I am an associate professor of Computer Engineering at Koç University in Istanbul working at the Artificial Intelligence Laboratory. Previously I was at the MIT AI Lab and later co-founded Inquira, Inc. My research is in natural language processing and machine learning. For prospective students here are some research topics, papers, classes, blog posts and past students.
Koç Üniversitesi Bilgisayar Mühendisliği Bölümü'nde öğretim üyesiyim ve Yapay Zeka Laboratuarı'nda çalışıyorum. Bundan önce MIT Yapay Zeka Laboratuarı'nda çalıştım ve Inquira, Inc. şirketini kurdum. Araştırma konularım doğal dil işleme ve yapay öğrenmedir. İlgilenen öğrenciler için araştırma konuları, makaleler, verdiğim dersler, Türkçe yazılarım, ve mezunlarımız.

May 07, 2018

Deep Learning in NLP: A Brief History

Panel presentation at the International Symposium on Brain and Cognitive Science (ISBCS 2018)

Full post...

April 10, 2018

December 06, 2017

On machine learning and programming languages

Julia Blog, Reddit Discussion, SysML Paper, By Mike Innes (Julia Computing), David Barber (UCL), Tim Besard (UGent), James Bradbury (Salesforce Research), Valentin Churavy (MIT), Simon Danisch (MIT), Alan Edelman (MIT), Stefan Karpinski (Julia Computing), Jon Malmaud (MIT), Jarrett Revels (MIT), Viral Shah (Julia Computing), Pontus Stenetorp (UCL) and Deniz Yuret (Koç University).

Summary: Any sufficiently complicated machine learning system contains an ad-hoc, informally-specified, bug-ridden, slow implementation of half of a programming language.

Full post...

September 25, 2017

A Dataset and Baseline System for Singing Voice Assessment

Barış Bozkurt, Ozan Baysal and Deniz Yuret. 2017. In The 13th International Symposium on Computer Music Multidisciplinary Research (CMMR), September. (PDF)

Abstract: In this paper we present a database of fundamental frequency series for singing performances to facilitate comparative analysis of algorithms developed for singing assessment. A large number of recordings have been collected during conservatory entrance exams which involves candidates’ reproduction of melodies (after listening to the target melody played on the piano) apart from some other rhythm and individual pitch perception related tasks. Leaving out the samples where jury members’ grades did not all agree, we deduced a collection of 1018 singing and 2599 piano performances as instances of 40 distinct melodies. A state of the art fundamental frequency (f0) detection algorithm is used to deduce f0 time-series for each of these recordings to form the dataset. The dataset is shared to support research in singing assessment. Together with the dataset, we provide a flexible singing assessment system that can serve as a baseline for comparison of assessment algorithms.

Full post...