I am an associate professor of Computer Engineering at Koç University in Istanbul working at the Artificial Intelligence Laboratory. Previously I was at the MIT AI Lab and later co-founded Inquira, Inc. My research is in natural language processing and machine learning. For prospective students here are some research topics, papers, classes, blog posts and past students.
Koç Üniversitesi Bilgisayar Mühendisliği Bölümü'nde öğretim üyesiyim ve Yapay Zeka Laboratuarı'nda çalışıyorum. Bundan önce MIT Yapay Zeka Laboratuarı'nda çalıştım ve Inquira, Inc. şirketini kurdum. Araştırma konularım doğal dil işleme ve yapay öğrenmedir. İlgilenen öğrenciler için araştırma konuları, makaleler, verdiğim dersler, Türkçe yazılarım, ve mezunlarımız.

July 02, 2018

June 04, 2018

Erenay Dayanık, M.S. 2018

Current position: PhD student at University of Stuttgart, Germany (Linkedin)
M.S. Thesis: Morphological Tagging and Lemmatization with Neural Components. Koç University, Department of Computer Engineering. June, 2018. (PDF, Presentation, Code, Data)
Publications: bibtex.php

Abstract

I describe and evaluate MorphNet, a language-independent, end-to-end model that is designed to combine morphological analysis and disambiguation. Tradition- ally, analysis of morphologically complex languages has been performed in two stages: (i) A morphological analyzer based on finite-state transducers produces all possible morphological analyses of a word, (ii) A statistical disambiguation model picks the correct analysis based on the context for each word. MorphNet uses a sequence- to-sequence recurrent neural network to combine analysis and disambiguation. The model consists of three LSTM encoders to create embeddings of various input fea- tures and a two layer LSTM decoder to predict the correct morphological analysis. When MorphNet is trained with text labeled with correct morphological analyses, the model is able to achieve state-of-the art or comparable results in twenty-six different languages.


Full post...