative

models appear to better tolerate sense inventories with multiple, highly similar

senses. This would indicate that discriminative models may benefit from use in a

hierarchical, recursive splitting of major senses followed by subsenses, rather than a

single flat k -way disambiguation of the full subsense inventory at once.

4 Implications and conclusion

A general conclusion one can draw from all of these previous results and obser-

vations is that there is no one-size-fits-all algorithm that excels at each of the

diverse challenges in sense disambiguation. This is illustrated most clearly in

Table 1 (detailing performance on each English keyword), where even weakly

performing algorithms such as cosine and most frequent sense classifiers are

top performers for several keywords. There is a remarkable diversity of success

across algorithms. Comparable tables for our other target languages show similar

diversity of effectiveness. Moreover, section 3 shows that the (empirically motivated)

discriminative and aggregative algorithm classes often have complementary regions

of effectiveness across numerous parameters. These results strongly motivate the

usage of classifier combination algorithms to incorporate the diverse and unique

strengths of these algorithms into a synergistic consensus. Such a goal is realized in

the companion article to this study (Florian et al., this issue), which investigates and

comprehensively evaluates a range of traditional and novel classifier combination
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algorithms. The conclusion of that study is that robust combination of these

diverse classifiers can achieve significant improvement over the single-best stand-

alone classifier, achieving the highest known current performance on the senseval2

lexical sample tasks for English, Spanish, Swedish and Basque.

In complementary contrast, the work presented above has yielded insight into the

nature, scope and implications of the diversity found in these component algorithms

and their underlying phenomena. This includes the observation that the quality of the

feature space can have significantly greater impact on WSD performance than the

choice of classification algorithm. Collectively, it constitutes the most comprehensive

survey of evaluation measures, languages, algorithms and diverse parameter spaces

yet applied to word sense disambiguation in a single unified experimental framework.
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