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The populations and transitions between Ramachandran basins are stu-
died for combinations of the standard 20 amino acids in monomers,
dimers and trimers using an implicit solvent Langevin dynamics algor-
ithm and employing seven commonly used force-fields. Both the basin
populations and inter-conversion rates are influenced by the nearest
neighbor’s conformation and identity, contrary to the Flory isolated-pair
hypothesis. This conclusion is robust to the choice of force-field, even
though the use of different force-fields produces large variations in the
populations and inter-conversion rates between the dominant helical,
extended b, and polyproline II basins. The computed variation of confor-
mational and dynamical properties with different force-fields exceeds the
difference between explicit and implicit solvent calculations using the
same force-field. For all force-fields, the inter-basin transitions exhibit a
directional dependence, with most transitions going through extended b
conformation, even when it is the least populated basin. The implications
of these results are discussed in the context of estimates for the backbone
entropy of single residues, and for the ability of all-atom simulations to
reproduce experimental protein folding data.
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Introduction

A fundamental descriptor of a polypeptide’s
conformation is the set of its backbone dihedral or
torsional angles. For each residue, these angles
specify a location in the Ramachandran plot of F,
C angles.1,2 The intrinsic preference for each pep-
tide unit to be in one Ramachandran basin or
another and the inter-basin hopping rates directly
affect secondary structure preferences and residual

structure in the denatured state, as well as the
overall thermodynamics and kinetics of protein
folding. In spite of this significance, only a few
studies have focused on the peptide backbone
dynamics using atomic-level force-fields (FFs) in
an aqueous environment.3 – 5 Furthermore, an anal-
ysis of these backbone dynamics and structure is
useful to reveal any dependence on context,
including the conformation and chemical identity
of the nearest-neighbor (NN) residues. Here, we
present such a study for amino-acetylated (Ace)
and carboxy-amidated (Nme) versions of a mono-
alanine “dipeptide” (i.e. Ace-Ala-Nme) and for
dimers and trimers (Figure 1(a)) with one, two and
three pairs of F, C dihedral angles, respectively.

Our analysis tests the applicability of the Flory
isolated-pair hypothesis (IPH),6 which is invoked
implicitly in many equilibrium and kinetic treat-
ments of protein folding, including helix-coil the-
ories. According to the IPH, the Ramachandran
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basin populations of one residue are independent
of its neighbors’ conformations (except for proline,
and residues preceding proline residues): “the
interactions associated with rotations of one such

independent pair are quite independent of the
angles assumed by neighboring pairs.”6 When this
pivotal isolated-pair assumption is valid, the back-
bone entropy of the system can be expressed as

Figure 1 (legend opposite)
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the sum of individual residues’ entropies. Within
the IPH, a single helix-coil equilibrium constant
can be assigned to each amino acid species without
qualification with respect to either its neighbor’s
configuration or identity, as is done in nearly all
analyses of helix-coil transitions.

Pappu et al.7 consider the reduction in sampling
due to NN’s configuration in polyalanine. In con-
tradiction to the IPH, they find that the central resi-
due, located between two residues with helical
geometries, is sterically hindered by these neigh-
bors. However, when the dihedral angles in a poly-
peptide are chosen according to their relative basin
probabilities without restriction to the helical
basin, the number of overlapping conformations is
minor, for example, only 16% for a 12 residue

chain.8 Hence, steric hard-core type overlap pro-
vides only a minor reduction in the total confor-
mational entropy of the unfolded state (in the
absence of extensive helical configurations).

Molecular dynamics (MD) simulations have
demonstrated recently that different FFs can pro-
duce rather large differences in basin
populations.4,9,10 Garcia and co-workers find that
the Amber 96 FF must be altered so that a largely
alanine-containing peptide is predicted to undergo
helix-coil transitions at the experimentally
observed temperatures.11 Their alteration involves
the elimination of an additional, backbone dihe-
dral, or torsional potential, which is present with
varying topographies in most commonly used
FFs.4 Upon elimination of this added potential, the

Figure 1. Dynamics of a tri-peptide. (a) Ace-(Ala)3-Nme peptide with center of the three pairs of backbone dihedral
angles highlighted. The hydrogen atoms are shown in stick representation (black), whereas oxygen (red), nitrogen
(blue) and carbon (grey) atoms are depicted in ball-and-stick representation. (b) Backbone dynamics of different center
residues in Ala-X-Ala. The 15 ns time-course is presented for the basin populations, colored according to the legend
given at the top of the Figure. Simulations for three representative FFs are provided to demonstrate the wide variation
in populations between the FFs. Residues spend considerably more time in basin 3 (helical) when the Amber 94 FF is
used compared to the G-S-94 and OPLS-AA-01 FFs, where there is higher probability for extended b structures
(basin 2) and PP-II (basin 1).

 

 

Table 1. Basin populations and configurational entropy for different force fields

Force field PP-II (%) Extended b (%) a-Helical (%) TDSa (kcal mol21 K21)

Amber 94 1.08 (13) 1.5 (3) 96.86 (80) 0
Amber 96 14.15 (41) 76.27 (44) 5.02 (14) 20.187
Garcia-A94 30.24 17.8 45.31 20.358
Charmm27 24.20 (55)b 18.33 47.62 (45) 20.365
OPLS-AA-97c 82.97b (88)b 12.57 (12) 20.355
OPLS-AA-01 31.02 (65)[61.6]d 41.17 (12)[29.4]d 20.75 (17)[5.1]d 20.372
OPLS-UAc 59.31b 33.93 20.427

