May 28, 2013

AI-KU: Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction and Disambiguation

Baskaya, Osman and Sert, Enis and Cirik, Volkan and Yuret, Deniz. Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013). June, 2013. Atlanta, Georgia, USA. (Download PDF, see the proceedings).

Abstract:
Word sense induction aims to discover different senses of a word from a corpus by using unsupervised learning approaches. Once a sense inventory is obtained for an ambiguous word, word sense discrimination approaches choose the best-fitting single sense for a given context from the induced sense inventory. However, there may not be a clear distinction between one sense and another, although for a context, more than one induced sense can be suitable. Graded word sense method allows for labeling a word in more than one sense. In contrast to the most common approach which is to apply clustering or graph partitioning on a representation of first or second order co-occurrences of a word, we propose a system that creates a substitute vector for each target word from the most likely substitutes suggested by a statistical language model. Word samples are then taken according to probabilities of these substitutes and the results of the co-occurrence model are clustered. This approach outperforms the other systems on graded word sense induction task in SemEval-2013.

No comments: