Abstract: In this paper, we describe our system and results submitted for the Natural Language Inference (NLI) track of the MEDIQA 2019 Shared Task. As KU_AI team, we used BERT as our baseline model and pre-processed the MedNLI dataset to mitigate the negative impact of de-identification artifacts. Moreover, we investigated different pre-training and transfer learning approaches to improve the performance. We show that pre-training the language model on rich biomedical corpora has a significant effect in teaching the model domain-specific language. In addition, training the model on large NLI datasets such as MultiNLI and SNLI helps in learning task-specific reasoning. Finally, we ensembled our highest-performing models, and achieved 84.7% accuracy on the unseen test dataset and ranked 10th out of 17 teams in the official results.
Deep Learning is cheap Solomonoff induction?
51 minutes ago
No comments:
Post a Comment