For Ala2 in an N and C-terminal capped Ala1-Ala2-Ala3 at T ¼ 300 K. Values in parentheses are from an explicit solvent MD calcu-
lation for tri-alanine with a positively charged (þ1) N terminus and neutral C terminus.10

a Calculated using equation (1) and referenced to value for Amber 94.
b Combined values for PP-II and extended b.
c PP-II and extended b basins are not distinguished in this FF.
d Values in square brackets are obtained with our implicit solvent LD calculation for a tri-alanine with a positively charged (þ1) N

terminus and neutral C terminus, provided for comparison to the explicit solvent MD calculations10 performed on a similar molecule.
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Figure 2. Ramachandran basin populations for difference FFs. (a) Ramachandran plot of Ala2 in Ala1-Ala2-Ala3
computed using the OPLS-AA-01 FF shows the presence of three distinct basins. (b) Basin populations for Ala2 for
the seven different FFs, calculated from averages along the time trajectories such as those illustrated in Figure 1(b).
The most populated basins are PP-II (basin 1), extended b (basin 2) and a-helical (basin 3). (c) Basin population for
Gly in Ala-Gly-Ala using the OPLS-AA-01 FF. An unconventional view for the Ramachandran basins is used to enable
visualizing both the population (top) plot and the contour (bottom) plot.
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basin preference in Garcia’s FF is determined
entirely by backbone, side-chain, electrostatic, and
solvent interactions and geometries. Similarly,
explicit solvent MD simulations by Hu et al. and
Mu et al. show that the preference for the helical
basin ranges from ,10–90% and that individual
inter-basin hopping rates can vary up to tenfold
when computed using different FFs for the simple
examples of di-alanine and di-glycine4 and tri-
alanine.10

Because of the considerable influence an FF can
exert on predicted inter-basin hopping frequencies,
we test the reliability of our conclusions by per-
forming independent calculations employing
seven commonly used FFs, namely Amber 94†,
Amber 96,12 Garcia’s modified Amber 9411 (referred
to here as G-S-94), Charmm-27,13 OPLS-united
atom,14 OPLS-AA-97, and the latest OPLS-AA-01 15

The comparison of predictions obtained from the
different FFs is also motivated by the knowledge
that they have been optimized to reproduce ther-
modynamic data (and, in some cases, ab initio
quantum calculations15) and are generally vali-
dated by their ability to describe protein structures.
Consequently, their suitability for dynamical calcu-
lations is unclear, because dynamics is sensitive to
the heights of kinetic barriers, whereas thermodyn-
amics and native structures are not.

Our Langevin dynamics (LD) simulations with
an implicit solvent model16 produce nearly the
same, strong FF-dependence of basin populations
and dynamics obtained from MD calculations

with explicit solvent.10 Moreover, where the same
FFs are used for explicit and implicit solvent simu-
lations, good agreement is found, thereby support-
ing the validity of our computationally far less
expensive approach.

In the present extensive study at 300 K, we
examine the validity of the IPH using molecular
mechanics potentials to construct and analyze the
conformational and dynamical properties of pep-
tides composed of many different amino acid com-
binations (60 different species in all). For all seven
FFs considered, the time-course of the LD trajec-
tories reveals that a residue’s basin population
and dynamics may be influenced strongly by the
NN’s conformation and chemical identity. We cal-
culate the backbone conformational entropy in the
unfolded state for each residue according to its
sampling of the Ramachandran plot. This calcu-
lation is conducted separately by assuming that
the samplings for each residue are independent
(the IPH assumption) and by considering the corre-
lated motions in order to quantify the error in IPH.
We discuss the implications of the different ther-
modynamics and dynamics produced by the var-
ious widely used FFs upon the ability of all-atom
simulations to describe the free energies, folding
pathways and time-scales in protein folding.

Results

The Ramachandran basin assignments are
derived from the observed time-course of the
population distributions (Figure 2(a); see
Methods). A common definition is suitable for all

Figure 3. Ramachandran basin
populations for Ace-Ala-Nme for
different FFs. Populations are
obtained from 45 ns LD trajectories.

† http://amber.scripps.edu/
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seven FFs. The most populated basins are the poly-
proline II (basin 1, B1), extended b (basin 2, B2),
and a-helical (basin 3, B3) conformations (see
Table 1). The polyproline II (PP-II) and extended b
basins are separated by a free-energy barrier for
all the FFs, except the OPLS-UA and OPLS-AA-97
FFs, where only a single basin is present in this
region of the Ramachandran plot. The existence of
a distinct PP-II basin is established both exper-
imentally in native structures and unfolded
fragments17 – 19 and in computer simulations.10,20

Figure 1(b) presents the time-course of basin
occupancies for the central Ala in the tri-Ala pep-
tide as calculated with three different FFs using
the color code at the top of the Figure. The color
variations between the trajectories from the
different FFs strikingly expose the qualitatively
different dynamics predicted by the various FFs.
The Amber 94 FF populates the helical basin pre-
dominantly, whereas the distribution among the

three dominant wells is more uniform for G-S-94
and OPLS-AA-01, though G-S-94 yields signifi-
cantly more helical population than OPLS-AA-01.

Sequence-dependence of NN effects

Underlying the IPH is the assumption of a lack
of correlations between the F, C dihedral angles
of neighboring residues due to the rigidity of the
peptide bond. Our first investigation focuses on
the importance of the flanking moieties. A series
of simulations is performed contrasting the beha-
vior of an alanine dipeptide, i.e. a single alanine
molecule capped with acetyl and amide groups
(Figure 3), with that of an alanine residue flanked
on both sides with alanine residues (Figure 2(b)).
The presence of less bulky neighbors in the single
alanine molecule increases the fraction of time the
alanine spends in the extended b and PPII confor-
mations (basins 1 and 2). For example, using the

Table 2. Alanine conformational preferences as a function of its NN chemical identity

Ala-Ala-X X-Ala-Ala

X Basin 1 Basin 2 Basin 3 Basin 1 Basin 2 Basin 3

Ala 1.1 ^ 1.5/30.02 ^ 5.2/
31.02 ^ 2.1

1.5 ^ 2.9/17.9 ^ 2.1/
41.02 ^ 2.0

96.8 ^ 2.9/45.75 ^ 5.1/
20.2 ^ 2.6

1.1/30.02/
31.02

1.5/17.9/
41.02

96.8/45.75/
20.2

Trp 6.6/27.25/19.4 11.6/17.83/31.2 80.26/48.41/43.6 2.8/48.0/
21.66

9.06/41.16/
50.41

87.66/4.50/
24.33

Met 1.0/34.08/24.5 1.42/20.22/23.25 97.13/39.91/45.0 2.0/19.33/
23.16

4.2/13.58/
27.13

93.26/63.68/
41.46

Asp 0.4/23.25/12.2 0.4/45.08/40.83 99.0/25.75/44.12 0.2/26.25/
28.6

1.04/18.25/
23.16

98.53/48.41/
41.7

Asn 3.87/39.8/10.0 7.9 /22/14.5 87.0/32.58/17.81 3.16/31.41/
36.16

5.00/22.5/
35.17

91.20/41.16/
20.53

Leu 0.6/51.51/23.65 0.1/25.7/21.81 99.4/14.33/46.33 3.34/22.3/
27.83

4.51/28.3/
34.25

92.34/39.1/
28.50

Gly 6.8/44.75/35.12 12.33/28.25/41.91 79.13/16.41/15.41 4.80/32.0/
38.68

4.00/21.75/
36.58

90.2/40.48/
18.25

Influence on the center alanine’s basin populations. Values in percent are given for the Amber 94/G-A96/OPLS-AA-01 FFs,
respectively. Errors indicate the difference between a 15 ns and a 45 ns trajectory (omitting an initial 3 ns equilibration period).

Table 3. Influence of NN sequence on alanine’s basin population fractions

AMBER 94 (kcal mol21) G-S-94 (kcal mol21) OPLSAA-2001 (kcal mol21)

X in Ala-X B1 B2 B3 B1 B2 B3 B1 B2 B3

Ala-Ala 0 0 0 0 0 0 0 0 0
Ala-Trp 0.32187 0.38131 20.0814 0.2567 0.57102 20.957 0.28123 0.16389 20.4616
Ala-Met 0.14866 0.38131 20.0208 20.0763 0.36265 20.4142 0.14119 0.34036 20.4806
Ala-Asp 20.3254 20.8086 0.49557 0.36313 20.3609 1.11653 0.55953 0.00249 20.4687
Ala-Asn 20.1266 0.12945 20.0073 20.0157 0.32163 20.5273 0.67884 0.62365 0.07555
Ala-Leu 0.05046 20.02 0.00648 20.1666 0.35422 20.2238 0.16237 0.37872 20.4981
Ala-Gly 20.2749 0.1358 0.00382 20.0788 0.12601 20.1303 20.0749 20.0132 0.1624
Ala-Ala 0 0 0 0 0 0 0 0 0
Trp-Ala 20.1073 20.2467 0.05502 0.15756 20.0026 20.4162 0.21511 20.124 20.1116
Met-Ala 0.10302 0.25847 20.0368 20.053 0.11203 20.0948 0.17494 0.24776 20.4314
Asp-Ala 0.57189 0.16253 20.0581 0.13285 0.08293 20.4892 0.04835 0.34269 20.4349
Asn-Ala 0.05046 20.0249 5.432 £ 1024 0.08533 0.04877 20.3418 20.0924 0.09203 20.0097
Leu-Ala 0.32554 0.24839 20.067 0.01402 0.00481 20.1429 0.06472 0.10793 20.2065
Gly-Ala 20.8225 20.233 0.11512 0.0705 0.20779 20.6366 20.1328 0.06844 0.06091

For the alanine in bold face, calculated according to RT (ln (fractional population in basin Y for alanine when NN is residue X) 2
ln (fractional population in basin y for alanine when NN is alanine)). Only the fractional populations in basins 1, 2 and 3 are pre-
sented. The NN conformation is unconstrained. The negative values indicate that the NN effect due to residue X on Ala is less than
the NN effect of Ala on Ala.
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Amber 94 FF, essentially the entire population is in
the helical basin 3 for the (capped) tri-alanine mol-
ecule, whereas ,20% populates the other two
basins in the (capped) mono-alanine molecule.
The difference between mono and tri-alanine
demonstrates that the rigidity of the peptide back-
bone does not prevent the neighbor moieties from
influencing the backbone configuration of even a
small amino acid such as alanine.

These results are similar to those reported by Hu
et al., who observe that mono-alanine populates the
helical basin 84% of the time with Amber 94.4,10,21

Our implicit solvent LD simulations for the tri-
alanine basin populations agree reasonably with
the explicit solvent MD simulations for a similar
system reported by Mu et al. (Table 1).5 Mu et al.
perform their simulations for a tri-alanine with a
positively charged (þ1) N terminus and a neutral
C terminus (Y. Mu, personal communication). Our
LD simulations with neutral tri-alanine and the
Amber 94 FF yield an a-helical basin population
that differs by ,15% from the explicit solvent

Figure 4 (caption on page 702)

Table 4. Sequence-dependence of backbone entropy in
Ala-X-Ala with unconstrained neighbors

T(SX 2 SAla) (kcal mol21)

X AMBER 94 G-S-94 OPLS-AA-01 OPLS-UA

Ala 0 0 0 0
Asn 0.0045 20.053 20.008 20.0515
Cys 0.06 0.0245 20.017 20.049
Val 20.076 0.067 20.276 20.1495
Lys 20.0815 0.033 20.111 20.0455
Glu 20.041 4.00 £ 1024 20.139 20.1135
Tyr 20.06765 20.125 20.065 20.02
Trp 0.1015 20.0945 20.32 20.0095
Ser 20.024 0.025 20.036 20.0235
Asp 20.251 20.1485 20.852 20.12495
Ile 20.0425 20.181 20.674 20.1565
Met 0.0255 20.09995 20.033 20.0515
Phe 0.3465 20.2061 0.22 20.0645
Thr 20.024 20.022 20.164 20.1005
His 0.1795 0.0105 0.021 20.0955
Pro 20.2675 20.398 20.473 20.2505
Gln 20.02 20.0385 20.01 20.0383
Arg 20.0415 0.006 0.011 20.0635
Leu 0.09 20.032 20.11 20.04995
Gly 0.498 0.045 0.22 0.0455
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calculations. Compared to the explicit solvent cal-
culations with the Amber-96 and OPLS-AA-2001
FFs, our simulations have 27–34% less PP-II popu-
lation and 29–32% more extended b population,
and are within 9% for the helical population. Our
simulations for the CHARMM-27 FF produce 12%
less combined b and PP-II populations. Very close
agreement with the explicit solvent simulations is
found for the populations from the OPLS-AA-97
FF (within 6%). This general agreement for similar
systems provides strong justification for use of the
implicit solvent model in our more extensive
study of NN effects that follows.

Moreover, the primary difference between the
implicit solvent and the explicit solvent simu-
lations lies in the latter having more PP-II basin
population. This enhancement arises, in large part,
from the implicit solvent simulations use of a tri-
alanine molecule having a charged (þ1) N termi-
nus. When a similarly charged molecule is studied
with implicit solvent (capped with –NH2 rather
than –H), the agreement with the explicit solvent
treatment is very good; 65% versus 61% for the
PPII basin, 12 % versus 29% for the extended b
basin, 17% versus 5% for the helical basin, respect-

ively. Hence, much of the difference in the two
types of simulations is eliminated when the identi-
cally charged molecule is investigated.

The three FFs (Amber 94, OPLS-AA-01 and G-S-
94) generate different basin preferences for the tri-
alanine molecule (Figure 1(b) and first row in
Table 2). The Amber 94 FF predicts a predominant
helix basin population, while the G-S-94 and
OPLS-AA-01 yield helix, extended, and PPII basin
populations in the ratios roughly of 3:2:1 and
2:4:3, respectively. Table 2 illustrates the NN effect
on the central Ala residue in the peptides Ala-Ala-
X and X-Ala-Ala for seven different residues X (of
varying character), while Table 3 and Figure 4 dis-
play the NN influences for X in the seven pairs of
di-peptides Ala-X and X-Ala. The G-S-94 and
OPLS-AA-01 FFs produce an appreciable NN
effect, with the alanine basin populations some-
times changing by a factor of 3 as the neighboring
side-chains are varied. For example, the helix
basin population for the center alanine residue
using the G-S-94 FF ranges from the low of 16.4%
when the C-terminal NN is Gly to a high of 48.4%
for Trp. The populations are 40.5% and 4.5% when
the N-terminal NN is Gly and Trp, respectively.

Figure 4 (caption on page 702)

700 Backbone Dynamics Simulations



Similarly, large NN influences are evident for the
G-S-94 FF in Table 2.

The Amber 94 FF yields only a marginal NN
effect and only in the di-peptides (data not
shown). This difference arises because the Amber
94 FF predicts that the alanine backbone almost
always remains in the helical basin, regardless of
the NN, whereas the helical basin population var-
ies between 5% and 75% for the other two FFs.
Hence, much of our analysis focuses on the two
more realistic FFs, G-S-94 and OPLS-AA-01.

The NN effects computed for the dimers are of
a magnitude similar to those obtained for the tri-
mers (data not shown), which confirms that the
observations concerning NN effects are not arti-
facts of longer-range i 2 1, i þ 1 side-chain
interactions.

Backbone entropy

The influence of NN residues can be quantified
in terms of the change in an alanine’s backbone
entropy due to the presence of different neighbors.
Using the basin populations on the Ramachandran
map, we calculate the backbone conformational

entropy according to the relation (see Methods):

S ¼ 2R
X120

i¼1

X120

j¼1

Pij ln Pij ð1Þ

where Pij is the normalized probability of being in
the i,jth 38 £ 38 mesh element in the Ramachandran
map, and R is the gas constant. Although this cal-
culation of S depends on the mesh size (i.e. the
volume per configuration in phase space), entropy
differences between residues, or between those cal-
culated with different FFs, do not.

The difference in basin populations for the
different FFs is manifest in residue-dependent
backbone entropies (Table 1 and Figure 5). For
example, the entropy is the lowest with the
Amber 94 FF, where essentially all the population
is in the helical basin. For the center alanine resi-
due in tri-alanine, the backbone entropy TDS
calculated using Amber 96 is larger than TDS
calculated using Amber 94, by 0.18 kcal mol 21

(1 cal ¼ 4.184 J). This increase reflects the binary
basin occupancy between the extended and PP-II
basins for Amber 96. Because the simulations
with the other five FFs yield a more uniform

Figure 4 (caption on page 702)
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distribution of these three basins, the backbone
entropy of the center residue in tri-alanine for
most FFs exceeds the Amber 94 entropy by
,0.4 kcal mol 21.

The change in an alanine’s backbone entropy
with different neighbors is of the same order of
magnitude as the difference in backbone entropy
between different residues (Table 4). On average,
the change in backbone entropy of Ala with differ-
ent neighbors is ,0.1 kcal mol 21, which is
approximately the average difference in the back-
bone entropy between the different types of resi-
dues. This difference in entropy between
individual residues is illustrated in Figure 5,
where the backbone entropy is presented for each
of the three residues in Ala-X-Ala where X ranges
over the 20 naturally occurring amino acids.
Although the backbone entropies for the G-S-94
and OPLS-AA-01 FFs often differ for individual
amino acids, values for the flexible glycine and the
highly restricted proline residues lie, as expected,
near the extrema in both FFs. The calculations
reproduce the known feature that residues preced-
ing trans-proline residues are conformationally
restricted. This effect is illustrated in Figure 5,

where both G-S-94 and OPLS-AA-01 depict a low
entropy for Ala1 when it precedes proline.

Geometric dependence of the NN effect

In addition to being sensitive to its NN side-
chain identity, a residue’s conformation is influ-
enced by its NN’s backbone conformation. The
helical basin population of residue X in Ala-X-Ala
often changes by twofold or more when both flank-
ing alanine residues are in the helical basin. Figure
6 illustrates the influence of the NN conformation
by presenting the difference in the backbone
entropy:

ðSNN free 2 SNN constrainedÞ ¼ TDS

for each of the 20 amino acids as computed when
both the flanking alanine residues are free to
occupy all basins according to the equilibrium
populations relative to when they are constrained
to be in the helical basin. This entropy difference
nearly vanishes for six to eight of the residues,
depending upon the FF. However, TDS lies in the
range of 20.5 to 0.2 kcal mol 21 for the majority of

Figure 4. Sequence-dependence of NN effects. The population distribution for the center Ala is presented for two
molecules, (a) Ala-Ala-X and (b) X-Ala-Ala calculated using the G-S-94 and OPLS-AA-01 FFs for X ¼ (Ala, Gly, Leu,
Trp, Met, Asn, Asp). The fractional population of the center Ala depends upon the neighboring residue type and
whether it is N or C-terminal (Table 2).
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residues using either the G-S-94 and OPLS-AA-01
FFs. Thus, a residue’s configuration can be affected
significantly by its NN conformations.

Because a residue’s entropy depends upon its
neighbors’ conformation, the backbone entropy of
the system is not the sum of the individual resi-
dues’ entropies. To estimate the magnitude of the
non-additivity, the entropy of pairs of residues in
a trimer molecule are calculated from the location
of the pair’s configuration in a 4D Ramachandran
plot ((F, C)i¼1,2). This behavior is illustrated for
the peptides AAA, LLL, VVV and for a pseudo-

random sequence Ala-Glu-Thr-Asn. The difference
in the correlated entropy and the sum of the entro-
pies of the individual residues, calculated assum-
ing that they are independent of their NNs’
conformation, is in the range of TDS , 0.3–
0.7 kcal mol 21 residue21 depending upon the FF
employed (Table 5). This range of non-additive
contributions is about half the estimated loss of
backbone entropy per residue upon unfolding
based on experimental data.22,23 Hence, the non-
additive correction is quite significant, and the
IPH is inadequate to describe the backbone

Figure 5. Backbone entropy and
sequence-dependence of the NN
effect. Entropy for each residue in
Ala1-X-Ala3, referenced to that of a
tri-alanine peptide as calculated
with the (a) OPLS-AA-01 and (b)
G-S-94 FFs. The value for residue X
represents the variation in back-
bone entropy with amino acid
type. Changes in the entropy of
Ala1 or Ala2 reflect their depen-
dence on residue X, while their
difference is due to being N or C-
terminal to the center residue, as
well as being at either end. The
abscissa is the one-letter code for
the amino acids.

              

Figure 6. Backbone entropy and
conformational dependence of the
NN effect. The difference in the
backbone entropy for residue X in
the tripeptide Ala-X-Ala when the
flanking alanine residues are free
to be in any basin versus when both
the flanking residues are in the heli-
cal basin (B3).
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entropy of short peptides. Therefore, an accurate
calculation of the unfolded state entropy must
include correlations of backbone motions for
neighboring residues.

Backbone dynamics

The rates of transitions between basins (or basin
escape rates) are studied for each of the seven FFs
using the basin auto-correlation function:

CiðtÞ ¼ kPiðtÞ·Pið0Þl ð2Þ

where Pi(t) is the probability of being in the ith
basin at time t. Pi(t) is defined as unity if the resi-
due is in basin i at time t and is zero otherwise.
The long time-limit of the correlation function Ci(t)
approaches a constant that equals the equilibrium
population of basin i for the FF. The correlation
functions for the helical basin 3 are nearly expo-
nential for the different FFs (Figure 7(a)), a beha-
vior consistent with first-order kinetics for the
escape from the basins. Poor fits to an exponential
arise for transitions out of basins with very low
populations because of meager statistics in these
cases. This trend of exponential decay kinetics is
observed also in the basin escape rates for basins 1
and 2 (data not shown). Inter-basin transition rates
kij are obtained from fitting the correlation func-
tions with an exponential decay towards the con-
stant long time-limit as described in Methods.

The time-constant for escape from the helical
basin of an Ala residue exhibits an eightfold dis-
persion as the FF is varied (Table 1 and Figure
7(b)). As expected, the Amber 94 FF yields the

slowest rate due to its overwhelming population
in basin 3, while the Amber 96 and OPLS-AA-97
FFs produce the fastest rates due to their negligible
populations in the helical basin. The Amber 96 and
G-S-94 rates differ by a factor of 5, which arises
solely from the flattening of the added torsional
potential for the G-S-94 FF (Figure 8). The corre-
lation functions for the other basins exhibit a very
similar dispersion in rates, as do those for the ala-
nine residue in an Ala-Ala di-peptide (data not
shown). A similar dispersion in rates appears in
the explicit solvent calculations reported by Mu
et al. for the tri-alanine peptide, where the authors
suggest that the hopping rates vary by almost an
order of magnitude for different FFs.10

An interesting aspect of the dynamics is the
directional sampling of the Ramachandran basins,
i.e. the existence of preferential transitions between
certain basins. An analysis of the inter-conversions
among the three major basins indicates that tran-
sitions are predominantly between basin 2 and either
basin 1 or basin 3 (Figure 7(b)) but not between
basins 1 and 3. This behavior is common for all FFs
(except the OPLS-UA and OPLS-AA-97 FFs, where
basins 1 and 2 coalesce into a single basin), indicating
that directional basin sampling is general. The origin
of the directional sampling can be viewed, for
example, as the requirement that the left-handed
PP-II conformation (basin 1) tends first to untwist
(basin 2) before it can re-twist into the right-handed
a-helical conformation (basin 3).

The basin hopping rates depend also on the NN
identity. The hopping rate of Ala2 in AAX and
XAA changes by almost 50% between X ¼ Ala
and X ¼ Gly. Similarly, X ¼ Asn and X ¼ Ala

Table 5. Reduction in backbone entropy due to NN correlations

TS1,2 T(S1 þ S2) TDS1þ2 TS2,3 T(S2 þ S3) TDS2þ3 TS3,4 T(S3 þ S4) TDS3þ4

A. Ala-Ala-Ala
G-S-94 –3.66 –2.40 1.26 –3.69 –2.57 1.12
CHARMM –3.63 –2.30 1.33 –3.77 –2.68 1.09
OPLS-UA 23.61 22.18 1.42 23.63 22.34 1.29
OPLS-AA-01 23.66 22.47 1.19 23.66 22.45 1.21

B. Val-Val-Val
G-S-94 23.77 22.88 0.88 23.85 23.16 0.69
CHARMM 23.83 23.13 0.7 24.04 23.41 0.63
OPLS-UA 24.01 23.49 0.52 23.88 23.16 0.72
OPLS-AA-01 24.00 23.36 0.64 24.01 23.51 0.50

C. Leu-Leu-Leu
G-S-94 23.91 23.34 0.55 23.76 22.97 0.78
CHARMM 23.84 23.02 0.82 24.21 23.58 0.63
OPLS-UA 23.69 22.57 1.12 23.71 22.68 1.02
OPLS-AA-01 23.78 22.95 0.83 23.79 22.96 0.92

D. Ala-Glu-Thr-Asn
G-S-94 23.68 22.42 1.25 23.77 22.64 1.13 23.74 22.68 1.05
CHARMM 23.68 22.59 1.08 23.86 23.13 0.73 23.93 23.36 0.57
OPLS-UA 23.62 22.26 1.35 23.68 22.41 1.27 23.68 22.61 1.07
OPLS-AA-01 23.78 23.01 0.77 24.04 23.54 0.50 24.13 23.63 0.50

Values are in kcal mol 21. Reduction in backbone entropy due to NN correlations is obtained according to: DSiþj ¼ (entropy of resi-
due i þ entropy of residue i þ 1) 2 (entropy of the system composed of residue i and residue i þ 1, calculated using 4D Ramachan-
dran map) resolved in 10 £ 10 grid elements. As with all calculations of entropy, the value for S depends on the mesh-size, and the
numbers listed are relative (see the text). However, entropy differences (DS) do not depend on mesh size, and are in absolute terms.
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display a difference of about 50% in hopping rates
(data not shown).

Discussion

We have investigated the backbone dynamics of
different peptides using Langevin dynamics simu-
lations with a validated implicit solvent model
and employing a variety of commonly used FFs.

A residue’s conformation, as well as its location in
the peptide sequence, can affect its neighbor’s
Ramachandran basin populations and basin inter-
conversion rates significantly (except with the
Amber 94 FF). For example, when the two flanking
residues in a trimer are restricted to the helical
basin, the residue’s backbone entropy may change
by the same order of magnitude as the difference
in backbone entropy between different amino
acids. These results are similar to those reported

 

 

 
 
 
 
 
 

Figure 7. Basin hopping rates and directional sampling. (a) Correlation function for the basin 3 population for the
center alanine residue in a tri-alanine peptide. The long time limit of the correlation function is the equilibrium popu-
lation of basin 3, which varies strongly with the FF. Escape rates are obtained from single-exponential fits to the corre-
lation functions (red lines). The finite duration of the simulations is responsible for some of the noise in the correlation
functions. The poorer exponential fits for the Amber 96 and OPLS-AA-97 FFs probably arise because of the small basin
3 populations and because a limited number of transitions occur during a 15 ns trajectory for these two FFs. (b) Inter-
basin hopping rates for tri-alanine as calculated with several FFs. Rates for the Amber 94 FF are not presented because
essentially only one basin is populated and there are very few transitions. Similarly, the rates between basin 2 and
basin 3 for Amber 96 are omitted because basin 3 is occupied only rarely. For the OPLS-UA and OPLS-AA-97 FF, the
rates are between basin 3 and the combined basins 1 and 2, which are not distinct in these FFs.
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by Pappu et al., though quantitative differences
exist due to their use of a more simplified hard-
sphere potential. The influence of either neighbor-
ing residues’ identity on the backbone entropy of
a residue is of the same magnitude. Additionally,
the identity of the NN can alter the rate at which
an alanine residue leaves, for example, the helical
basin by nearly 50%.

Decrease in backbone entropy due to
correlated motions

The influence of the NN’s conformation on the
torsional populations and kinetics of a residue
demonstrates the invalidity of the Flory IPH. A
similar conclusion is reached by Pappu et al., who
also observe a reduction in available conformations
for the terminal alanine residue of a helical seg-

ment. We quantify the extent to which backbone
conformations are coupled by calculating the
difference, DS, between the sum of the indepen-
dent entropies of each residue for a bonded pair
of amino acid residues and that for the correlated
pair. This difference is considerable, TDS ,0.3–
0.7 kcal mol 21 residue21 (Table 5). Additionally,
we observe that these correlations are due to
inter-basin motions as illustrated by the follow-
ing example. For the pseudo-random sequence
Ala-Glu-Thr-Asn, the entropy change, DS, from
correlated motions, as calculated with a coarse,
basin-level mesh, versus that with a finer mesh in
the 4D plot of (C1, F1, C2, F2), differs by only
,25% (data not shown). Because the finer mesh
entropy is sensitive to intra-basin motions, while
the coarser mesh entropy is sensitive only to inter-
basin motions, the small difference suggests that

 

 

  

 

 

 

  

Figure 8 (legend opposite)
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the correlations are primarily at the inter-basin
level.

Fortunately, most experiments measure the
entropy of the system as a whole and therefore
automatically include all contributions from the
correlated motions. Future studies will investigate
the magnitude of the neighbor effects in an entire
protein sequence and whether the entropy of the
system is strongly dependent upon sequence
order, rather than just composition.

Differences and accuracy of FFs

We have studied the equilibrium populations
and inter-basin hopping kinetics with seven widely
used FFs to examine the robustness of our con-
clusions, as well as to address questions concern-
ing the consistency and reliability of the FFs for
treating protein dynamics. As noted by Hu et al.4

and Mu et al.,10 an important difference among the
FFs is the bias towards certain basins (as exhibited
in Figures 2 and 8). The Amber 94 FF describes ala-
nine-like residues as largely populating only the
helical basin, while the Amber 96 FF avoids this
basin completely. The remaining five FFs lead to
the helical, extended and PP-II basins as being
populated more equally, although non-helical
basins are not distinct in the OPLS-UA and
OPLS-AA-97 FFs.

Garcia and co-workers correct for the “helixo-
phobicity” of the Amber 96 FF by completely flat-
tening the added Amber 96 torsional potential,
which is 1.5 kcal mol 21 unfavorable at the helical
basin (Figure 8). The OPLS-UA FF also has a flat
added torsional potential, while the added poten-
tial varies by 0.5 kcal mol 21 for CHARMM and by
as much as 2 kcal mol 21 for the OPLS-AA-97 and
OPLS-AA-01 FFs. However, the added torsional

Figure 8. Torsional biases in the
FFs: The added backbone torsional
potential of the different FFs. The
right column shows a contour plot
of the surface in the left column.
The axes are labeled in radians.
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potential determines only a portion of the back-
bone distribution, because other interactions, such
as partial charges, side-chain dihedral potentials,
and van der Waals interactions, contribute as
well.4,10,21

Recent experimental studies have shown that
alanine-rich unfolded peptides predominately
populate the PP-II basins.17,19,24 – 28 Except for the
Amber 94 FF and the OPLS-UA FF, all FFs predict
significant sampling of PP-II conformations. How-
ever, the PP-II basin still is not the most populated
for any of the FFs. Thus, there is a disparity
between the predictions of the FFs using implicit
solvent and experimental observations for very
small peptides. However, some of the above-men-
tioned experiments were carried out on molecules
that were either uncapped (charged (þ1) N termi-
nus and (21) C terminus),28 or partially capped
(þ1 charged N terminus).26 Hence, the simulations
should exhibit increased PP-II basin populations
over that expected for the neutral, capped version,
which provides the best mimic of longer
polypeptides.

We suggest that the discrepancy between the FFs
may reflect the fact that they have been designed
on the basis of thermodynamic data (perhaps with
some ab initio computations centered near potential
minima). The protein FFs have generally been vali-
dated by the degree to which they can reproduce
the structures of folded proteins. However, folded
proteins tend to have less PP-II structures than
either helical or b-sheet structures, so the under-
weighting of the PP-II basin by the FFs is, perhaps,
not too surprising. Additionally, the dynamics sen-
sitively reflects the heights of the saddle-points
connecting the basins, while the thermodynamic
and quantum data used to parameterize the FFs
are insensitive to these kinetic barriers.

Glycine flexibility and helical propensity

Compared to alanine, the backbone of glycine is
more flexible, as it can traverse a larger range of
the Ramachandran map (Figure 2(c)). However,
glycine still exhibits strongly preferred regions.
This preference reduces the overall sampling of
configurations, and the backbone entropy is
increased only modestly (using realistic FFs), e.g.
T(SAla-Gly-Ala 2 SAla-Ala-Ala) # 0.11 kcal mol 21 (Table 4).

It is generally believed that the difference in the
helical propensities between Ala and Gly at a
solvent-exposed position is attributed entirely to
differences in the backbone entropy of the
unfolded state, because the folded state has the
same entropy and interactions23,29 The difference
in helical propensity between glycine and alanine
is greater than 0.7 kcal mol 21,23,29 far larger than
their difference in backbone entropy for the
unfolded state (,0.11 kcal mol 21; Table 4). This
discrepancy between the known helical propensity
and our calculation of backbone entropy implies
either that (1) the FFs do not reproduce the
sampling of the unfolded state for alanine and/or

glycine accurately, or (2) the difference in backbone
entropy between Ala and Gly in the unfolded state
is not the primary factor determining the difference
in helical propensity for these two residues.
Additionally, our simulations show that a Gly
reduces the preceding Ala’s helical population
(Figure 4(a)). This NN effect suggests that the low
helical propensity of Gly may be due to a combi-
nation of its high backbone entropy in the unfolded
state, and of the reduction it imposes on its
N-terminal neighbor’s tendency to be in a helical
conformation.

Time-scales and comparisons with experiments

Our results indicate that simulations employing
different commonly used FFs can produce basin
hopping rates differing by about fivefold as well
as populate the major basins differentially. Though
our basin hopping rates are dependent on the vis-
cosity of the solvent, we believe that for small pep-
tides, the rates will only rescale with a different
viscosity coefficient16 Our findings agree with
recent simulations obtained by Hu et al.4 and Mu
et al.10 using explicit solvent MD simulations and
several different FFs.

Inter-basin hopping rates and basin sampling
affect the folding pathways and, hence, the overall
dynamics that are predicted by simulations. Conse-
quently, the folding rate determined from folding
simulations may contain further uncertainties.
Given these issues, one should expect a factor of
at least 2–3 uncertainty in simulated rates30

because of the uncertainties in the FFs. Further-
more, the extreme bias towards the helical basin
from the Amber 94 FF implies that any folding
simulation using this FF is unreliable for either
dynamics or thermodynamics.

In addition, protein folding simulations with a
variety of FFs often tend to exhibit early collapse
and the formation of structured intermediates31 – 36

In contrast, the folding of small proteins is
observed experimentally to be two-state without
the accumulation of early intermediates.37 Poten-
tially, the early intermediates observed in the simu-
lations arise due to inherent limitations of the FFs,
which are designed primarily to describe folded
structures and not the dynamics of the folding
process.

A possible source of the early collapse found in
the simulations may lie in an inadequate treatment
of the backbone entropy of the unfolded state.
Although the backbone entropies are generally
within ,1/2 kcal mol 21 of each other for the
seven FFs, these values are for a single residue.
Even a 0.1 kcal mol 21 systematic error for a small,
100 residue protein could produce a net error of
10 kcal mol 21, or a factor of 107 in the equilibrium
constant for a fully collapsed species relative to
the unfolded state. Thus, small systematic errors
in parameters of FFs can easily lead to folding
mechanisms that are not observed experimentally.
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Conclusions

Our simulations demonstrate that the Flory IPH
is invalid because of significant interactions
between neighboring amino acid residues. The
basin preference and backbone entropy of a resi-
due depends on its neighbor’s conformation and
identity. We estimate the magnitude of these effects
to be TDS # 0.7 kcal mol 21 residue21. Because most,
but not all38,39 implementations of Zimm–Bragg40

and Lifson–Roig41 helix-coil theories do not include
either a dependence on the sequence or on the con-
formation, there is opportunity for improving these
theories by correcting for the changes in the entropy
of the unfolded state due to NN effects.

Basin populations and inter-conversion rates
depend strongly on the choice of FF. This depen-
dence is larger than differences between explicit
and implicit solvent calculations using the same
FF, suggesting that explicit solvent calculations for
the dynamics of small peptides may be unnecess-
ary until the FFs are improved.

The information we obtain concerning the basin
hopping rates can be used in coarse-grained fold-
ing algorithms that are based solely on torsional
dynamics.42 Moreover, the preference of peptides
for certain conformations can help characterize the
structure and dynamics of the denatured state,
and their influence on the folding pathway.

Methods

The long-time dynamics (15–45 ns) of the di- and tri-
peptides have been probed using the implicit solvent
LD simulation method described by Shen & Freed16

using seven different FFs at 300 K. The peptides are
amino-acetylated and carboxy-amidated in order to
model the dynamics of the two or three residues within
a larger polypeptide. Similar simulations with uncapped
ends lead to very different propensities for individual
Ramachandran basins, mainly because the charged ends
favor elongated configurations more than in capped sys-
tems. Average basin populations and dynamics are accu-
mulated after the first 3 ns of the equilibration simulations.

The Langevin dynamics simulations take the total sys-
tem energy:

Utotal ¼ Ub þ Ubend þ Utors þ Uimp2tors þ Uchð1ðrÞÞ þ UvdW

þ UsolvðsÞ

as the sum of the usual types of interaction potentials
between the solute atoms, while the solvent contri-
butions are modeled using a distance dependent dielec-
tric “constant” to screen charge–charge interactions
Uchð1ðrÞÞ and a solvation potential UsolvðsÞ. The bonding
interactions Ub, bond–bond bending interactions Ubend,
and improper torsional energies Uimp– tors are modeled
by harmonic potentials, the regular torsional potentials
Utors by standard periodic functions, and the van der
Waals interactions by Lennard–Jones 6–12 potentials.
The Coulomb interactions:

Uchð1Þ ¼
X

i.j

qiqj=eðrijÞrij

are expressed in terms of atomic partial charges qi and a
Ramstein–Lavery-style43 distance-dependent dielectric
constant 1(r). The microscopic solvation potential is
modeled using the Ooi–Scheraga solvent-accessible sur-
face area (SASA) potential:44

UsolvðsÞ ¼
XN

i¼1

gisi

where si is the accessible surface area of a hypersurface
bisecting the first solvent shell surrounding protein
atom i, and the empirical surface free energy parameters
gi depend on the atom type. Because the gi are free
energy parameters, the Utotal generates a temperature-
dependent free energy that contains contributions from
solvent reorientation within a mean-field approximation.

The LD simulations employ the velocity
Verlet algorithm45 with a time-step of Dt ¼ 2 fs for inte-
grating the equations of motion for the protein atom pos-
itions and velocities. The lengths of all X–H type bonds
are constrained using the RATTLE algorithm.46 The com-
putations are performed using a modified version of the
TINKER 3.9 molecular design package† with a faster,
non-bonding force evaluation algorithm FAST-LD47 The
frictional forces and corresponding random forces acting
on the protein atoms are computed using the Pastor–
Karplus accessible surface area model.48 The solvent-
accessible surface areas si for the friction coefficients are
calculated from the exposed surface area of solute atoms
using a probe of zero radius. The smaller probe size for
friction coefficients is used to cancel effectively the results
of (more expensive to calculate) hydrodynamic inter-
actions. The accessible surface areas, atomic friction coeffi-
cients, and solvation potentials are updated every 100
dynamical steps (0.2 ps), since tests show that this approxi-
mation incurs negligible error because significant confor-
mational variations occur on a much longer time-scale.16

Identification of basin locations

The entropy calculations (equation (1)) do not depend
upon how each basin is defined, as the probability is cal-
culated for each of the 38 £ 38 grid elements. However,
the populations shown in Tables 1 and 2 and the rates
depicted in Figure 7 depend upon the definitions of indi-
vidual basins. Basins 1, 2 and 3 are defined on the basis
of the population of central Ala in tri-Ala (Figure 2(a)).
Basin 3 is defined with a circle large enough to encom-
pass the population of that basin for all the FFs (Figure
2(b)). This definition is used to calculate the rate of
escape from basin 3 shown in Figure 7. The distinction
between basins 1 and 2 is applicable only for G-S-94,
OPLS-AA-01 and CHARMM, as other FFs either do not
have a clear separation between theses two basins
(OPLS-UA and OPLS-AA-97) or have all of its popu-
lation in only a single basin (Amber 94 and Amber 96).
For basins 1 and 2, the G-S-94, OPLS-AA-01 and
CHARMM FFs are used to define non-overlapping
ellipses that are large enough to accommodate .90% of
the populations in each of these basins.

Independence of initial conditions and length
of simulation

In order to test the robustness of the computed neigh-
bor effects, simulations have been performed for four

† http://dasher.wustl.edu/tinker/
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different di-peptides with varying initial conditions and
variable durations of 45 ns and 15 ns. The overall differ-
ence in basin populations is less than 3% (due to differ-
ent initial conditions and longer trajectories), indicating
that the basins are sampled adequately within 15 ns,
and that the results are not an artifact of the initial con-
ditions or the use of short trajectories.

Calculation of kij (inter-basin transition rates) from
basin auto correlation function

In order to calculate kij, the rate of transition from
basin i to basin j, the escape rate from each basin is calcu-
lated. The population decay rate is obtained from an
exponential fit to the autocorrelation function Ci(t) for
each basin (after having subtracted the long-time basin
population). Because transitions from basins 1 and 3 pro-
ceed primarily to basin 2, the decay rates of Ci(t) for the
basin 1 and 3 correlation functions equal k12 and k13,
respectively. The decay rate of C2(t) is the sum k21 þ k23,
which can be separated using the equilibrium basin
populations and the detailed balance condition for equi-
librium, e.g.:

½basin 1�=½basin 2� ¼ k12=k21

Calculation of backbone entropies

Equation (1) is only an approximate relation. The con-
formational entropy can be computed rigorously only
from conformational populations when the latter are
obtained from a constant energy simulation. However,
both the friction coefficients and the solvation potential
are inherently temperature-dependent quantities, so con-
stant energy implicit solvent simulations are not poss-
ible. A more rigorous approach would be to follow the
far more computationally costly simulation methods of
Okamoto and co-workers,49 –51 but this would not be
possible for the wide range of dimer and trimer systems
and FFs studied here. Hence, the approximate form of
equation (1) suffices for our broad study.
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